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PREFACE,

Tz object of this little work is to give a familiar
and connected account of the first principles of
Mechanics. Since no accurate knowledge can
be gained without a clear perception of the
meaning of the terms employed, great care has
been taken to define all technical words as they
occur. Very plain illustrations and experiments
have been referred to, throughout the work ; and
it is hoped that, although the expressions and
processes of Mathematics have been necessarily
excluded, the reasoning by which the several
parts are connected, will be found to be sound
and convincing. '

As every part depends closely upon that
which goes before, it is very important that the
young student should thoroughly comprehend
one lesson, before he proceeds to another.
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MEGCHANICS.

LESSON TI.

ON THE OBJECTS OF MECHANICS, AND ON .
FORCES IN GENERAL.

Mecmaxics is the science which treats of the laws
of equilibrium, or of the motion of bodies.

If we observe what takes place around us, we
perceive that certain effects are always produced
by certain causes. For instance, if weights are
successively put into the scale of a balance, they
begin to lift another weight in the opposite scale,
as soon as the weights exceed a certain amount.
Suppose this amount to be ten pounds. Then we
feel persuaded that the same effect would always
be; produced under the same circumstances, how-
ever frequently the experiment was repeated; that
a weight of ‘nine pounds would not bhe heavy
enough, and a weight of eleven pounds too heayy.
By extending the same kind of reasoning, we arrive
at the conclusion, that mechanical effects are mnot
produced at random, but are connected with their
causes by the regular operation of certain fixed
laws. 1Tt is the object of mechanics to discover and
trace the consequences of these laws.
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R MECHANICS.

begin to move. Thus, if a bullet be let fall from
the top-of a perpendicular tower, it falls in a straight
line to the bottom of the tower. The direction,
therefore, of the force of gravily is, sensibly, a
vertical line. This property gives one of the easiest
methods of finding whether any building is strictly
upright. If ABcisa frame,
the sides of which are ac-
curately at right angles to

each other, and a plumb-
\ line, m n, hangs freely upon

the bar A B, the part AB
will be vertical, and the
AN part B¢ horizontal, when
X JC the string m n exactly falls

upon the notch at 7.

The direction of a force by which motion is
stopped, or prevented, is opposite to the direction of
a force which would cause the same motion. .

Thus, if a bullet falls from a height upon the
- ground, and is there stopped, the pressure of the
ground against the bullet, which stops its motion
downwards, is in a direction perpendicularly wup-
wards.

If a weight rests on a table, the direction of the

ressure of the weight is in like manner, down-
wards, while the direction of the pressure of the
table against the weight is upwards.

The magnitude of a force is measured by the effect

b .
which it would produce under given circumstances,

—

AT
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MECHANICS. 5

compared with the effect produced, under the same
circumstances, by some other force taken as a
standard.

Thus, suppose a magnet is just able to support
a weight of one ounce ; and that, after it has gained
strength by constant use, it is able to ‘support two
ounces. The magnitude of the sustaining force
which it exerts is exactly double of what it was at
first.

As the effects produced by forces are different,
any of those effects may be taken as the measure of
the magnitude of force, care being taken to dis-
tinguish the different circumstances.

For the present we shall have to consider only
pressures, which, as we have seen above, can be
always measured by weights.

It is often very convenient to represent forces by
lines, drawn in the directions in which the forces
act, the lengths of the lines representing also the
magnitude of the
forces. Thusanyline, A B c
as A B, may be taken
to represent any force,
acting in the direction
AB. If we wish to
represent a force twice as great, acting in the same
direction, we must take a line A ¢, to represent it,
which is in the direction A B, and twice as long: and
so on for any other force in the same direction.

In like manner, a line A b, inclined to 4B, will

D



6 MECHANICS.

represent another force acting at the same point 4,
in the direction in which A » is drawn, and bearing
the same proportion to the first force, that A D bears
to AB; and the same principle of representation
may be extended to any number of forces.

It must be well observed, that in so describing
forces, we take the direction of the forces to be that
indicated by the relative position of the letters;
thus “a force AB,” ‘implies a force acting upon a4,
proportional to the line AB, and tending to cause
niotion from A towards B. Whereas “a force B A,”
implies an equal force, tending to cause motion
Jrom B towards A.

It is often most con-

5 b 5 venient to take a line,

as A b, equal to AB,

and measured from a

in the direction opposite to A B, in order to represent

a force acting upon A, and tending to cause motion
in the direction opposite to AB.

QUESTIONS.

What is the science of Mechanics ?

‘What is force?

What are animal force, gravity, pressure, and impact ?

‘When are two forces cqual ?

How can force producing pressure he measured ?

‘What is the direction of a force ?

‘What is the magnitude of a force ?

Show that the direction and magnitude of forces can be
represented by lines.



MECHANICS. : = -

LESSON II.
ON THE PROPERTIES OF MATTER.

Force may be employed cither to keep bodies at
rest, or else to put them in motion, or act upon them
when they are in motion.

That part of Mechanics which treats of keeping
bodies at rest is called Starics, from a Latin word
(stare), which implies standing still: and that part
which treats of motion has received the name of
Dy~anmics, from a Greek word (Suvdpucs, dynamis,)
which signifies power or force.

The bodies of which the science of Mechanics
treats are material bodies, that is, they are composed
of MATTER, or are the objects of our senses, and
possess certain properties.

Matter possesses exlension ; it has a certain mag-
nitude of length, breadth, and thickness.

Matter possesses solidily; it occupies space, SO
that if one body, as a stone, is in the hand, it pre-
vents the hand from being closed, until the body is
removed.

Matter is moveable. All the matter with which
we are acquainted can be moved by the application
of a sufficient force; whence we conclude that this
is a general property of all matter.

Matter is divisible. If we take a piece of irom,
we can divide it into two parts: the nature of those
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two parts is the same as that of the whole piece; each
of them, therefore, is as divisible as the whole piece.
Thus each division leaves the matter as capable of
division as it was at first; and we cannot imagine
any limit to such a division.

The division of matter may be carried to a great
extent, by grinding or pounding certain substances,
so as to reduce them to a very fine powder. By
dissolving a body in a fluid, the division into parts
may be carried still farther: and we have no reason
to think we have reached the limit of smallness,
when we have arrived as far as our senses extend.

Matter possesses gravily. We cannot lift a body
without exerting a force: and if we leave a body to
itself, it falls to the earth. This tendency to move
in the direction of a line drawn from the body
towards the centre of the earth, is called gravitation.
It does not depend upon the form of the body, or
upon the arrangement of the particles of which it is
composed. If we take a stone of a pound weight,
and bruise it in a mortar, provided none of the parts
are lost, they are found to weigh still exactly a
pound.

Matter is also znactive: it cannot move itself, nor
be moved without the exertion of a sufficient force.
This property of matter is often called its inertia, a
Latin word which implies inactivity.

Since the gravity of a body is not altered by any
change in its form, the degree of its gravity, or its
weight, at any given place of the earth’s surface,
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may be taken as the measure of its quantity of
matter. If a portion of matter of a given weight
is taken as an unit, for instance if it is called one
pound, another portion of matter of the same weight
is also called one pound: ten such portions together
ten pounds, and so on.

The density, or specific gravity of a body is
- measured by the weight of a given bulk.

For instance, a cubic, or solid foot of water weighs
one thousand ounces avoirdupois. A cubic foot of
lead is found to weigh 11,325 ounces, and a cubic
foot.of iron, 7645 ounces. The densities, therefore,
of these bodies are in the proportion of 1000, 11,325,
and 7645 respectively: and those numbers are called
the specific gravities of the bodies.

QUESTIONS.

Into what two parts is the science of Mechanics divided ?
‘What is matter ?
What are extension and solidity ?
- What is meant by matter being moveable and divisible ?
What is gravity ?
‘What is meant by the inactivity of matter?
How is density measured ?
‘What is specific gravity ?
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LESSON III.
ON FORCES APPLIED TO A POINT.

——

ProrosiTion 1.

TuE effect of any force is the same, at whatever
point in the direction of the force it is applied.

Suppose a piece of wood, A B, has a hole bored
through it, and is hung freely upon a peg c¢; then
let two weights, pand w, be hung upon two small
nails, driven into the wood at » and &, and let the
whole be left to balance itself, the two strings, b w
and e p, hanging perpendicularly along the surface
of the wood A B.

Then if the string £ P be taken from the nail =,
and hung upon a nail, driven at any point, as G
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or F, in the same vertical line ¢ E p, the whole will
be still found to balance itself.

This experiment shows that the effect of the force
P is the same, at whatever point in the direction of
the force it is applied.

But if the weight » be hung upon any other point,
as K, not in the line ¢ £ F, it is then found that the
wood will no longer balancg itself upon the peg c.

If a weight p, is<iung
to a string, Pca, which
passes over a wheel, or
fixed pulley, ¢, and is
fastened to a ‘peg a, the
force which pressesagainst |
A is exactly equal to the g)
weight p, since the effect p
of the pulley is only to
change the direction of the force.

ProrosiTion 2.

Ir a body be acted upon by two equal and
opposite forces, it will remain at rest.

Let two pulleys ¢ and p be screwed into a piece
of wood, and a weight » be hung over ¢, the string
being fixed to a small ring, which is hung over a
peg at A, placed between ¢ and .

Then the force acting upon A is equal to the
weight of p, and acts in the direction A c.

Now let a weight @, equal to p, be hung over the
pulley », and attached to the ring a.
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Then the point A is acted upon by two equal and
opposite forces, in the directions A ¢ and A p.

C D

)
(gm T EETUA VAT
)
P

And if the peg at A4 be now removed, it will be
found that the ring A remains at rest.
Prorosition 3.

A Bopy may be kept at rest by the action of
three forces.

0O T

Let there be two pulleys B ¢, and any two weights
P and @, hung over them by two strings, which are
attached to a ring hung over a peg at 4, in such a
manner that B 4, A ¢, may be horizontal.

From the point @ on the horizontal board N,
draw two lines « b, @ c, parallel to the directions of
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the forces PP, @ @, respectively, and proportional to
them. For instance, if p is three ounces, and q five
ounces, let « b be three inches, and a c five inches.
Then from b and ¢ draw b d parallel to ac, and cd
parallel to @ b, and join a d.

Then let i pulley o be placed in the duec-
tion d a e, and a third weight r be suspended, which
is represented in magnitude by @ d, and attached to
the ring 4, and it will be found that the ring will
exactly be kepl at rest by the action of the three
forces p, q, and r, if the peg be removed.

Now, by Proposition 2, the force ® would be kept
_at rest by an equal and opposite force acting at A, in
a direction parallel to a d.

Hence the two_forces P, q, acting on a point at 4,
and represented in magnitude and direction by the
two sides of a parallelogram, are equivalent to a
single force, represented by the diagonal of the same
parallelogram *.

Such a single force is said to be the resullant of
two such forces.

Prorosrrion 4.
Axy force acting on A, represented in quantity
and direction by a b, 1s equivalent to any other
two forces, represented by A B, ac, respectively,

* A parallelogram is a figure of which the opposite sides are
equal and parallel straight lines ; and a diagonal is the straight
line drawn from any angle to the opposite angle. Thus, in
p. 14, ABDC is a parallelogram, and A p a diagonal.
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provided s p is the diagonal of a parallelogram,
of which 4 B, A ¢, are the sides.

In such a case the single force A » is said to be
resolved into the two forces A B, A c.

A simple machine, such as that deseribed in the
plate of Proposition 3, which can be constructed for
a few pence, affords the means of showing easily
the composition and resolution of force, by placing
different weights at pleasure at », Q, and R.

ProrosiTioN 5.

Ir a point be acted upon by three forces, which
are represented In quantity and direction by the
three sides of a triangle, taken in order, it will
be kept at rest.

In the figure of Proposition 4, suppose a point A,
acted upon by two forces, represented in quantity
and direction by the two lines 4 B, Ac. Then the
effect will be the same as if a single force, A b, acted
upon A. And if another single force, b 4, equal and
opposite to A D, acts also upon 4, A will be kept at
rest, by Proposition 2.
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Now, by the nature of a parallelogram, the line
B D is exactly equal to A ¢, and is parallel to it.

And the three lines A B, BD, DA, are the three
sides of a triangle, A BD, taken in order.

Hence, if a body, A, be acted upon by three forces,
which are represented by the three sides of a triangle
taken in order, it will be kept at rest.

Hence also it fol-
lows, that two forces B
acting upon a point,

A, and represented

in quantity and di- /
rection by two sides, A c
AB, BC, of a triangle,

taken in order, are equivalent to a single force,
represented by A c, the remaining side of the tri-
angle, ABc.

o

Prorosition 6.

Ir several forces act at once upon a point, and
are such that their directions and magnitudes
are represented by the sides of a plane rectilineal
figure*, taken in order, the point will be kept at
rest.

Suppose five weights hung over as many pulleys,

*® A figure is rectilineal when all its sides are straight lines:
and it is a plane figure, when it lies all in one level surface.
A square is a rectilineal figure, and also a plane figure, A
circle is a plane figure, hut not a rectilineal figure.

-
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and all attached to a ring, a, kept in its place by a
pin; all the strings, A B, A ¢, &c., being parallel to
the horizontal plane M .

Then, if @b be drawn parallel to A B, and pro-
portional to the force at B, bc parallel to Ac, and
proportional to the force at ¢, c¢d parallel to A b,
and proportional to the force at p; d e parallel to
A®, and proportional to the force at m; and ea
parallel to A F, and proportional to the force at :
and if the lines so drawn complete a rectilineal
figure, a b cd e a, the point A will be found to be
kept at rest by the five forces, so as to remain fixed
when the pin is withdrawn.

The reason of this is plain, from the last pro-
position.

- e Two forces, a b, b c,

., acting upon a point,

4 = are equivalent to a
single force, a ¢, acting

. upen the same point.

~ Suppose such a force substituted for them.
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Then the three forces, ab, bc, cd, produce the
same effect as the two forces, ac, cd; or as a single
force, a d.

In like manner, the four forces, ab, be, cd, de,
produce the same effect as the ¢wo forces, ad, de,
which are equivalent to a single force, e. And
when an equal and opposite force, e a, is applied, the
point is kept at rest.

Hence, if a point is acted upon by any number
of forees, acting in one plane, we can find a single
force equivalent to them all, by drawing lines suc-
cessively proportional to the forces, and in their
respective directions.

If those lines complete a rectilineal figure, the
forces, by their united action, will keep a point at
rest.

If they do not complete such a figure, they are
equivalent to a force represented in quantity and
direction by a line drawn from the first point so as
to complete the rectilineal figure.

Thus, in the figure of Proposition 6, the four
forces at B, ¢, p, B, and proportional to a b, be, ¢ d,
d e, are equivalent to a single force acting in the
direction ¥ 4, and proportional to the line « e.

Prorogition 7.

ANy number of forces, acting in one plane upon

a point, may be resolved into two forces, at right

angles to each other, and their resultant found.
c
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If A D represents the

R : ®  direction and magni-
= tude of any force, act-
ing on A, and Ax, Ay
are at right angles to

) 2 each other, and pc, DB
o B = parallel to Ay, A re-
L~ spectively, we may sub-

stitute for the single

M % force AD, the two forces

AC, AB, in the direc-

tion of Aa, Ay, which are sometimes called co-
ordinates.

In like manner, if A d represents the direction
and magnitude of any other force acting upon 4, in
the same plane in which A «, Ay lie,and d ¢, b d, are
respectively parallel to Ay, A, we may substitute
for the force A d, the two forces Ac, Ab, in the
directions A @, A y, respectively.

Hence, instead of the ¢mwo forces, AD, A d, we may
substitute the forces, Ac, ac, (or one force, A,
equal to A ¢ and 4 ¢ together,) in the direction A =,
and the forces, o B, A b, (or one force, A N, equal to
A B, A b together,) in the direction A y. :

And, by completing the parallelogram, AN R,
we get a single force, o r, which is the resultant of
the two forces, A M, AN, and equivalent to the first
two forces, AD, Ad.

The same principle may be applied to any number

of forces.

A ¢ @
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- Suppose there are three such forces, A v, Ad, A E.

Then, when these forces are resolved in the direc-
tions of A, Ay, the forces in the line v A & will be
A o, tending to move the pownt A in the direction A x,
and two forces A ¢, A G, tending to move the point A
in the opposite direction A v.

And if the force ac¢ be equal to the two forces
Ac, A G, the point A will have no tendency to move
in the line v A z.

In like manner, the forces acting in the lime y A
are A B, A b, tending to cause motion in the direction
A ys and A F, tending to cause motion in the opposite
direction A u.

And if A B, A b together are exactly equal to A F,
the point A w i1l have mo tendency to move in the
line y A u.

And therefore the three forces Ap, A d, AE, w111
Izeep the point A at rest.

Any forces, acting in one plane upon a point,

C 2
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will not keep it at rest, unless the resolved parts in
the directions A a, A y separately destroy each other.
For, if there be any force in either of those direc-
tions, the point will have a tendency to move in
the direction of the single force, if there is only one,
or in the direction of the resultant of the forces, if
there is more than one force.
To exemplify this practically,
Let kL be two
M pulleys upon a ver-
v £ tical board M~ ; and
1l

let two weights, p, q,
ot co be suspended upon

5 / a cord passing over
o——

Al

o=

% ’ ? the pulleys, and a
f"‘ X third weight, ®, be
Jo : 7 hung by a loose ring,
N| A, upon the cord, so

as to balance.

In order that the results may be expressed in
whole numbers, suppose » to be 20 ounces, q, 15
ounces, and Rr, 25 ounces.

When the whole is balanced, let two other pul-
leys, &, [, be placed so that their upper surfaces are
in the horizontal line % 4 ¢; and another pulley, v,
so that one of its horizontal sides may be in the
vertical line R A V.

Then taking, on any given scale, A D equal to 15,
to represent the force of q in the direction A p, and
drawing D ¢, D B, vertically and horizontally, 4 ¢ will
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be found equal to 12, and AB to 9. Hence the
force 15, in the direction A p, is equivalent to two
forces, one 12, in the direction a ¢, the other 9, in
the direction A B.

This may be shown by hanging a weight, ¢, of 12
ounces, over the pulley /, and a weight s, of 9 ounces,
over the pulley v, attaching the ends of the strings
at A, and then removing the weight @, when the
equilibrium will still be found to subsist.

In the same manner, if A d be taken equal to 20,
on the same scale, to represent the force of p, in
the direction A d, and de¢, db, be drawn vertically
and horizontally, the force 20, in the direction a d,
will be found to be equivalent to two forces, one
12, in the direction A ¢, and the other 16, in the
direction A b.

And this also may be shown, by hanging a
weight, p, of 12 ounces, over the pulley %, and a
weight, ¢, of 16 ounces, over the pulley », attaching
the ends of the strings to A; and then removing the
weight p.

The point A will be found to be sustained in the
same position as at first.

Here, then, the oblique forces have heen resolved
into horizontal and vertical forces, the points of
which have been shown to be separately equivalent
to those oblique forces: and we have now two equal
forces, each of 12 ounces, acting in the horizontal
directions A/, and A k: and two other equal forces,
each of 25 ounces, acting in the vertical directions
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AR, AV. And these resolved forces separately
destroy each other, and keep the point A at rest.

Prorosrrion 8.

A rorcE can always be resolved into three forces,
each of which is at right angles to the plane in
which the other two lie.

= iR Suppose that a single force,
represented in quantity and
direction by the line A R, acts
» upon a point A.

° 2 And let Ap, A0, AM, be
drawn in the directions of the
edges of a solid figure, 3 P N R 0, which is such, that
the angles MAP, MAO, 0AP, are all right angles,
and A R is in the direction of the diagonal, or straight

line drawn across from A to the opposite angle &.

Then, if AN, MR, be joined, MRN A is a paral-
lelogram, of which A ® is the diagonal.

Hence the single force AR is equivalent to the
two forces A M, A N, by Proposition 4. Again, APNO
is a parallelogram.

Hence the single force AN is equivalent to the
two forces AP, Ao. Let AP, A0, be substituted for
AN: and the single force A R is equivalent to the
three forces Am, AP, A0, each of which, as A M, is
at right angles to the plane in which the other two,
as A P, A 0, lie.

The same principle may be extended to any
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number of forces acting upon a point, and is of the
greatest importance in all problems depending upon
forces acting in different planes. DBut the subject is
somewhat too complicated to be farther entered upon
here.

QUESTIONS.

How is it shown that the effect of any -orce is the same, at
whatever point in the directi%u of the force it is applied ?

If a body is acted on by two equal and opposite forces, what
effect is produced ?

Can you show that a body may be kept at rest by three
forces ?

What must be the proportion of three forces which can keep
a body at rest ?

When is a force said to be the resultant of two other forces?

When is a single force said to be resolved ?

If several forces act upon a point, in one plane, and are
represented by the sides of a plane rectilineal figure, show that
the point will be kept at rest.

Show that any number of forces, acting in one plane, may
be resolved into two forces, at right angles to each other.

Show that a single force can always be resolved into three
forces, each at right angles to the plane in which the other two
lie.
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LESSON 1V.

EXAMPLES OF THE COMPOSITION AND
RESOLUTION OF FORCES.

—_—

It is very important to get a clear notion of the
composition and resolution of forces. We will pro-
ceed to show the application of the principle in a
few plain examples.

ExampLE 1.—Suppose a man, 4, is able to pull
with a force of 400 lbs. in towing a boat, ¢, against
the stream: and a boy, B, on the opposite side of the
river, can pull with a force of 3001bs.; and that we
wish to know the force which the siream exerts upon
the boat, assuming that the man and boy are just
able to keep the boat from running down the stream;
and that the two ropes, ¢ 4, ¢, are at right angles
to each other.

e To find what the
S force of the stream is,

B if we lay down by a
\ scale the line ca to re-
present 400, and ¢ B

> ¢ at right angles to it,
to represent 300, and

/ complete the paralle-
/ logram, we shall find
the diagonal c¢p, to
be 500, on the same

N

o)
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scale: which shows that the force of the stream, in
that case, is equal to the pressure of 500 lbs.

Ex. 2. A common kite, sustained in the air, gives
a good example of the manner in which force is
resolved.

The tail keeps the lower part of the kite always
inclined from the wind, so that the wind acts
obliquely upon the lower surface of the kite.

Suppose the kite quite
flat, and the whole force
of the wind upon it* to
be applied at some point
B,to which also the string -
is attached.

Let a horizontal line,
A B, be taken to repre-
sent the pushing force of
the wind. Then if AD
is drawn perpendicular
to the surface of the kite,
and ADBc is a parallelogram, the effect upon the
point B will be the same as if the force A B were
removed, and two pushing forces applied instead of
it, one represented by p B, the other by ¢ b.

The force pm is applied along the surface of
the kite, and has no effect upon the surface, so
that we need consider only the force ¢B applied

* It will be shown that the supposition may be made, in
the chapter on the Centre of Gravity.
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at B in a direction perpendicular to the surface
of the kite.

Now again, let ¢E, BF be drawn perpendicular
to A B, and ¢ ¥ parallel to BE.

Then the effect of the pushing force, ¢ B, will be
the same as if there were ¢mwo pushing forces applied
instead of it, represented by BB and F 5.

The force £ is that which causes the kite to pull
in a horizonal direction against the hand of the
person who holds the strmg, and the force rB is
that which Zifts the kite, and sustains the weight of
the kite and the string.

Ex. 3. Suppose a person is travelling by a stage-
coach, and while the coach is stopped, observes
that the wind is exactly at right angles to the direc-
tion of the road ca: so that, if he holds up his
handkerchief, he finds that it is blown in the direc-
tion A B.

Now suppose the coach to
be set in motion in the direc-

A B
tion c A. Then the effect upon
. the handkerchief will be the
\ .
D » Same as if a second current

of air had begun to blow in
the opposite direction Ac,
c moving with the same velo-
city as the coach itself moves

in the direction c A.
- If then-we take A B to represent the force of the
mnd in the direction A B, and AD to represent, on
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~ the same scale, the force occasioned by the resist-
ance of the air to the motion of the coach, and com-
plete the parallelogram A BED, drawing the diagonal
AE, the line A E will be the direction in which the
handkerchief will now be blown, and the line AE
will measure, upon the same scale, the force with
which it is urged in that direction.

If the original direction of the wind, A B, is
observed, and also the direction, A m, in which the
wind appears to blow, when the coach is in motion,
the proportion may be found between the force of
the wind, 4 B, and the force A p, occasioned by the
resistance of the air to the motion of the carriage.

Ex. 4. In pulling down a
tree, the force A g, applied at
the point where the rope is
attached, may be resolved into
two; one, Ac, in the direction
of a line passing from that
point to the root of the tree; ;
the other, AB, at right angles ¢
to that direction : and if there
be no other force acting upon the tree, it will begin
to fall, as soon as the effect of the last-mentioned
force, acting perpendicularly at 4, is sufficient to

overcome the toughness of the fibres at the root of
the stem.

A
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QUESTIONS.

If two men, on opposite sides of a river, draw a boat against
the stream, how do you find the force of the stream when the
boat is just kept at rest, the two strings being at right angles
to each other ?

Show how a kite is sustained in the air.

By what means can the force of the wind be comparedwith
the resistance of the air opposed to the motion of a carriage ?

Show how the foree of the rope employed in pulling down a
tree, may he resolved,
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LESSON V.
ON THE MECHANICAL POWERS,

It is very seldom convenient to apply a force directly
to produce a mechanical effect. Any intermediate
instrument which is employed for the purpose is
called a machine ; and the simplest parts of which
all machines are composed are called the mechanical
powers. 1t must be borne in mind, however, as
will be shown by-and-by, that no increase of power,
properly so called, is gained by the employment of
any machine.

The simplest mechanical powers are the lever, the
wheel and axle, the pulley, the inclined plane, the
wedge, and the scremw.

A lever is a bar, usually considered without
weight, or so arranged as to balance itself, and
resting upon a fixed point called a_fulcrum.

The lever is said to be straight or bent, according
as the arms, or parts on each side of the fulcrum,
are in the same straight line or not.

The lever is the most simple and most common
of all the mechanical powers. If we stir the fire,
the pokeris a lever, the fulcrum being the bar of the
grate on which the poker turns, and the force of
the hand, pressing at one end, moving the coals at
the other end of the poker.

D 2
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A pair of scales is a lever, the fulerum being the
point on which the beam of the scales rests, and the
weights in the scales are the two forces.

Many other examples are given in the next lesson.

ProrosiTion 9.

A weight suspended to a lever, at a point im-
mediately under its own point of suspension, has
no tendency to turn the lever round.

: . Suppose a bar, AB,
perfectly balanced and
suspended by a string,
K c, attached to it at c.

If any weight, », be
5 hung directly under ¢,
1 B the line of its direction
; ' passes through cand x;
and, therefore, it can
e have no effect in caus-

ing any motion about c.

Also the pressure on & is equal to the weight of
the lever together with the weight of r.

This is easily proved by experiment: for if ¢ be
supported by a string passing over a fixed pulley,
and attached to a weight, T, which exactly supports
the lever alone, and another weight, s, equal to ®, be
attached to r, the two weights, s and T, will be
found exactly to balance the lever and = together.

ks
a
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Prorosrrion 10.

Two equal forces, applied perpendicularly to the
arms of a straight lever, on opposite sides, and
at equal distances from the fulerum, and tending
to move the lever in opposite directions, will
keep each other at rest.

C N

M
T T 1 | T
Se

Let A B be a straight bar, suspended at ¢, so as
to balance itself, and divided into inches and parts
of an inch.

Then if two equal weights, P, @, are hung upon
it, at any points M, N, which are at equal distances

Jrom ¢, on either side, they will be found to balance
each other.

But if one of them, as p, be heavier than the
other, @, P is found to overbalance @, when they are
each at equal distances from c¢: or if one of the
equal weights, as P, be moved to a greater distance
from ¢ than q is, it then also overbalances q.

It is indifferent what wnits of weight and distance
are taken, In the following illustrations we shall
usually assume an ounce as the unit of weight, and
an inch as the unit of distance.

Q
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Prorositron 11.

Two equal forces, applied perpendicularly to a
straight lever, produce the same effect as if they
were both applied together at the middle point
between them.

Let @ be hung upon the lever as before, and sup-

pose it to be four ounces; and suppose ¢ N to be six
inches.

AEMDCH N B

C

T O)- sO O Q

Then, if an equal weight were hung at ¥, ¢
being also six inches, it would just balance q.

But instead of that one weight of four ounces, at
M, let wo weights, each of two ounces, be hung,
one at p, and the other at &, on opposite sides of ar,
and equally distant from it. Then those tmwo weights
will be found exactly to balance the single weight
q; and, therefore, they produce the same effect as
if they were to be- applied together at the middle
point between them.

It makes no difference in the effect of the two
~ weights, s and T, upon the lever, how far from
they are hung, provided the distance D, on one
side of o, is equal to the distance £, on the other
side.
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Prorosirion 12.

A rorce of one ounce, at a distance of #o inches,
balances a force of o ounces at a distanee of
one inch.

Emc|l w

Suppose a weight, q, of two ounces, suspended at
N, ¢N being one inch from c.

Then if ¢ M is also one inch, fwo weights, s, T, of
one ounce each, both suspended at a1, would exactly
balance q.

And if s and T are moved in opposite directions
from m, through equal spaces, the equilibrium will
still continue, by Prop. 11.

Suppose each of them moved through one inch.

Then the weight s will be hung exactly at the
point ¢, on which the lever is suspended, and there-
fore will have no effect in turning the lever either
one way or the other, by Prop. 9. And the weight

T alone will balance @, and it will be at a distance
of two inches from c.

Prorosition 13.
A rorceE of ome ounce, at a distance of #hree
inches, balances a force of ¢4ree ounces at a dis-
tance of one mmch.
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Suppose the weight q, as before, to be imwo ounces,
hung at N, and that the weights T and s, of one
ounce each, are moved each to the distance of two
inches on either side of M. The whole will still

mO Q
S

balance. But the weight s will be moved exactly as
far as N, and will now be added to the weight qQ, the
two together making three ounces; and the weight
T, of one ounce, will be at the distance of three
inches from ¢, and exactly balance the ¢hree ounces
hung at a distance of one inch from c.

»<

Prorosrrion 14,

A rorce of one ounce, at a distance of Jour
inches, balances a force of Jour ounces at a dis-
tance of one inch.

x M ¢ NS
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Suppose the weight q, as before, to be Z20 ounces,
hung at ~; and that the two weights, T and s, each
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of one ounce, are moved to a distance of three inches
on either side of a. = Then the three weights will
still balance, because the effect of the two weights,
T and s, is the same as if they were hung together
at 1, the middle point between them, by Prop. 11,
and ¢ M is equal to ¢ N.

But the effect of the weight s, of one ounce, at
the distance cF, or wo inches, is the same as that
of a weight of {mo ounces, hung at ~, at a distance,
CN, of one inch, by Prop. 12.

Suppose, therefore, s to be removed, and a weight
of {mwo ounces to be added to q, makmg, together,
Jfour ounces hung at N; the whole system will still
balance. That is, the weight T, of one ounce, at a
distance cE, or fozu inches, balances a weight of
Jour ounces at a distance of one inch.

In all these instances, we see that the number of
ounces in the weights, multiplied by the number of
inches in the distances, are equal on each side of the
fulerum ¢. Thus, one multiplied by four is equal
to four multiplied by one; and the same is plainly
seen in the other instances.

This leads us to a general property of the straight
lever.

Prorosition 15.

A~y two weights, tending to move a straight
lever in different directions, and acting perpen-
dicularly upon the arms, will balance each other,
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provided the product of the numbers, represent-
ing the weights and distances on each side of the
fulerum, is the same.

M C ,
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Thus, suppose we have a weight, @, of twelve
ounces, hung at a distance, ¢ N, of four inches from
c. Then the product of the weight and distance,
on the side on which q is hung, is four times twelve,
or forty-eight.

And if p be any other weight, hung at a distance,
c¢M, such that the corresponding product of the
wezglzt and distance, on the side on which p is hung,
is also equal to 48, p is found to balance q.

Thus, if P is one, ¢ M must be 48, since one mul-
tiplied by 48 makes 48.

If pis 2, ¢ M must be 24, since twice 24 are 48.

If pis 3, cm must be 16, since three times 16
are 48; and so on.

This property is often expressed by saying, that
a weight, p, is in the same proportion to the weight
Q, as ¢ N is to ¢ M, or that the weights are to each
other inversely as their respective distances from c.

The product of the force multiplied by the dis-
tance at which it acts, is called the moment of the
force. Hence any two forces balance on a straight



MECHANICAL POWERS. 43

lever, when the moments of the two forces on each
side are the same. .

In like manner any number of forces, acting on a
straight lever, will keep it at rest, provided the sum
of the moments of all the. forces, tending to turn it
in one direction, is equal to the sum of the moments
of all the forces tending to turn it in another direc-
tion.

Thus, suppose on one side there are three weights,
A of two ounces, at a distance of two inches; B of
three ounces, at a distance of four inches; D of four
ounces, at a distance of five inches. Then, the
moment of A is twice two, or four: the moment of B
is three times four, or twelve: the moment of ¢ is
four times five, or twenty; and the sum of all the
moments is thirty-six.

C T ! (S SN NS I O 573 T 1 ==l ==X
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Now, suppose that on the other side of the lever
we have two weights; & of two ounces, at a distance
of six inches; and ¥ of three ounces, at a distance
of eight inches.
Then the moment of & is twice six, or twelve; and
the moment of ¥ is three times eight, or twenty-four.



44 ' MECHANICAL POWERS.

And the sum of the moments is thirty-six, as it was
also on the other side.

Hence the two weights, , ¥, so placed, will ex-
actly balance the three first weights: as may easily
be verified by experiment.

QUESTIONS.

What are the mechanical powers ?

What is a lever?

What is a fulerum ?

Give instances of a lever.

Show that a weight suspended to a lever at a point, directly
under its own point of suspension, has no tendency to turn the
lever round.

How must two equal forces he applied perpendicularly to
the arms of a straight lever on opposite sides, so as to keep
it at rest ?

How is it shown that two equal forces, applied perpendicu~
larly to the arms of a straight lever, produce the same effect
as if both were applied together at the middle point between
them ?

Show that a weight of one ounce, at a distance of two
inches, balances a weight of two ounces at a distance of one
inch.

Show that a weight of one ounce, at a distance of three
inches, balances a weight of three ounces at a distance of one
inch.

Show that a weight of one ounce, at a distance of four
inches, balances a weight of four ounces at a distance of one
inch.

When will any two weights balance one another, acting
perpendicularly on opposite sides of a straight line ?

What is meant by the moment of a force ?

How do you know when any number of forces, tending to
turn a straight lever in one direction, will balance any number
of forces tending to turn it in the opposite direction ?
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LESSON VI.

Prorosrrion 16.

In any straight lever, in equilibrio, the moment
of the forces tending to move the lever in oppo-
site dlrectlons, and referred to the centre of
motion, is the same.

C l‘{ M

8 J)Q P@

Suppose a weight, @, to be sustained upon the
lever cx M by the power p, the lever resting upon
the fulcum c.

Then if another weight, equal to the pressure at
¢, were applied at ¢, in the same manner as P is
applied at um, the whole would still be in equilibrio.

And, in this case, the bar ¢ N M is a straight lever
inverted, the forces at the two ends being p and the
pressure at ¢, and the force in the opposite direction,
corresponding with the pressure on the fulecrum in
Proposition 15, being the weight q.

Hence, by Proposition 15, the moment of the
force p, referred to N, or the product of the weight
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p, multiplied by the distance M N, is equal to the
moment of the force ¢, referred to N, or to the pro-
duct of the pressure on ¢, multiplied by the distance
CN.

Also the weight o is equal to the sum of the
power p and the pressure on ¢, if @ is between M
and c; since the whole of the weight q is sustained
at the points a and c.

Suppose that to each of these equal moments we
add the product of p, multiplied by the distance ¢ x.

Then the product of p multiplied by M ~ becomes
the product of » multiplied by ¢, or the moment
of p referred to c.

And the product of the pressure ¢, multiplied by
¢ N, becomes the product of that pressure ¢ and of
P together, both multiplied by ¢, or the product
of q multiplied by ¢, or the moment of q referred
to c.

And these moments are, therefore, equal to one
another.

For example, suppose P to be 2 ounces, @ 12
ounces, ¢ M 6 inches, ¢~ 1 inch.
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Then the moment of p, referred to ¢, is twice
six, or twelve. The moment of q, referred to c,
is twelve multiplied by one, or twelve. And the
two forces tend to turn the lever in opposite direc-
tions about ¢: therefore they will balance one
another.

If p is nearer to ¢ than @ is, » must be greater
than q.

Prorosition 17.

Ir a weight rests on two props, the pressure on
each 1s such, that the pressure multiplied by the
distance from the weight, is the same on each
side.

it -
B B

For the bar A ¢B may be considered as a lever
turned upside down, the two pressures on A and B
being equal to two weights which would balance
themselves on a fulerum placed at c.

Suppose, for instance, two porters, twelve feet
from one another, carry a cask, weighing 240 1bs.,
~ upon a pole; and that the point at which the cask
E
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is' hung, is four feet from the shoulder of the first,
and eight feet from the shoulder of the second.

Then the first man will sustain a pressure ¢wice
as great as the second man does: the first carrying
160 1bs., and the second only 801bs.: for 160 mul-
tiplied by 4, is equal to 80 multiplied by 8.

Levers are distinguished into different /inds,
according to the position of the fulcrum with
respect to the forces.

If the power and the weight are on opposite sides
of the fulcrum, the lever is said to be of the first
kind.

Thus, when a man turns up earth with e spade,
the fulcrum is the part of the spade which rests on
the ground, the power is applied at the handle of
the spade, and the weight to be moved is the earth
at the lower end of the spade.

A pair of scissors is a lever of the first kind ; the
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Levers of the Third Kind.




MECHANICAL POWERS. 53

power being the pressure of the finger and thumb,
and the fulerum the rivet of the scissors.

The lever is of the second kind, when the power
and weight are on the same side of the fulcrum,
and the power is farther from the fulcrum than
the weight is.

The knife used by patten-makers, is a lever of
this kind. A pair of common nut-crackers is
another instance.

The power of the hand is applied near the extre-
mity of the nut-crackers, the joint is the fulcrum,
and the fruit to be crushed is placed between the
joint and the hand.

The lever is of the third kind, when the power
and weight are on the same side of the fulcrum,
and the power is nearer the fulcrum than the
weight.

A pair of shears, used for clipping sheep, is an
instance of this kind of lever.

An oar is also a lever of the third kind. For the
weight to be moved is the boat : the power is the
force of the man pulling at the end of the oar; and
the fulcrum is that part of the water against which
the blade of the oar presses.

Prorosition 18.

I~ a combination of straight levers, A B, BD, D F,
of which the centres of motion are ¢, &, @, there
will be an equilibrium between two forces, »
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and q, perpendicularly applied, when p is in the
same proportion to q, as the product of all the
distances, ¢B, ED, ¢ F, to the product of all the
distances, ¢ A, BE, D G.

gl

Thus, suppose a ¢ is 12 inches, Bc 1 inch; B E
7 inches, Ep 2 inches; pa 9 inches, ¥ 1 inch:
then P is to to the pressure at B, as A ¢ to ¢ B, or 12
to 1, by Prop. 15.

The pressure at B is to the pressure at b, as BE
to ED, or 7 to 2.

The pressure at D is to the weight q, as D to
GF,or 9 tol; and therefore, by the general prin-
01p1e of proportional quantities, p is to @ as the pro-
duct of Ac, BE, D@, to the product of ¢ B, =D, and
GF; or, in this’ instance, as the product of 12, 7,
and 9, to the product of 1,2, and 1; or as 70() to
2; oras 378 to 1.

“The same principle may be extended to any com-
bination of straight levers.

In any straight lever, if either of the forces, as
p, does not act perpendicularly upon the arm o m
at M, but in some other direction, as M, if we
draw M E perpendicular to ¢, and D E parallel to

Ne!
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¢, and take M D to represent the force of p, MD
is equivalent to two forces applied at M, one re-
presented by » E, perpendicular to ¢, the other
equal to ED, or M F, applied at » in the direction
M F.

!
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The force M F acting from c, can not tend to
cause motion about ¢, and the effect of » upon the
lever will be the same as if a force, p, represented
in magnitude by M E, were applied perpendicularly
at m. ‘

By these means, the effect of any oblique forces
upon a straight lever, may be at once reduced to
that of forces perpendicularly applied.

QUESTIONS.

How do you find the proportion of two forces which halance
each other on any straight lever ?

If a weight rests on two props, how do you find the pres-
sure on each ? :

How many kinds of lever are there? -

Give instances of levers of each kind.

How do you find the proportion between two forces which
balance each other by means of a- combination of straight
levers ?
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LESSON VII.
ON THE BENT LEVER.

e

ProrosiTion 19.

Tue effect of any force to turn a plane body, as
a plank, round an axis perpendicular to itself,
the force also acting in the same plane, is the
same at whatever point in the plane it is applied,
provided the perpendicular distance, between the
centre of motion and the directioa of the force,
be the same.

Let AB be a plane moveable about a horizontal
axis, ¢, upon which it is found to balance itself:
and, suppose two equal weights, » and q, are sus-
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pended from two points of A B, namely, 0 and &, by
cords which pass over two pulleys, F and G.

Then, if ¢ and cN, the perpendiculars from c,
upon the directions ¥ b M, G EN, are equal, the whole
system will be found to balance itself.

Hence, in any lever, we may consider any force
as P, to be applied at the point M, where a perpen-
dicular from the centre of motion meets the direc-
tion of the force: and the product of the force, mul-
tiplied by the perpendicular distance at which it
acts, is called the moment of the force.

Prorosition 20.

ANy two forces tending to turn a bent lever in
different directions, will balance each other, pro-
vided the moment of the two forces is the same. -

Suppose a bar, A ¢ B, which balances itself on ¢,

has two forces, p and q, applied to it at the points
A and B, in the directions A P, B E.
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. Suppose ¢ M, ¢ N, are perpendicular to P A M,
EBN.

Then the effect is the same as if the force p were
applied perpendicularly to ¢ at the point M, and
the force @ applied perpendicularly to ¢~ at the
point x.

Now take co in the same straight line as mc,
and equal ¢ N.

Then, by Proposition 19, the effect on the system
is the same, if the wexght Q@ be removed, and an-
other equal weight, g, be applied perpendicularly to
co at the point 0: so that the moment of ¢ is equal
to the moment q.

Hence we may consider M c o0 as a siraight lever
and, by Prop. 15, p. 42, the two forces, », g, will
balance when the moment of e is equal to the
moment of ¢ ; and therefore is equal to the moment
of Q.

In like manner it may be shown, that any num-
ber of forces tending to turn any lever in one direc-
tion will balance any number of forces tending to
turn it in the opposite direction, if the sums of the
moments of all the forces on each side are equal to
one another.

Examples of the bent lever are very common. A
pump-handle is a familiar instance, in which the
force of the man pumping is applied near the end
of the handle, and is employed in overcoming the
resistance occasioned by the weight of the water to
be raised, and the friction of the piston.
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When a clawed-hammer
is used to draw a nail, the
hammer is a bent lever, the
fulerum of which is the
point ¢, on which the ham-
mer presses, the power is
applied upon the handle of
the hammer at A, and the
resistance to be overcome is
the force with which the
nail sticks in the wood.

In this instance, if the length of the handle, and
the direction in which the man pulls, remain un-
altered, the force exerted will be greater in propor-
tion as the distance, ¢ M, is diminished.

QUESTIONS.

How do you show that the effect of a force to move any
plane is the same at whatever point in the plane it is applied,
provided the perpendicular distance between the centre of
motion and the direction of the force is the same ?

When will two forces balance one another on a hent lever ?

Give some examples of a bent lever.
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LESSON VIIL
THE WHEEL AND AXLE.

TuE wheel and axle is a very convenient application
of mechanical power; and is easily understood
from the general principles of the lever.

Prorosrrion 21.

In the wheel and axle there is an equilibrium,
when the power and the weight are to each other
as the radius of the axle to the radius of the
wheel.

Suppose a wheel, AF,
and an axle, Ep, to be
moveable about the same
centres of motion, ¢, B:
and that a weight, p, is
suspended to the wheel,
and a weight, @, to the
axle.

Then the weight » acts
perpendicularly at the point
A, where the string leaves
the wheel, and at a distance, r 4, from the axis
of motion, ¢B; EA being equal to EF, the radius
of the wheel.

The weight @ also acts perpendicularly on the










THE WHEEL AND AXLE. 65

azle, and at a distance, equal to ¢ », the radius of
the axle. Hence the two weights will balance each
other, when the weight » is in the same proportion
to the weight q, as the radius of the axle, ¢ b, to the
radius of the wheel, £ 7, by the property of the lever.

Thus, if ¢r is 12 inches, and ¢ one inch, g will
be twelve times as heavy as p.

A common winch, such as that used to draw water
from a well, is an example of the wheel and axle.

A windlass, in which men, acting by means of
bars, draw a weight, sustained by a cord wound
round an axle, is another instance.

Sometimes the axle of one wheel is made to act
upon the circumference of another wheel, the axle

L ]

W
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of which again acts upon the circumference of a
third wheel ; and so on to any number of wheels.
This is effected either by means of a strap passing
round each wheel and axle, or by teeth cut in each
of them.

’

F
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In such a combination, the force of p is to the
force exerted on the strap, EL, as the radius of the
axle A E, to the radius of the wheel A p. The force
on the strap EL is again to the force on the strap
Go, as the radius of the second axle, B, to the
radius of the wheel B¥; and this third force on
o is to the force at x, or the weight w, as the
radius of the third axle, ¢k, to the radius of the
third wheel, £ H.

Hence, in any such combination, the power » will
be to the weight w, in the same proportion as the
number obtained by multiplying the length of the
radii of all the axles is to the number obtained by
multiplying the length of the radii of all the wheels.

Thus, if the axles were 1, 2, 3 inches, and the
wheels were 8, 10, 12 inches, respectively; the
power P would be to the weight w, as the product of
1, 2, and 3, to the product of 8, 10, and 12; or as
6 to 960, or as 1 to 160.

When one wheel acts upon

h?,-’\—"’-‘a‘c‘f'q% another by means of teeth, in

I"f, order to secure uniformity of

¢ motion, the teeth must be so cut

%“":3&6 j that they may turn smoothly

% upon one another, that the sur-

faces in contact may be per-

pendicular to one another, and that the proportion

of the power and weight necessary for equilibrium
should not be altered as the wheels revolve.

The means by which these conditions are secured,
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and the different kinds of toothed-wheels commonly
used, would require for their explanation more detail
than can be entered upon here.

The use of wheels acting upon each other is very
important in machinery. But however many wheels
may be combined, the general principle upon which
they act is the same.

In toothed-wheels, the number of revolutions
which a wheel connected with another will make,
for one revolution of the first wheel, will be known
if the number of teeth is known.
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Thus if a larger wheel contains 120 teeth, and a
smaller wheel only 20 teeth, the smaller wheel will
revolve six times as fast as the larger one: and
thus angular motion can be communicated, and
at the same time increased or diminished in any
required proportion. This is constantly seen in
clockwork.

A very rapid motion may readily be communicated
F 2
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to a spindle, by means of a strap passing round a
larger wheel.
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Thus, in a common spinning-wheel, which may
still be seen in some cottages; the woman who
spins communicates motion to the large wheel, by
pressing upon the spokes of the wheel near the
centre, thus giving a rotatory motion to the ecir-
cumference of that wheel, much greater than that
of her own hand at the time of communicating
the motion. This motion is communicated to the
small spindle on which the thread is wound, by
means of a band: the spindle revolving, perhaps,
five hundred times for every revolution of the
larger wheel.
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QUESTIONS.

What is the wheel and axle ?

What is the proportion of the power and weight which
balance each other by means of the wheel and axle ?

How may motion be communicated from one wheel to
another ?

How can the number of revolutions made by a wheel, con-
nected with another wheel in motion, be discovered ?
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LESSON IX.
THE PULLEY.

A pULLEY is a wheel, with a groove in the circum-
ference, in which a string or chain passes. If the
centre of motion of the pulley is itself immoveable,
the pulley is said to be a fixed pulley. If not, the
pulley is said to be moveable.

One of the most common uses of a fixed pulley is
to change the direction of a force. Thus, if a person
wishes to lift the bolt of a door, without getting out
of bed, a string may be fastened to the bolt, and,
passing over as many pulleys as may be necessary,
may be brought within reach of his hand.

It is plain, that the same

< effect may be produced by a

pulley, A, moveable about a

fixed centre, ¢, or by a crank,

B, (mext figure,) moveable

about a fixed centre, p. Thus

the greater part of the various

contrivances employed in bell-hanging may be
referred to the fixed pulley.

; In those instances, the

% /2 : x  force employed at P is ex-

= actly equal to the pressure

produced at x, the other

extremity of the line, sup-

posing that the line is not

capable of being stretched.

A

P
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But when many strings are employed in sup-
porting a weight, or sustaining a pressure, while
only one of the strings is connected with the power,
the weight supported may be much greater than the

power.

In all such cases it will be observed, that the part
of the weight, not sustained by the power, is sup-
ported upon the points on which the pulleys them-
selves rest, or to which the remaining part of the
strings are attached.

Prorosrrion 22.
Wiex any number of parallel strings support a
weight, by means of pulleys, and only one string
is attached to the power, the weight will be as
many times greater than the power as there are
strings at the lower block.

Let a string be attached to a power, p, and pass
several times over pulleys in an upper block, 4,
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and under pulleys in a lower block, B, and let the
other end of the string be made fast. Then, if a
weight, w, be attached to the lower block, and all
the strings are parallel, every part of the string
sustains a pressure equal to the weight of »; and
neglecting the weights of the pulleys themselves,
the weight w must be as many times greater than
P as there are strings by which it is supported. So
that if there be five pulleys, and therefore ten strings,
at the lower block, w will be ten times as great as p.

If all the upper pulleys
revolve upon a common axis,
and all the lower pulleys
upon another axis, and the
radii of the lower pulleys
4 are to one another as the odd

numbers 1,3, 5, &ec.; and

those of the upper pulleys

as the even numbers 2, 4, 6,

&c., a very convenient block-
3} 1s formed.

For, if the lower block be
moved towards the wupper
one, through any space, as,
for instance, an inch, one
inch of the string will pass
round the circumference of
the smallest pulley at the
lower block.

And each of the strings

=
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which pass under that pulley, being shortened one
inch, there will be ¢wo inches of the string passing
over the smallest pulley of the upper block.

In like manner, it will be seen that the length of
string passing round the other lower pulleys, will be
successively three inches, five inches, seven inches,
and nine inches: and the length of string passing
over the other upper pulleys will be four inches, six
inches, eight inches, and ten inches respectively.

And the size of the pulleys having been made in
the same proportion, the whole of the pulleys at the
upper and lower block respectively, will turn round
together, at the same rate.

This kind of block acts with very little friction.

Prorosirion 23.

In the single moveable pulley, in -which the
strings are parallel, the weight is double of the

- power.

. . w D
Suppose a string PABED is =

attached to a weight », passes
over a fixed pulley 4, and under
a moveable pulley B, and is fas-
tened at »: and suppose also a
weight, w, is suspended to B, and
that the strings P, A B, ED, are
all parallel.

Then, neglecting the weight of
the pulleys themselves, it is clear

W



76 MECHANICAL POWERS.

that every part of the string P A BED sustains the
same degree of tension, which is exactly equal to
the weight p, since the tension of the string at P
just sustains that weight.

And since each of the strings, A B, E D, sustains a
force equal to the weight of », the two together will
sustain twice that force. But the upward force of
these two strings is exactly balanced by the domn-
ward force of w. Ience w must be exactly double
of p: or a weight of one ounce may be made to
support a weight of (wo ounces by means of a single
moveable pulley.

It will be seen that the point F sustains a pressure
equal to that of the two strings A p, A B, or equal
to twice the weight of P, and the point » sustains a
pressure equal to the weight of p, the weights of the
pulleys being neglected.

Prorosition 24.

I~y the combination of moveable pulleys, each
hanging by a separate string, the weight sus-
tained will be doubled, by the addition of each
moveable pulley.

If a string is attached to P, passes over the fixed
pulley &, and under the moveable pulley B, and is
fixed at p: and another string is attached to the
pulley B, passes under the moveable pulley ¢, and
is attached to ¥, all the strings being parallel ; and a
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weight, w, is hung to c¢; the weights of the pulleys
being neglected :

Then each of the strings which support B, sustains
a pressure equal to the weight of p; and therefore
the string attached to B sustains a pressure equal to
twice p: and the part of the string attached at
must sustain the same pressure: and the two toge-
ther must sustain a pressure equal to four times P.
And the pressure on those two strings must exactly
equal the weight of w. (See fig. 1.)

Fig. 1. Fig. 2.
D E i 2

Or one ounce at P will exactly balance four

ounces at w.
In like manner, if there be continually added
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other moveable pulleys, and all the strings are
parallel, the weight sustained at w ( fig. 2, p. 77) will
be doubled by the addition of each moveable pulley;
so that if there be one moveable pulley, w is equal
to {mice p: if there are {mwo moveable pulleys, w is
equal to four times p: if there be three moveable
pulleys, W is equal to eight times p; and so on
continually.

Prorosrrion 25.
A weienr may be made to support another
three times as great as itself, by means of one
moveable pulley and two fixed pulleys.

If three pulleys are arranged
as in the annexed figure, where
_ the string attached to p passes
over a fixed pulley 4, under a
moveable pulley B, and over a
second fixed pulley ¢, and is
fastened at ® to a bar, which
is also connected with the
centre of the pulley B; and a
-weight w is hung to the bar
DE; the weightw is three times
as great as the power ». Tor each of the strings A B,
B¢, CE, supports the same tension, namely, a force
equal to the weight of . And the tension of them
all is counteracted by the weight of w; the weight
of the pulley B, and of the bar p &, being neglected,
or considered as part of the weight supported.
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Since the bar » E acts as a lever, having a force at
D double of the force at &, the weight w must be
suspended at a point which is twice as far distant
from E as it is from b, in order that the bar may
rest in a horizontal position.

There are many other combinations of pulleys used:
but the explanation of all depends upon the same ge-
neral principle: and the results may easily be verified
by experiment, allowance being made for the weights
of the pulleys themselves.

Prorosition 26,

A weieaT may be made to support another
weight four times as great as itself, or five times
as great as itself, by means of |
two cords and two moveable
pulleys, called Spanish Bartons.

A strinG attached to , (fig. 1,)
passes under the moveable pulley,
¢, over the moveable pulley, A, and
1s attached to the power, ». An-
other string, EB 4, is attached to
the axis of the pulley ¢, passes over
the fixed pulley B, and is attached
to the axis of the pulley 4.

Here, each of the strings, 4, Fa,
CD, supports a pressure equal to
the weight p: and each of the
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strings, I B, BE, supports a pressure equal to twice

the weight of P.

And the weight w counteracts the pxessules upon
the three strings, ¢, BE, ¢, and must, therefore,
be four times as great as p.

In this system, the weights of the pulleys will
have no effect in disturbing the equilibrium, if the
weight of the pulley ca be equal to the weight of
the pulley a: for they will then exactly balance
each other over the pulley p.

Fig. 2.

In fig. 2, a string is attached at b,
passes under the moveable pulley ¢,
and over the fixed pulley B, and is
then attached to the axis of the
moveable pulley A.

Another string is attached to »,
passes over the moveable pulley a,
and is fixed at ¢ to the axis of the
pulley ¢, to which also the weight w
is hung.

Thus each of the strings, p A, A @,
sustains a pressure equal to the
weight of p.

And each of the strings, ¢, ¥ B,
sustains a pressure equal to that at
the awis of the pulley 4, or a pressure
equal to Zwice the weight of p.

And the weight w counteracts the
pressure upon the three strings, o ¢,
F B, A G: and must, therefore, be five
times as great as p.
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The pulleys are supposed to be so arranged that
all the strings are parallel.

In this system, the weights of the pulleys will
have no effect in disturbing the equilibrium, if the
pulley A be Zalf the weight of the lower pulley, c;
for the remaining half of the weight of ¢ will be
supported by the tension of the string, ¢ D.

Prorosrrion 27.
A very small force may be made to sustain a
very large one, by means of a cord passing round
two cylinders of nearly equal diameters on a
common axis.

Suppose two cylin-
ders, A, B, of mearly
equal diameters, are
connected firmly toge-
gether, and moveable
about the same axis
¢ D, to which a crank,
E, is attached. Suppose
also a cord is wound
round the larger cylin-
der, A, in one direction,
that the part A¥ passes
under the moveable
pulley F G, and, after
reaching the cylinder
B, is wound round it in
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the direction opposite to that in which it was wound
round A. Then a very small force applied at £ may
be made to balance a very large weight suspended
to the pulley re.

For suppose fig. 2 represents a seetion of the cy-
linders, by a plane perpendicular to the axis. Then
each of the strings AT, BG, supports the same weight,
namely half of the weight w, and of the pulley r c.
And if both strings acted perpendicularly at the
same distance from the centre of motion o, they
would exactly balance each other: and they will
nearly balance if o A is nearly equal to 0B. But AF,
being at a somewhat greater distance from o than

B G, would preponderate, un-
less a force were applied at &
to counteract it: and since o E

mr <i§ 3
N may be made much greater
than o4, and therefore very .
O much greater than A x, (the
difference between oA and
0 B), the force at ® may be
very small.

! ® If we consider the system
as a lever, the moment, on the
side 0 4, (see Lesson V., p. 43,)
is equal to the product of half

b4 w multiplied by o a.
The moment of the force
sustained by the cord, Ba, is equal to the product
cof half w, multiplied by o, or by ox, which is
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equal to 0B. And this moment is opposed to that
on the side o A.

Hence, if there were no other force than that of
w, there would remain on the side, o A, a moment
equal to the product of half w, multiplied by the
difference of o A and o &, or by x 4.

And that there may be an equilibrium, there
must be an equal moment on the other side, pro-
duced by some power, p, applied at 5. And in
that case, » multiplied by oE must equal half w
multiplied by A k, or P is in the same proportion to
half w that Ax is to oE; and therefore p is to w
in the same proportion that A x is to twice o &.

Suppose, for instance, oA were six inches, o B
five inches, o = twenty-four inches, and the weight
of w and the pulley 12001bs: and thercfore the
weight on each string 6001bs.

If we consider the system as a lever, the moment
of A on the side o 4 is equal to 600 % 6 or 3600.

The moment of B, on the side o, is equal to
600%5 or 3000.

And the difference of these moments, to be coun-
teracted by the force at =, is 600.

Hence the weight in lbs. necessary to be applied
at B, o® being twenty-four inches, is 600 divided
by 24, or 251bs. In this instance the weight sus-
tained, 1200 1bs., is forty-eight times as great as the
power employed to balance it; as it ought to be,
since AK is to twice ox, as'1 to twice 24, or as 1

to 48.

G 2
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QUESTIONS.

What is a pulley ?

Distinguish a fixed pulley from a moveable pulley.

How can a pulley be employed to change the direction of a
force ?

‘When the same string passes round any number of pulleys,
and the strings at the lower block are all parallel, what is
the proportion between the power and the weight ?

‘What advantage is gained by having all the upper and
lower pulleys moveable together ; and what must be the pro-
portion of the size of the pulleys to secure that effect ?

In the single moveable pulley, what weight will a power of
one ounce support ?

‘What is the proportion between the power and the weight,
when several moveable pulleys are combined ?

How can two fixed pulleys and one moveable pulley be
combined, so that a weight may be made to support another
weight three times as great ?

How may two moveable pulleys and one fixed pulley be
arranged, with two cords, so that a weight may be made to
support another weight four or five times as great as itself ?

How can two cylinders, of nearly equal diameter, and
moveable on a common axis, be employed so as to enable a
weight to sustain another weight far greater ?

How can we ascertain, in this case, the proportion between
the power and the weight sustained ?
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LESSON X.
ON THE INCLINED PLANE.

Wueny a body rests on a horizontal plane, the
pressure acts in a direction perpendicular to the
plane; for if it were not, we should find a body run
about upon a perfectly smooth horizontal plane,
which is contrary to experience.

‘When a body is partially supported upon a plane
inclined to the horizon, the pressure upon the plane
is also perpendicular to the surface of the plane.

This may be practically shown as follows.

L
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Let a body, w, be sustained on the inclined plane
¢D, by a sufficient weight, p, connected with w by
a string passing over a pulley A.

When the whole is at rest, let another string be
fastened to w, and pass over a pulley B, in such a
way that the part, w B, may be perpendicular to the
plane ¢p: and let small weights be put into a box
Q, attached to the string @ BW, until w just ceases
to press upon ¢ D.




86 MECHANICAL POWERS.

Then, if the plane ¢p be removed, p and w will
be found still to remain in their former positions;
the tension of the string w B being exactly equal to
the reaction of the plane ¢ p, and being perpendi-
cular to that plane; or in the direction of the line
wB. Hence the action of w upon the plane ¢ b, or
its pressure upon it, must be perpendicular to that
plane.

The most advantageous way of employing a power
to sustain a weight on an inclined plane, is when
- the power acts in a direction parallel to the surface
of the plane.

Prorosition 28.

Ir the power acts in a direction parallel to the
inclined plane, the power is in the same propor-
tion to the weight supported as the height of
the plane is to its length.

Thus, suppose a
power, P, acts in the
direction w A, and sus-
tains a weight w on
the inclined plane A B.

Then, if ¢w is per-
pendicular to A B, and
WD is drawn parallel
to A c, or perpendicular to the horizon, and ¢p
parallel to the plane A B, the weight w acts in the
direction w b, and the power  in the direction w A.
These two forces, together compound a force which
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is equal to the pressure of w on the plane, and
therefore is perpendicular to A B, or is in the direc-
tion w c.

And wc is the diagonal of a parallelogram, of
which w A, wp are the sides.

Therefore, by the principle of the composition of
forces (see Lesson IIL.) the three lines w4, w,
W ¢, are proportional to the forces in those direc-
tions. Hence the power, p, is in the same propor-
tion to the weight, w, as waA is to wDp, or as WA is
torkie; oriasAcis toaBX,

Thus, if the height of a plane is one foot, and its
length a hundred feet, a force of one pound will
support upon it a hundred pounds.

Prorosirion 29.

To find the proportion of the power to the

weight, when the power acts in any direction.

;D5
If the power on an

inclined plane acts in
any other direction, as W
for instance in the di-
rection w p, the propor- P
tion of the power P to .
the weight w may be & g
found by drawing wc

perpendicular to the B

.
A

® That wa : Ac:: Ac: AB is proved in FHuclid, Book vi.
Prop. 8.
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plane A B, WE perpendicular te the horizon, and E¢
parallel to wo. .

For the two forces represented by w o, we will
be proportional to the forces r, w, respectively, and
will compound a force w ¢, which represents, on the
same scale, the pressure on the plare.

Proposrrion 30.

Ir there be two inclined planes, of the same
altitude, and two weights resting upon the planes
sustain each other by means of a string acting
parallel to each plane, the weights are propor-
tional to the lengths of the planes on which they
rest.

Let p, @, be two
weights, resting upon
the planes A B, Ac,
having the same alti-
tude A, and the parts
of the cord pa, aq,
being parallel to A B, A ¢, respectively.

Then the tension of the cord is.everywhere the
same ; and, by Prop. 28, if the line o D represents
this tension, the length of the plane 4 B will repre-
sent the weight of p, on the same scale. In like
manner, the length of the plane A c represents the
weight of q on the same scale.

Hence, the weights p, q, are to one another in the
same proportion as A B, A C.
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Forinstance, if AB is twelveinches, A ¢ six inches,
and p ten pounds; q will be five pounds.

This property of the inclined plane was first dis-
covered by Simon Stevin, a Flemish mathematician
of Bruges: and his method of proof is so simple
and ingenious that it may be introduced here.

N
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Suppose two inclined planes, 4B, Ac, have a
common altitude, the base, B¢, being horizontal ;
and that a uniform chain, A PBR ¢ q, is hung upon
1t, the parts p, q, resting upon the planes A B, A c;
and the part B r ¢ hanging freely.

Thus the whole chain will remain at rest ; for if
any motion did take place, the chain would still he
situated in the same relative position as it was before,
all parts being supposed to be uniform.

Also the part Br ¢ will support itself, if the
points, B, ¢, are supported.

Suppose, therefore, the part Br ¢ to be removed.
Then the part Ba ¢ will still support itself; or the
part ArB upon AB, will balance the part sqc
upon A c.

And the weight of the part pwill be to the weight
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of the part q in the same proportion as the lengths
of A B, Ac, respectively.

If therefore we substitute for the chawns »,q,
single weights P, q, as in the fig. in p. 85, the equi-
librium will still continue ; the weights being pro-
portional to the lengths of the planes on which
they rest.

ProrosiTion 31.

To find the proportion of the power and the
weight, when the power acts in a direction
parallel to the base of the plane.

it If the power acts pa-
W rallel to the base of the
®  plane, or in the direction

w D, the power will be to

the weight in the same

proportion as WD to W F,
(see Prop. 29,) or as wbp to D¢, or as Ac to Bc¥,
or as the keight of the plane is to its base.

The inclined plane is one of the most useful of
the mechanical powers. By means of it we are
able to raise weights with great ease. Thus, in
building, a wheelbarrow can be driven up a plank
to the higher stage of scaffolding. If a hill is too
steep .to be readily ascended, the road is broken
into a succession of inclined planes, and made to

* Euclid, Book vi., Prop. 8.

B 7 As(c]
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advance in a zig-zag form.. A flight of stairs is
little else than an inclined
plane, broken into succes-
sive steps for the conveni-
ence of affording a firmer
footing than could be ob-

tained if the plane were i
not so divided.

An inclined plane is also
often used to produce a gradual descent, as in
launching a ship. Upon a rail-road, an inclined
plane is frequently employed, the loaded carriages
which run down, being attached to a chain or rope
which passes round a wheel, and is again attached
to the empty carriages which are to be drawn up.

QUESTIONS.

‘When a body rests upon an inclined plane, in what direc-
tion does the pressure on the surface of the plane take place ?

If the power acts parallel to the plane, what is the propor-
tion between the power and the weight ?

How is that proportion found, when the power acts in any
other direction ?

If there be two inclined planes, of equal height, and two
weights are sustained on each by a string, acting, in each case,
parallel to the planes, what is the proportion between the
weights ?

Give some examples of the application of the inclined plane.




94

LESSON XI.
ON THE WEDGE AND SCREW.

THE WEDGE.

Suprose a weight, w, to be so confined, by pins
passing through slits in two upright bars, that it can
move only in a vertical direction, and that it is
caused to rest upon an inclined plane, A B.

7
e

X
|l I
¢l b (l

Fas11n FTD.

Then, if a force were applied to w, in a direction
parallel to B¢, and having the same proportion to
w that A ¢ has to Bc, the weight w would be just
supported, and have no tendency to ascend or
descend : by Prop. 31.

But if the plane, A Bc, itself were perfectly free
to move, being placed on rollers to take off the
friction, such a pressure would cause the plane to
move in the direction Bc.

But if we suppose an equal force, applied per-
pendicularly to the back of the inclined plane, A c,
the whole system will be kept at rest; and if the
force first applied to w is removed, it will be sup-
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plied by the pressure upon the pins passing through
the upright bars.

Now if the pressure upon the back of this inclined
plane be increased, the plane itself will be pushed
forward in the direction ¢ B, and the weight w raised.

‘When a plane is thus employed it is called a wedge.

A more common form tia

of the wedge is ABD, Te
having two equal sides, é ZE/
AB, BD. A force, », ) ) w
applied at the back of ST
the wedge is employed

to separate two bodies,

W, W, which are pressed

against the sides of the

wedge by a force of any kind. If the direction, in
which the motion of w, w must take place is,
parallel to A p, this case is exactly like the preced-
ing ; the force, p, necessary to balance the two
forces, w, w, being double of that necessary to
balance one of them.

But when a wedge is em-
ployed to split timber, or any
other body of that kind, the
direction in which the motion
of the parts separated would
take place must beascertained,
and the proportion between
the power applied and the S8
pressure produced can then he ===
determined.

B V/
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The method, however, of finding the proportion
of these forces, even in the simplest case, is rather
too difficult to be here introduced ; and it is of little
practical use, for the wedge generally acts not by
pressure, but by impact, or a violent blow, by which
means the effects produced are far greater than the
theory would lead us to expect.

The most familiar application of the wedge is in
cleaving solid bodies, such as wood or stones.
Common nails, knives, chisels, and other instru-
ments of the same kind, also acts as wedges.

THE SCREW.
ProrosiTion 32.

Ir a power, p, acting perpendicularly at the end
of a lever, sustains a weight, w, upon the thread
of a screw, the forces will be balanced when »
is to w in the same proportion as the distance
between two adjoining threads to the circum-
ference of the circle described by that point of
the lever to which » is attached.

Suppose a triangular plane, ABK, fig. 1, formed
of some pliable substance, such as card paper, to
be bent round into the form represented in fig. 2,
where the base, BET B, is circular, and in a hori-
zontal plane, and the upper surface of the plane,
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AK, in fig. 1, takes the form of a spiral surface,
ACD B, in fig. 2.

lg: 1 A
W/]

Ke B

Then, the same force which would he required to
keep a body, w, at rest upon the inclined plane,
A K, would be required to keep a similar body at
rest upon a part of the spiral, A ¢DB; since the

inclination of every part of the spiral to the horizon
1s the same as the inclination of the plane, A k.

And if the force necessary to keep w at rest on
the plane were applied in a direction parallel to the
base of the plane, such a force bears the same pro-
portion to the weight w that 4 B, the height of the
plane, bears to the base, Bx (Prop. 31) or that o B
bears to the circumference, BEF B, in fig. 2.

H
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And if, instead of employing a power at F, a point
in the circumference, ¥ EB, we employ a power, P,
acting perpendicularly at the extremity of a bar,
o1, and in the plane BET, the power necessary to
be so employed will be less than that which would
be required at ¥, in the same proportion as OF is
less than oL, or as the whole circumference, B F E, is
jess than the circumference which the point L would
describe in a whole revolution.

Hence the power P is to the weight w in the
same proportion as A B is to the circumference,
which the point L would perform in a whole revo-
lution.

And if instead of having one weight w, we had
any number of weights disposed upon the spiral
thread A ¢ DB, supported each by a. corresponding
pressure at P, the same proportion would be true
for each power and weight respectively, and there-
fore for the whole collectively.

In practice, the usual way of applying a screw
is by having several spiral threads cut upon the
external surface of a cylinder, and a number of
threads, of the same size, cut in the internal surface
of another cylinder. A power is then applied at
the end of ‘a bar, as at p, and sustains a weight w,
or a pressure of any kind.

Suppose, for instance, the distance between two
threads of the screw A B, is one inch, and the cir-
cumference which the point » would describe in a
whole revolution would be nine feet, or 108 inches,
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then a pressure of one pound, at p, would sustain
108 Ibs. at w.

The friction of the parts of a screw is, however,
so great that, in practice, its effect is far less than
the theory would lead us to expect.

It will be observed that, in the screw, the weight
which can be supported by a given power depends
upon the proportion between the circumference
which the power describes and the distance between
two contiguous threads of the screw. Hence, by
lengthening the lever by which the power acts, or
by cutting the threads sufficiently fine, the effect
of the screw would appear capable of being in-

H 2
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creased to any extent. It is, however, often prac-
tically inconvenient to increase the length of the
lever employed; and, if the threads of the screw
are cut too fine, they become too weak to support
the required pressure, and strip off.

To remedy this inconvenience, a very ingenious
contrivance has been invented, somewhat similar
in principle to that employed in Proposition 27,
to enable a very small force to sustain a very large
one.

A screw is cut upon the outside of a cylinder,
K L, and a corresponding inlernal screw is cut in
the nut at ~.

The cylinder, KL, is also hollowed out, and an
internal screw is cut in it, corresponding with an
external screw cut upon the cylinder, », which is
attached to the sliding part of the press, A B.

If the screws upon the parts KL and Ly had
precisely the same distance between two contiguous
threads, and the upper screw were turned round
by a power, p, applied to the lever, the sliding-
board, A B, would neither ascend nor descend; for
the part K L would be depressed at the nut N, pre-
cisely as much as the part m would be raised in the
internal screw at L.

But if the distance between the threads in the
part M is somewhat less than in the part KL, the
board A B will be depressed, in each revolution of »,
through a space equal to the difference of the dis-
tance between two threads in Kk L and two threads
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in L™: and will be under the same circumstances
as if a simple screw were used, the threads of which
were at a distance equal to the difference of the dis-
tances between the threads of the screws. ’

In this machine, then, there is an equilibrium
when the power applied at p is to the pressure on
A B, as the difference of the distances between the
threads of the serews is to the circumference de-
seribed by p.  And this difference may be made as
small as we please, without weakening the machine

by diminishing the size of the threads cut upon the
SCrews.
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QUESTIONS.

What is a wedge ?

How is it usually employed ?

Is the effect greater or less than that which the theory
would lead you to expect ?

How is the screw formed ?

What is the proportion between the power and the weight
in equilibrio on the screw ?

How may a small force be made to sustain a very great
pressure by means of a compound screw ?
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LESSON XII.
PECULIAR MECHANICAL CONTRIVANCES.

——

We bhave already seen the simplest mechanical
powers, by the combination of which machines are
composed. Before we proceed to mention some
of the easiest of these combinations, we may take
notice of some peculiar mechanical contrivances of
very frequent use.

In considering the wheel and axle (Lesson viii.),
we observed in what manner one wheel could be
made to act upon another, either by means of bands
passing round each wheel, or by means of teeth.
It is frequently desirable to change the direction of
~ circular motion; for instance, to produce motion
about a vertical axis,
by means of a motion
about a horizontal
axis. This is easily
effected by having the
teeth cut upon the
circumference of one
wheel, and upon the
upper or under sur-
face of the other.
And the second wheel
may be made to re-
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volve faster or slower than the first, according to
the number of teeth in each wheel.

Thus, if the first wheel have forty-eight teeth,
and the second only twelve, the first will make one
revolution while the second will make four revo-
lutions.

It may here be observed, however, as a general
rule, that in wheel-work it is better not to have
, the number of teeth in one wheel exactly a certain
number of times greater than the number in a
wheel on which it acts. The reason is that, in that
case, the same tooth of the first wheel always comes
into the same tooth of the second wheel, after every
complete revolution of both wheels: and if there is
any little irregularity in cutting the wheels, such as
1s sure to take place in practice, the teeth wear
unequally, and the machine goes irregularly, and
soon gets out of order.

But if the number of the teeth in one wheel is
prime, as it is called, to the number in the other,
(for example, if one is seventeen and the other
eight,) then every tooth of the first wheel is in time
brought to work in each tooth of the second wheel,
and if the teeth are mot quite accurately cut, they
will wear to one another, and the movement will go
on much more smoothly.
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BEVELLED WHEELS.

TaHE change in the direction of circular motion may
also be produced by bevelled wheels.

If the circumference of each wheel, instead of
being a portion of a cylinder ( fig. 1), be aportion
of a cone ( fig.2), and the angles of the cone, or the
inclination of two opposite sides to one another, be
such that, when two such cones are put together,
their axes are at right angles to each other; and
teeth are properly cut upon the two surfaces, as in
Jig. 3, the motion of one wheel round a horizontal
axis will produce a motion of the other wheel round
a vertical axis.

By the same means, motion about one axis may
be caused to produce motion round another axis,
inclined to the first ; the inclination of the conical
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surfaces, on which the teeth are cut being properly

adjusted.

THE ENDLESS SCREW.

TaE endless screw is a combination of the screw

with the toothed wheel ;
and is very convenient
for changing the direc-
tion of circular motion.
The thread of the screw
1s so cut as to act upon
the teeth of the wheel;
and the cylinder, on
which the screw is cut,
being set in motion
about a horizontal axis,
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for instance, produces a motion of the wheel about
its own axis, which may be in any direction re-
quired.

CRANKS.

IN many machines it is necessary to change a
motion, which is nearly or exactly in one line, into
a circular motion. For example, the beam of a
steam-engine, the end of which moves backwards
and forwards, describing an arc of a large circle,
may be used to cause a
wheel to revolve. This
may easily be effected
by means of a crank.
As the beam descends it
presses down the crank ;
and lifts it again in as-
cending. In this case,
there will be two oppo-
site points, in which the
direction of the force,
exerted by the bar con-
necting the beam and the crank, passes through
the axis of the wheel, and, therefore, has no ten-
dency to create motion round that axis; but if the
machine is in motion, it will be carried past those
points by the continuance of that motion. It is
plain that even if the force applied at the end of
the beam is uniform, that applied to the wheel will
not be so. For it acts sometimes perpendicularly
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at the end of a lever, the length of which is the
distance between the axis of the wheel and the
point of application of the force to the crank ; and
sometimes obliquely on the same lever.

It is computed that, if the force of the beam acts
directly up and down, the effect of a pressure of
eleven pounds on the beam produces the same
average effect as if a force of seven pounds acted
perpendicularly on the crank during the whole of
each revolution.

Thus, if a man can exert a force of 110 1bs., in
turning a grindstone by means of a crank, he will
do no more work than if he could constantly apply
a force of 70 1bs. to the greatest advantage.

In many instruments, such as lathes, contrivances
for boring, and the like, a treadle is employed to set
a wheel in motion by means of a crank.

The same effect is evidently produced if the crank
and the wheel form one piece ; or the force to turn
the wheel be applied to some point of the wheel
itself.

UNIVERSAL JOINT.

A cONTRIVANCE, known by the name of Hook’s
universal joint, is also employed to change the
direction of rotatory motion. If two shafts be
connected in the manner represented in oD
111, and inclined to one another at an angle of
not more than forty degrees, and one of them
revolyes, the other will be made to revolve with the
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same velocity. The cross connecting the two shafts
moves freely on the pins at its extremities.

This joint is extensively used in the machinery of
cotton-mills.

By combining two of these joints, as in fig. 2,
motion may be communicated from one axis, A B,
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to another, ¢, inclined to the first at any angle not
greater than a right angle.

THE CAMB.

In treating of the wedge, we have seen that a
wedge may be regarded as an inclined plane, and
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that if a power is applied in the direction B D, to

support a weight, w, upon

w A an inclined plane, Ap, or

/ﬂ to urge the wedge, A BD,

®  in the direction BD, under

2 a pressure represented by

W, there will be an equi-

librium when the power in the direction BD is

to w in the same proportion as AB is to BD.
Prop. 30.

Now suppose a part of the circumference of a

wheel, ¢ B, to be taken equal to Bp, and a tooth,

ABD, to be fixed upon it, of such a form that its

)=
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-greatest distance from the circumference of the
wheel may be A B, and the surface, A D, be so
formed, that if a bar, MmN, rests upon it, at any
point, the pressure of the bar may be directed
towards the centre of the circle, then 4 p B may be
considered as a wedge ; and if the circumference of
the wheel be moved through the space pB, the
point m will have been raised through a space B A.

Such a tooth is called a camb, or an eccentric
piece. In the annexed figure, if a power, », be
applied at the circumference of a wheel, of which
the radius is ¢, and a weight, w, be supported
upon a beam, N M, the extremity of which rests
upon the camb at , the effect of the power, P, to
cause motion at B, is greater than the weight of »p,
in the proportion of ¢ to ¢ B, by the principle of
the wheel and axle (Lesson viii.) : the force at B
in the direction of the circumference, b B, is to the
pressure supported at i, as A B to b B, by the pro-
perty of the inclined plane: and the pressure at m
1s to the weight w as o is to u N, by the property
of the lever. Hence the proportion of p to w is
known.

The camb can be used, in many instances, when
it is required to lift a weight gradually, and then let
it fall. The same principle is applied in a rachet
wheel, a contrivance to prevent a wheel from
turning, except in one direction. A catch, c, plays
into the teeth of the wheel, op, and permits the
wheel to revolve freely in the direction D E, while it

I
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jmmediately prevents any motion which would take
place in the opposite direction.

QUESTIONS.

Ilow may toothed wheels be formed, so asto change the
direction of a circular motion from one axis to another at right
angles to it?

What is the construction and use of bevelled wheels?

Describe the endless serew.

. How is a crank applied ?

How much power is lost by using a crank ?

Describe the universal joint.

‘What is the use of a camb, or eccentric piece ?

‘What is the application of a rachet wheel?
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LESSON XIII.

ON THE COMBINATIONS OF THE MECHANICAL
POWERS, AND THE PRINCIPLE OF
VIRTUAL VELOCITIES.

WE have already seen some of the simplest appli-
cations of the mechanical powers; and whoever has
made himself quite familiar with those, will have
little difficulty in finding the power necessary to
sustain any weight, by means of a machine formed
by combining together two or more of those powers.

For instance, supose a wheel of twelve feet radius
is constructed in such a manner as to be moved by
the weight of men treading upon bars attached to
its inner surface ; that the axle of the wheel has a
radius of six inches; and that the rope wound
round the axle is attached to a system of pulleys, in
which the same cord goes round six pulleys at the
block nearest to the weight to be sustained: and
that it is required to know what weight will be
supported by the force of each man employed, the
weight of a man being 1401bs.

In order to ascertain what portion of the man’s
weight is effective towards sustaining the weight,
we must know at what part of the wheel it is
applied. For it is plain, that if the man stood at
the lowest point, ¥, his weight would have no effect
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whatever in {urning the wheel: and that the effect
of his force will increase as it is applied higher and
higher, and would be most effective if it could be

iy Eﬂ/n
A

applied at the point H, in the same horizontal lever
as the centre of the wheel, c.

Suppose, however, that the weight of the man
is applied at a point, p, such that if »p be drawn
perpendicular to F ¢, the vertical line through ¢, D
is equal to half of »c*.

Through p draw P A vertical ; and P E, AB, per-
pendicular to cps.

Then, if » A be taken to represent the whole force
of the man, or 140 lbs., we may resolve (sece Lesson
iii., Prop. 4, p. 14,) the force p A into two, PB, PE;
of which pB acts from ¢, and PE acts perpendicu-
larly to cP.

* This will be the case when the are, rp, is 30°, or one=
third of the quadrant, rm,
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Also, the angle ¢ P being a right angle, as well
as the angle ppa, if we take away from each of
those angles the angle b pE, the remaining angle
cpp will be equal to the remaining angle EPA:
and the angles at p and E are both right angles :
hence the triangles cpD, PEA, have all their angles
equal, and therefore their sides proportional to one
another *.

Hence the line pE is the same part of p A that
pPDisof pc; and this has been assumed to be exactly
one-half.

Hence the effect of the man at r to turn the
wheel will be the same as if half his weight, or
701bs., were applied perpendicularly to the radius
of the wheel at p.

Again, the radius of the wheel, 12 feet, is 24 times
as great as that of the axle, which is 6 wnches.

Hence a force of 701bs. applied at P, causes a
tension upon the string ¢ m, 24 times as great, or
1680 1bs.

Again, there are supposed to be six pulleys, and
therefore 12 parallel strings at the block m; and
only one of those strings passes round the axle, ca.

Hence the force at x, or the weight w, which it sup-
ports, is 12 times 1680 1bs., or 20,160 lbs or 9tons.

As this method of dlscoveung the power of a
machine is often tedious and difficult, it is desirable
to avail ourselves of a general property of all ma-
chines, which is this :—

* This is proved in Fuclid, vi. 4.
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If two forces, » and w, balance each other upon
any machine, and the whole be set in motion through
a very small space, and the distances, through which
P and W respectively move in their own directions, be
observed, the product of p, multiplied by the distance
through whick it is moved, is equal to the product of
W multiplied by the distance through which it is
moved.

This is sometimes called the principle of virlual
velocities; and furnishes a very easy method of
ascertaining the power of a machine, or the propor-
tion between two forces which would balance one
another by means of it: for they will be to each
other inversely as the spaces through which the forces
move, in their respective directions, or inversely as
the velocities with which they move.

Thus, suppose we had a box containing machinery,
of which we knew nothing but that when the point
A of the bar A ¢ is pressed down through one inch,
the point B of the bar BD is raised through the
hundredth part of an inch.

\__~“_ e
A B— ﬂ ‘ l 20 ‘ =
G | ' D ‘~———3
b ]

Then, assuming this general property of machinery
to be true, we could at once conclude that a weight



COMBINATION OF POWERS. 127

of one lb. hung on A would exactly balance a weight
of a hundred lbs. hung on B.

In order, however, to establish this general pro-
perty, it will be necessary to show that it is true in
the different mechanical powers separately, and con-
sequently in any combination of them.

Prorosirion 33.

Ir two forces balance one another acting per-
pendicularly upon the straight lever, and the
whole system be set in motion, the product of
the force, multiplied by the space through which
1t moves, 1s the same on each side of the centre
of motion.

Suppose P and @ are two weights, which balance
one another upon the straight lever, Ac¢B: and
therefore, by Prop. 15, the product of » multiplied
by the distance A c¢ is equal to the product of @
multiplied by the distance ¢B: or pis to @ in the
same proportion as ¢ B to A c.

Now, suppose the lever is moved into the posi-
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tion @cb; ca being equal to ca, and ¢b equal
to ¢ B.

Let am, bn, be perpendicular to A ¢, ¢cB. Then
m a is equal to the space through which p has been
caused to descend, in the direction of its action ;
and b is equal to the space through which @ has
been raised, in the direction of its action. And,
since each of the angles at m, », is a right angle,
and the angle A ca equal to the angle Bcb, ma is
in the same proportion to 2 b that ca is to ¢b™; or
that c A is to ¢B; or that q is to ».

Hence, by the general property of proportional
quantitiest, the product of p muliiplied by ma is
equal to the product of @ multiplied by 7 &.

For example, if P were 12 ounces, and o 8 ounces,
and ma 2 inches, bn would be 3 inches: and 2
multiplied by 12 is equal to 3 multiplied by 8.

Prorosrrion 34.

Ix any lever, if two forces balance one another,
and the whole system be set in motion, through
a very small space, the product of the force mul-
tiplied by the space through which it moves,

* This property is proved in Euclid, vi. 4.

+ If four quantities are proportionals, the product of the
two extremes is equal to the product of the two means: thus
3:5::6:10; and 3 multiplied by 10 is equal to 5 multiplied
by 6. This property is the foundation of the common Rule
of Three,
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is the same on each side of the centre of
motion.

Suppose two forces, P, @, acting in the directions
M A P, N B Q, support each other upon any lever, AcB.

Jo

Then, by Prop. 20, the moment of the two forces, on
each side of the fulcrum, ¢, is the same: or the pro-
duct of » multiplied by ¢ is the same as the pro-
duct of @ multiplied by cx: and therefore » is in
the same proportion to q that ¢ N 1s to ¢ .

Now suppose the whole system is slightly moved
about ¢, into the position represented by the dotted
lines, a ¢ b.

Then, if @m is perpendicular to A p and B2 per-
pendicular to b¢, the lines am, n b, will be equal
to the spaces through which » and @ have been
respectively moved in the directions in which they
act.
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And it may be easily shown*, that o m is in the
same proportion to b » that ¢ is to ¢, and there-
fore in the same proportion that q is to P.

* The proportion may be proved thus :—

The two lines ¢ 4, ca, are equal to one another. Hence the
angles cAa, caa are equal to each other, by Huclid, i. 5.
And the angle 4 ¢ @ being very small, each of the angles, c A a,
Ca 4, may be considered as a right angle, at the very beginning
of the motion of the point .

Now, by Euclid, i. 16, the exterior angle, m A ¢, of the tri-
angle A nc is equal to the two interior angles, Amc, Acnm, of
which the angle A mc is a right angle.

Taking away, therefore, the equal angles, aac, Amc, the
remaining angles, m A @, A cM, are equal to each other.

And the angles at m, », are right angles.

Therefore the triangles, anc, 4 a m, are equiangular ; and
consequently their sides are proportional, by FEuclid, vi. 4.

In like manner, the triangles, cB N, B b n, are equiangular.

And the triangles Aca, Bcb are equiangular. For the
angle A ca is equal to the angle Bcbd, and the sides clca@
BC, ¢ b respectively equal. Hence the triangles are isosceles,
and the angles, caa, cas, cBb, cbs, are equal to one another,
Hence twice the angle ¢ A a, together with the angle A ca, is
equal to two right angles : and twice the angle c¢B b, together
with the angle Bc 8, is also equal to two right angles. And
therefore, taking away the equal angles A ¢ a, Bcb, the angle
c Aais equal to the angle ¢ B 4.

Hence the following proportions are true :

Amiec Agesitiom k' ATG,
Aaa 3 3.8 NG 3 o,
BOERb 0B sioN,

Therefore, am : dn : : cm : cn.
s QS N
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Hence, by the nature of proportion, the product
of p multiplied by A m is equal to the product of @
multiplied by b z.

Thus, if P is 8 ounces, and @ 24 ounces, and A m
3 inches, b 7 is found to be 1 inch. And the product
of 3 and 8 is equal to the product of 1 and 24.

The same property which has thus been proved
of any simple lever, must manifestly be true for all
combinations of levers.

In the lever, it is often mnecessary to suppose the
displacement of the system to be small, in order to
establish the principle of Virtual Velocities. This
arises from the fact, that the forces may not act under
the same relative circumstances, after the position
has been changed.

M
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For instance, suppose p, acting vertically, and
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suspended to the lever A ¢ B at 4, sustains q acting
over the fixed pulley, x, and attached to the lever
at B.

Then, if ¢y, ¢ N be perpendiculars from ¢ upon
P A M, K BN respectively, P must be to @ in the same
proportion as ¢N to ¢ », by Prop. 20.

If now the lever be moved about ¢ into any other
position, as acb; the force p, acting at p, acts at a
perpendicular distance cm, less than ¢m, whereas
Q acts at a perpendicular distance cn, greater
than cx.

Hence the moment of P and q on each side of ¢
can no longer remain the same; and the equili-
brium will be disturbed.

But in many of the mechanical powers, as in the
wheel and axle, the pulley, and others, the forces
continue to act under the same circumstances before
and after a displacement ; and the principle of Vir-
tual Velocities may be shown to be true, although
the spaces, through which the bodies may be moved,
are of considerable extent.

Prorosrrion 35.

Ir two forces balance each other on the wheel
and axle, and the whole be set in motion, the
product of the forces multiplied by the spaces
through which they respectively move is the
same. :



VIRTUAL VELOCITIES. 127

Suppose P suspended to the circumference of the
wheel Fa supports q, suspended to the circumfer-
ence of the axle.

Then, by Prop. 21, P is in the same proportion to
Q as the radius of the axle ¢, to the radius of the
wheel E¥: that is, in the same proportion as the cir-
cumference of the axle, DE, to the circumference of
the wheel, ¥ A.

Now, if the wheel and axle be made to revolve
once uniformly about the axis, ¢B, so that p de-
scends through a space equal to the circumference
of the mheel, @ will be raised through a space equal
to the circumference of the axle. And, these spaces
having been shown to be proportional to @ and »
respectively, the product of » multiplied by the space
through which it is moved is equal to the product of
@ by the space through which it is moved.
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The same property is manifestly true of all com-
binations of such wheels and axles: and may without
difficulty be proved in the case of toothed wheels.

Prorosition 36.

Ix the different systems of pulleys, if two forces
balance each other, and the whole be set n
motion, the product of the forces, multiplied by
the spaces through which they respectively move,
1s the same.

We shall prove this property in some of the
combinations of pulleys already explained; and the
same principles may easily be applied to any other
instances.

1. In the fixed pulley, if
the weight » moves through
any distance, in the direction
of its action, the point, K,
which is acted upon by a force
equal to that of », will move
through an equal space.

2. If the same string passes round several pulleys,
the parts of the strings being parallel, as in Prop.
26, and one string only is attached to B W Lisgas
many times greater than p as there are strings at
the lower block.

Now, suppose w is raised through one inch.
Then each of the strings at the lower block is short.

A —_—

GP
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ened one inch. And the string, to which p is at-
~ tached, will be lengthened by a quantity equal to

the sum of those shortenings; or by as many inches
as there are strings at the lower block. That is, p
will descend as many times more than w is raised,
as W 1is greater than p.

Hence the product of e, multiplied by the space
through which it moves, is equal to the product of
w, by the space through which it is moved.

K
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3. In the single moveable pulley, fig. 1, in which
W is twice as great as p, it is plain that if w is

Fig. 2.

Fig. 1.
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raised one inch, each of the strings at B, & is short-
ened one inch, and P descends ¢wo inches, or twice
as far as w is raised.

4. In the combination of moveable pulleys, fig. 2,
as in Prop. 24, the weight supported by » is doubled
by the introduction of each moveable pulley. And
if w is raised, as before, through one inch, each
string at p will be shortened one inch, and the pul-
ley, ¢, will be raised ¢mo inches.

Hence each string at ¢ will be shortened two
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inches; and the pulley, B, will be raised four inches.
And thus the distance through which p will descend,
will be doubled by the addition of each moveable
pulley: and therefore » will move as many times
further than w, as w is greater than p.

9. In the combination of pulleys, supposed in
Prop. 25, where w is three times as great as p; if

Ll

w is raised one inch, the three strings, B¢, ¢ B, B4,
will each be shortened one inch, and » will descend

three inches.
6. In the Spanish Bartons, described in Pro-
position 26, the property may be thus shown:—In
'g. 1, where w is four times as great as p, suppose
w raised one inch. Then each of the strings at ¢,
a, and B, is shortened one inch. By the shortening
of the string mB, the centre of the pulley, ar, is
depressed one inch, and each of the strings, ar,

K 2
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A p, is shortened one inch; and from this cause P
descends ¢{wo inches.

Fig, 2

i
|

1

.I

RO

\
7

l-«r

Again, by the shortening of the two strings, o ¢,
¢r, P descends two inches also: so that on the
whole, p descends four inches for every inch that w

" is raised; or P moves four times as fast as w.
In fig. 2, where W is five times as great as P, sup-
pose, as before, that w is raised one inch. Then
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each of the strings, v ¢, F B, is shortened one inch:
and from this cause the centre of the pulley, 4,
descends two inches, and each of the strings, G A,
AP, is shortened two inches; and consequently P
descends_four inches.

But the string ¢  is also shortened one inch by
the raising of w; and p descends also one inch from
this cause.

Hence », upon the whole, descends through a
space_five times as great as that through which w
© 1s raised.

7. In the machine described in Prop. 27, in
which a cord supporting a weight passes round two
cylinders of nearly equal diameters on a common
axis, the principle of Virtual Velocities may be thus
proved.

If the power acting upon the winch is moved
uniformly through a whole revolution, the cylinders
A and B will each revolve, the one winding up the
string A ¥, the other wunwinding the string G. The
string A ¥ will therefore be shortened by a quantity
equal to the circumference of the larger cylinder,
while the string ¢ will be lengthened by a quantity
equal to the circumference of the smaller cylinder.
Hence the whole string between the points of sus-
pension will be shortened by a quantity equal to
the difference of the circumferences of the two
cylinders. And, this shortening being equally
divided between the two strings, the weight w will
be raised through a space equal to kalf that dif-
ference.
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And, since the circumferences of circles are in
the same proportion as their radii, (Euclid, vi. 33,)

the space through which the power is moved is to
the space through which the weight is moved as the
radius of the winch, ¢ g, to half the difference of
the radiz of the cylinders; or as {wice the radius of
the winch ¢ is to the difference of the radii of the
cylinders; which is the proportion of the weight to
the power in equilibrio.

Hence the power multiplied by the space through
which it moves is equal to the weight multiplied by
the space through which it moves.
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Prorosirion 37.

Ox the inclined plane, if two forces balance each
other, and the whole be put in motion, the power
multiplied by the space through which it is
moved is equal to the weight multiplied by the
space through which it is moved, in the direc-
tions in which they respectively act.

1. If the power, P, acts in the direction parallel
to the plane, and therefore p is to w in the same

///(‘7: P
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proportion as Ac is to A B, by Prop. 28; suppose

pand w to be first in the position represented n
the figure; and then that w is raised uniformly
along the plane from w to w, while p descends from |
P to p.

Then, the length of the string between w and p
being still the same, w will have been raised, in
the direction of gravily, or in the direction of its
action, through a space equal to 4 ¢, above its first
level, B¢; and p will have moved through a space,
P p, equal to B 4, below its first level.
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Hence, p multiplied by the space through which
it moves is equal to w multiplied by the space
through which it is moved.

Thus, if the height of the plane be one foot, and
its length a hundred feet, and therefore w is a
hundred times as great as p, » will have to descend
a hundred feet while w is raised through a space of
one foot.

2. If the power acts in any other direction, as
w D, (figure p. 137,) and therefore, by Prop. 29, ¢
is to W as wbp is to v ¢, the direction in which the
power acts will be sensibly changed with relation to
the plane A B, unless the string, w b, is kept parallel
to its first position.

But if w be moved only through a very small
space, W n, and p sinks through the space p p, and
Wom 1s drawn parallel to B¢, and wm vertically;
and D7 is taken equal to »w, the string wp will
be shortened by the quantity » », which is therefore
the space through which » descends: and the weight
w will be raised in the same time above the level
of w, through the space m w.

And it can be easily shown* that the triangle,
w nm, is equiangular to the triangle  w ¢, and that
w n, the space through which p is moved, is in the

* w is supposed to be just set in motion, through the very
small space Ww. And, since the angle wpw is supposed
very small, each of the angles, p » w, o w 7, may be taken for
a right angle.

Hence a semicircle, described upon wew, will pass through
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same proportion to m m, the space through which w
is moved, as D ¢ is to D w, and therefore as w is to P.

Hence, P multlphed by the space through which
it is moved, is equal to w multlphed by the space
through whlch it is moved, in the directions in

~which they respectively act.

the points m and 7 : and the angle wn m will be equal to the
angle wwm in the same segment, by Euclid, iii. 21 ; and

)
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therefore to the angle ABC, by Euclid, i. 29, since Bc is
parallel to w m. .

And, since wm is parallel to v c, the angle nwm is equal
to the interior angle wpc, which, by the supposition, does
not sensibly differ from wopc, at the commencement of the
motion of w.

Hence the triangles, wnm, pwc, are equiangular; and
QUL T DG WD s WP
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Prorosition 38.

Ix the screw, if two weights support each other,
and the whole be put in motion, the power mul-
tiplied by the space through which it is moved,
is equal to the weight multiplied by the space
through which it is moved.

Suppose the power p, acting at the extremity of
a lever, is moved uniformly round once, through a

space equal to the circumference of the circle de-
scribed by P, then the weight will be uniformly
moved through a space equal to the distance be-
tween two contiguous threads: and by Prop. 32,
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these spaces are to one another respectively as the
weight is to the power.

Hence, by the property of proportional quantities,
the power multiplied by the space through which it
is moved, is equal to the weight multiplied by the
space through which it is moved.

In the machine described in page 101, the same
property may be proved. If p is moved through a
whole circumference of the circle which it describes,

{2

the part o B, which acts directly upon the weight,
is moved thlouﬁh a space equal to the difference of
two contwuous threads, in the screws x1, and M.
And these spaces are to each other 1'espectively as
w to P.

Since all combinations of mechanical powers de-
pend upon the principles established in the simple
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powers, we may conclude that in all machines the
principle of Virtual Velocities exists: and we may
apply it, at pleasure, to discover the mechanical
power, as it is called, of any machine.

For instance, if machinery were so constructed
that three bars were connected, moveable in the

manner of the second-hand, minute-hand, and hour-
hand of a clock respectively, such that the second-
hand made 60 revolutions for one revolution of the
minute-hand, and the minute-hand made 12 revolu-
tions for one revolution of the hour-hand.

Then, if the motion of one of these hands could
not take place without setting the others in motion,
the principle of virtual velocities would enable us
at once to determine that a force of ome ounce,
applied perpendicularly to the second-hand at any
distance, would balance a force of 60 ounces applied
perpendicularly, at the same distance, to the minute-
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hand, or a force 12 times as great as the last, or a
force of 720 ounces, applied perpendicularly, at the
same distance, to the Zour-hand.

As another instance, suppose it were required
to determine the force of muscular tension, which
will enable a man to support a weight of 100 Ibs.
in his hand, the fore-arm being held in a horizontal

position, and the position of the upper arm being
known.

The fore-arm is moveable about the elbow-joint,
and is drawn upwards by the contraction of a muscle
situated in the upper arm, the tendon being at-
tached to the radius, one of the two bones of which
the fore-arm is composed.

The position, therefore, of the parts, is the same
as that represented in p. 142. Suppose it were
found by experiment, that if » be raised one inch, the
tendon, A B, is shortened the twentieth part of an inch.
Then, since the space through which the weight is
moved in the direction in which it acts, is 20 times
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as great as that through which the power is moved,
we should conclude that the force of contraction of
the muscle was 20 times as great as the weight sup-
ported, or equal to a weight of 2000 lbs.

B

3

L S

4
D Y

The weight which a man can thus support, under
the most favourable circumstances, does not, pro-
bably, exceed 301bs. So that if the dimensions and
position of the several parts are the same as are
here supposed, the greatest muscular force which
the arm can exert, will be 20 times as great as the
weight supported, or 600 Ibs.

It 1s hence evident, that in all machinery as much
is lost in rapidity of motion as is gained in power:
so that all the advantage which can be obtained by
such means is to substitute a quick motion for a
slow one, or a slow motion for a rapid one. This,
however, is in itself a great convenience. The
strength of man and other animals being limited,
there are many effects which they could never pro-
duce, unless they were assisted by artificial means.
And the more usual application of mechanical
agency 1s to enable us to exert a pressure greater
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than the natural animal force. On the other hand,
the more usual application of mechanical agency in
the different parts of the animal fabric itself, is by
means of a large force, acting through a small space,
to cause a smaller force which may act with greater
rapidity. The moving forces in the limbs of animals
are commonly applied at what is called a mechani-
cal disadvantage ; or in such a manner that the
muscular force employed is far greater than the
pressure applied at the points of action.

QUESTIONS.

How can we discover the proportion of two forces which
sustain each other by means of a combination of the mechani-
cal powers ?

‘What is meant by the principle of Virtual Velocities ?

Show that it is true in the straight lever.

Show that it is true in the bent lever.

Show that it is true in the wheel and axle.

Show that it is true in the different systems of pulleys.

Show that it is true in the inclined plane,

Show that it is true in the screw.

Show that this principle will enable us to discover the me-
chanical power of a’ machine,
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LESSON XIV.
ON THE CENTRE OF GRAVITY.

In finding the proportion of forces which balance
each other, we have seldom taken any account of the
size of the bodies, where weights are used ; but have
considered them as points; or, at least, that their
effect is the same as if they were each applied at a
given point. Now, all the bodies, with which we
can make any experiments, have a certain size and
form: and it is desirable to show, that there really
is a point in which, if the whole matter of any body
or system of bodies were collected, the mechanical
effect produced by its weight would be the same as
when the [several particles, of which the body or
system is composed, are each in their respective
positions. That point is called te centre of gravily
of the body or system.

Suppose AB to be a body of
any shape, however irregular,
and that ¢, some point within
it, is the centre of gravity, ac-
cording to the above defini-
tion.

Then, if a single material point were placed at c,
equal in weight to the whole body A B, and that
point were supported, it would remain at rest. And
by the supposition, the effect would not be altered,
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if, while ¢ were thus supported, all the particles of
the body were removed each to their respective
positions. That is, the body would stili balance
itself upon ¢. And, since this is quite independent
of the direction-in which we suppose the body to be
placed, the centre of gravity of a body or system
may be defined to be the point upon which the-:
body or system, acted on only by gravity, will
balance itself in all directions.

Hence, if we can find the point, upon which a
body or system, acted upon only by gravity, will
balance itself in all directions, that point is the
centre of gravity of the body or system.

The force of gravity, at different parts of the
earth’s surface, is not quite the same. Every body
which moves in a curve, has a tendency to fly off
from the centre about which the motion takes place.
This force is called a centrifugal force, or a force by
which a body would tend to go away from the
centre of motion. This is the force by which a
stone flies away, after having been rapidly whirled
round in a sling: and may be easily shown to exist,
by hanging a vessel of water by a string which is
twisted, and suffering the string to unwind itself.
The water in the vessel rises up at the sides, and
if the motion becomes sufficiently rapid, will be
thrown over at the edges of the vessel. We shall
have occasion to motice the cause of this, when we
come to treat of the laws of motion. At present,
we may take the fact to be proved by experiment ;

L
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and that the more rapidly a body is moved round,
the greater the centrifugal force becomes.

Thus, suppose the annexed figure represents the
earth, and the point 1, the position of auy place,

T 12
/ EL/ S 1
S /\-0 s 4
R @/\Ic//_/ S([
/
A

=

as London: and wu/, its parallel of latitude. ILet
@ ¢ be the equator, and p the north-pole. Draw
L0, Q ¢ perpendicular to » ¢, the radius of the earth
passing through p.

Then, as the earth revolves once in 24 hours,
the point L revolves through a circle of which the
radius is Lo: whereas, the point @ revolves through
a larger circle, of which the radius is q c.

Suppose @ R to be taken to represent the centri-
fugal force at the equator @ ¢ ; or the space through
which a body would move uniformly in a small given
time when acted upon by that force. Then a body
at & would be moved uniformly in the same time by
the centrifugal force at 1, in the direction L s, only
through a space L s, having the same proportion to
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QR that Lo has to q ¢, since the centrifugal force is
proportional to the velocities with which the points
Q and L respectively move round ¢ and o.

Now join cr; and draw st perpendicular to
¢LT. Then, if Ls be taken to represent the whole
centrifugal force at 1, LT will represent that part
of the centrifugal force which is directly opposed
to the gravity of a body at L*. And this part is
again less than Ls in the proportion of Lo to qc.
And from both these causes, the part of the centri-
fugal force opposed to gravity is less at L than at q.

Consequently, if a body, the weight of which is
ascertained by the degree in which it bends a spring
in London, is carried towards the equator, it will
be found to bend the spring less and less, or to be
less heavy, as it approaches the equator. This
change, however, in the absolute weight of the body,
does not alter the position of its centre of gravity.
For all the parts of the body lose a quantity of their

* Since the angles at T and o are right angles, and the
angle T L s is equal to the vertical angle cLo (Huclid, i. 15),
the triangles T s, Lo, are equiangular, and

1698 AT EE 0 8 I5E B 100 £ ()0
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Hence the diminution of gravity in different latitudes,
arising from the centrifugal force of rotation, is as the square
of the cosine of latitude, the earth being considered as a
sphere,

L2
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weight proportional to their whole weight: and
therefore, the relative weight of all the several parts
is still the same.

In like manner, if any forces act in parallel lines,
and in the same direction, upon the several parts of
a body or system, and proportional to the weights
of the several parts, the body or system will still
balance itself upon the centre of gravity: or the
effect produced is the same as if a single force
acted at that point. Ilence, the centre of gravity
has been called the Centre of Parallel Forces*.

Prorosrrion 39.

To find the centre of gravity of any number of
material points.

Suppose two material points A, B, of equal weight,
to be united by same rigid substance without
weight. Then, if AB be bisected in ¢, the two
equal bodies, 4, B, will balance one another in all
positions about ¢, if that point be supported. (Prop.
ii0En37.)

A C B

Hence, ¢ is the centre of gravity of A and B.
Also the pressure upon c is equal to the weights

* This is the supposition made in Lusson IV,, Ex. 2, p. 20.
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of A and B together; or equal to twice the weight
of A.

If a, B, be unequal, divide A B in ¢, so that A ¢ is
in the same proportion to ¢ B that B is to A.

A C B
O_ —

Therefore the product of A, multiplied by a ¢, or
the moment of A referred to ¢, is the same as the
product of B multiplied by zc¢, or the moment of
B referred to c.

Therefore, by Prop. 15, Ao and B will balance one
another upon ¢, if that point be supported.

Therefore, ¢ is the centre of gravity of a and B.

Also, the pressure upon ¢ is equal to the weights
of A and B together.

Again, suppose there are three bodies, A, B, D.

Find, as before, ¢, the centre of gravity of A and
B. Then, if p, ¢, be joined, and c¢p he divided in
G, so that DG is to Gc as the sum of A and B is to

A B

a i ;
>

Do

D ; the whole will balance upon ¢: and, therefore,
G is the centre of gravity of the three points, 4, B,
and D.

And, in like manner, we can proceed for four or
more points.
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Prorosirron 40.

Ir any number of material points be placed in a
line, the sum of the moments of all the bodies
referred to any point in that line, is equal to the
moment of all the bodies collected in the centre
of gravity, and referred to the same point.

This may be easily shown in a particular example,
and the same reasoning will apply to any other
Instance, as is seen in the note below *.

Suppose there are but two bodies, A, 4 ounces,
B, 2 ounces; and that AB is 12 inches. (Fig.
p- 151.)

Therefore, if & be the centre of gravity of a and
B, A ¢ will be 4 inches, and ¢ B 8 inches; and the

* Suppose there are three bodies, 4, B, ¢c; and that ¢ is
their common centre of gravity.

S PAS B G C
e

Therefore, by the nature of the centre of gravity, the sums
of the moments of all the hodies referred to ¢ being equal on
each side,

A.GA+B.GB=C.GC:
or, A.(s¢—'sa) +B.(s¢c—sB)=c (sc—SsG).
Therefore, A.56 4+ B.56¢ +c.56=4.SA+ B.SB+ C.SC.
Therefore, (4 +B8+c)sc=a.sA+B.sB+c.5¢C.
A.SA+B.sB+c.sc.
Therefore, se = A+B+c.

The same reason will evidently apply to four or more hodies.
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moment of A referred to &, or 4 multiplied by 4, is
equal to the moment of B referred to G, or 2 mul-
tiplied by 8.

Now take s at any distance from G, in the line
B A : for instance, let s ¢ be 10 inches.

S A B
& 23
C-

Therefore, s A, the difference between s and 4 6,
will be 6 inches; and the moment of A, referred to
s, is 4 multiplied by 6, or 24. :

Also, sB, the sum of s¢ and &B, will be 18
inches: and the moment of B, referred to s, i1s 2
multiplied by 18, or 36.

And the sum of these two moments is 60.

Also, if A and B, were bolh together at the point
G, forming a weight of 6 ounces, at a distance of
10 inches from s, the moment of the two together
referred to s, would be 6, multiplied by 10, or 60 :
which is equal to the sum of the two other moments.

Hence, to find the distance of the centre of
gravity of any number of material points, situated
in one line, from a given point in the same line, we
have the following rule :

Multiply together the numbers expressing the
weights of each body, and their respective distances
Jrom the gwen poinl : and add together all the
products.  Diwvide this sum by the sum of all the
weights, and the quotient will be the distance of the
cenlre of gravity from the given point.
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Ex. 1. Suppose three balls, of 2, 3, and 4 ounces’
weight. respectively, are placed upon a slender
wooden rod, the weight of which may be neglected ;
at intervals of 3 and 4 inches from one another ; and
1t is required to know at what point the whole must
be suspended so as to balance.

Talke s 4, a distance of 1 inch.

SEUA B <
@ S <
:

Therefore, s B is 4 inches, and s ¢ 7 inches.

The moment of A referred to s, is 2 multiplied
byl or 2.

he moment of B referred to s, is 3 multiplied
by 4, or 12.

The moment of ¢ referred to s, is 4 multiplied
by 7, or 28. :

The sum of all these moments is 42 ; and this
sum, divided by 9, the sum of the weights, gives a
quotient of 4% or 4% inches, for the distance be-
tween s and c.

Hence, if BG be taken equal to 2 of an inch, in
the direction Bc, the three balls will balance one
another on the point a.

If spherical leaden balls be used, the centres of
gravities of each may be considered as coinciding
with the centres of the spheres; and the experiment
varied at pleasure, by altering the positions of the
balls.
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If the point from which the measurement takes
place is the point at which one of the bodies; as 4,
is placed, the moment of a, referred to that point,
becomes equal to o, since its distance from the
point is o.

And if s is so taken that some of the bodies are
on one side of it, and some on the other, the mo-
ments on one side of s must be subtracted from
those on the other side.

Ex. 2. Suppose 3 balls, 4 of 4 ounces, B of 2
ounces, ¢ of 3 ounces, placed in a line, so that A B
is 6 inches, and A ¢ 8 inches, and that it is required
to find the centre of gravity.

A a B (o]

O ? < 2)

If we take A as the point from which to measure,

The moment of a referred to the point of A is 0.
BRLAE L . A N e DS B o
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And the sum of those moments 1s 36.

Also the sum of the three bodies, A, B, ¢, is 9.

And 36 divided by 9 gives a quotient 4.

Hence the centre of gravity, G, is 4 inches dis-
tance from A, or exactly half way between A and c.

Iix. 3. Suppose a man has to carry upon a pole,
five feet long, two hares and four rabbits, all hung
at the distance of one foot from each other; and
that two hares weigh as much as three rabbits, and
are hung towards one end of the pole. At what
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point must he hold the pole, so that he may carry
it horizontally ; the weight of the pole itself being
equal to the weight of a rabbit ?

) B0 DS E AR ST AT
G-

If the weight of each hare be represented by 3,
and the weight of each rabbit by 2, the weight of
the pole is also 2, and this weight will have the
same effect as if it were collected in the centre of
gravity of the pole, which must be the middle point,
K, if the pole be uniform, (Prop. 41); so that s x
1s 21 feet.

Also, if A and B are the points at which hares are
hung; and ¢, p, B, F, the points at which rabbits
are hung ; and we measure the distances from a ;

The momen’cl3 e referred to the}
« £ )

of the weight | point 4, is
sy AT RS s R i s R SRR SVR B O
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And the sum of all these moments is 36.

And this sum, divided by the whole weight, 16,
gives a quotient 2.4 or 21 feet, or 2 feet 3 inches.
Hence the point @, at which the pole must be held,
is 3 inches from ¢, or half way hetween the middle
of the pole and the point c.
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QUESTIONS.

What is the centre of gravity ?

Show that the centre of gravity is a point upon which a
body or system, acted on only by gravity, will balance itself
in all directions.

Why is gravity different at different parts of the earth’s
surface. :

In what manner does gravity vary in different latitudes,
the earth being supposed to be a sphere ?

How can the centre of gravity of any number of material
points be found ?

Give a rule for finding the centre of gravity of any number
of material points placed in one line.
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LESSON XV.
THE CENTRE OF GRAVITY.

Prorosition 41.

TuE centre of gravity of a uniform straight bar,
the thickness of which may be neglected, is its
middle point.

AL UM G INE 3

Let AB be a material line: and ¢ its middle
point.

Then taking any point M, on one side of &, and
another point N, equidistant from ¢, on the other
side, ¢ will be the centre of gravity of these two
equal material points, by Prop. 39, 148.

In like manmer ¢ is the centre of gravity of any
other two corresponding points in the two parts ¢,
G B, of the material line A B.

Hence the whole line will balance itself upon ¢
in all positions; and therefore ¢ is the centre of
gravity of the whole line.

Prorosirion 42.

To find the centre of gravity of a parallelo-
gram.
Let A BeD be a thin uniform parallelogram.
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Bisect A B, D ¢, in H and X, and join H K.
Bisect AD, Bc, in B and F, and join E F, cutting
HEK In G.

A I8 B
e 7

B

(4] / N
L /G /1"
D ¢
18,

G is the centre of gravity of the parallelogram.

For, if M 0 N be one of the material lines, parallel
to A B, of which the material parallelogram A ¢ is
composed, M N is bisected in o. ;

Hence 1 x will balance itself upon o.

In like manner, every such line will balance itself
upon some point of I x.

Hence the whole parallelogram will balance itself
upon H K.

Therefore the centre of gravity of the whole
parallelogram is somewhere in I x.

In like manner the centre of gravity of the
parallelogram must be somewhere in E F.

Therefore it must be in &, which is the intersec-
tion of the two lines.

Prorosition 43.
To find the centre of gravity of a triangle.

Let A B¢ be a triangle formed of a thin plate of
uniform density. Bisect the side B¢ in p: and join
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AD. Bisect another side A¢ in
E: and join BE, cutting H D in G.
G is the centre of gravity of the
triangle.

For, if m o~ be any line drawn
N parallel to B¢, cutting Ap in o,
c by Euclid, vi. 2, m N~ will be bi-

sected in o, since B¢ is bisected
in D.

Hence every such material line, of which the tri-
angle is composed, will balance upon A ».. And,
therefore, the w/ole triangle will balance itself upon
AD. And, therefore, the centre of gravity of the
triangle lies somewhere in A D.

In like manner, the centre of gravity of the tri-
angle lies somewhere in Be. And it cannot lie in
both these lines, unless it be their intersection a.

Hence  is the centre of gravity of the triangle.
A G can easily be shown to be two-thirds of A »*.

In any figure of uniform density, which is sym-

(e
0,
D

* Join Ep. Then, because A= is equal to kc, and BD
equal to D ¢, D E is parallel to A B, by Euclid, vi. 2. And the
triangles Epc, ABC are equiangular. Also, the triangles
ABG, GDE are equiangular; for the vertical angles at ¢ are
equal, and the angle BAD is equal to the alternate angle
ADE.

Hence A6 is in the same proportion to ¢ p that A B is to
ED, or as 2 to 1. And, therefore, A ¢ is two-thirds of the
whole A b,
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metrical * with respect to any point or line, the
centre of gravity can at once be found.

Thus, the centre of gravity of a circle or "an
ellipse t, is the centre of the figure. For these

* A body is symmetrical with re-
spect to any point or line, when the /—r\
parts on either side exactly corre- e N
spond to each other. < \
Thus, the area of a semicircle ]
ABD is symmetrical with respect to
the line Bc, which bisects ap, and also hisects the semi-
circle 5 but it is not symmetrical with respect to such a line as
MON, even if it be drawn so that the area BN M is equal to

the area MAD N,
1 An ellipse is a figure which B P

may be traced by taking any
two points, s, H, and fixing at
those points a string spa, /
y H |

Then, if the string is kept
always stretched, the point »
will trace the ellipse A p u,

The longest line A M, which D

M
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figures are each of them symmetrical with respect
to the lines A B, pE at right angles to each other.
And the centre of gravity will lie in each; and,
therefore, in their intersection c.

The centre of gravity of a ring is the centre of the
whole figure.

The centre of gravity of a sphere is the centre of
the figure. .

The centre of gravity of a cylinder must be the
middle point of its axis.

For every section made by a
, ~  plane parallel to the circular base
e o ..) of the cylinder AxB must be a
\. /) circle, the centre of which is its

intersection with the axis.

Therefore, the centre of gravity of the whole

A ™ D

L..g.
1Ge
N

T

can be drawn in the ellipse is that through c, the centre or
middle point between s and 1, and it is called the major axis.
The shortest line which can be drawn through c is B, which
is called the minor axis: and s and u foci.

This curve is very important, since all the planets revolve
about the sun in orbits which are ellipses, having the sun
placed in one of the foci.
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cylinder is somewhere in the axis aL. And the
whole solid is also symmetrical with respect to
the circular section M~ which bisects the axis x L
in G.

Therefore, the centre of gravity of the cylinder
lies somewhere in that circular section. And, there-
force, it must be the point ¢, where the axis ¥ L cuts
the circle ma N.

The rules for finding the centre of gravity of any
number of bodies not placed in the same line, and
generally of bodies of regular forms, are too com-
plicated to be here introduced, and cannot very
readily be applied in practice. We will, therefore,
proceed to describe a practical method of finding the
centre of gravity of any bodies, however irregular.

Prorosition 44.

Ir any body be suspended freely, and acted upon
only by gravity, it will not rest until the centre
of gravity is in the vertical line passing through
the point of suspension.

Let s be the point of suspension, and & the centre
of gravity of the body, and sv the vertical line
passing through s. '

Then, by the definition of the centre of gravity,
the effect produced is the same as if the whole
mass of the body were collected in the point a.
Suppose, then, the body to be in the position repre-

: M 2
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sented in fig. 1, and the whole mass to be collected
in G.

Join s 6, and draw N vertical to represent the
force of gravity upon @, and @ a1, No, perpendicular
to 86, and MmN perpendicular to c M.

Then the force ¢ N may be resolved into two
forces, ¢ M, Go, of which G o acts in the direction -
s G0, and is counteracted by the pressure upon the
point s, and G M is not counteracted.

Hence, the point ¢ will move in the direction &,
or towards s v, and a force such as ¢ m will be found
to exist in all positions, except in that represented
in _fig. 2, where G is in the vertical line sv.

Therefore the body will rest only in that position.

The knowledge of this property will enable us to
find the centre of gravity of many irregular bodies.

Suppose, for instance, A B¢ D E represents a plane
of irregular form, the centre of gravity of which we
wish to find.
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Suspend the body freely upon some point, s, and
through s draw the vertical line, s¢ k. Then the
centre of gravity of the hody is somewhere in that
line, s g k.

Again, suspend the body freely upon some other
point, s, and draw the vertical line, s/ ; cutting
the line s¢x in c.

Then the centre of gravity is also somewhere in
the line s, and therefore is the point & the inter-
section of the two lines.

Several ingenious mechanical puzzles can be
explained by this property. Suppose a frame, of
the form A B¢ D, as represented in fig. 1, p- 166, rests
upon a table, T v, being supported at the point A.
Then the centre of gravity of ABcD as g, is some-
where in the vertical line passing through a.

Then, if a weight, w, be hung upon the frame at
D, it will cause the frame to take another position,
as in fig. 2, and the whole will then rest supported
upon the point A, the centre of gravity of the
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weight and frame, considered as one system, being

Fig L. Z7g 2.

R

Sk

somewhere in the vertical line drawn through A ; as
at G.

ProrosiTion 45.

Ir two weights balance each other upon any
machine, and the whole be set in motion, their
common centre of gravity neither ascends nor
descends.

As a particular instance, we will take the case of
two weights, P and w, supporting one another by
means of the single moveable pulley, the strings
being parallel: and, consequently, w being double
the weight of p. (Prop. 23.)

When the weights are in the position P W, join
pw, and divide it so that pa is to cw as w to P,
or as 2 to 1: and & will be their centre of gravity.
(Prop. 39.)
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Now suppose P to be moved
through the space pp, and w to
be consequently moved through /W
the space w w. o

Join p G, G w.

Then, (by Prop. 36, case 3,) 2 p
is twice as great as ww: and PG
was taken equal to twice G Ww. m
And, since P p is parallel to wmw,
the angle pPw is equal to the »g¢

alternate angle pww. (Eucld, \ /W

—

S

7. 29.)

Hence, (Euclid, vi. 6), the tri- /G\
angles Pap, Waw, are equian- j4 \g
gular: the other sides are propor-
tional, or p G is double of G, and the angles p ¢ p,
W G w are equal.

~ And this is the property of the vertical angles,
when two straight lines cut each other. (FEuclid,
. 15.) A

Hence the line pemw is a straight line. And
pais double of Gmw; and therefore the point G is
still the centre of gravity of the bodies in the
position p, w.

Since this reasoning depends only upon the cir-
cumstance that p and w are moved vertically in
straight lines, through spaces which are inversely
proportional to their weights, the same proof is
applicable to all combinations of machinery, where
this condition is observed: as in the lever; wheel
and axle, pulleys, &e. (See Lesson xiii.)

W
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But when the two weights do not move in ver-
tical lines, the centre of gravity neither ascends nor
descends, but moves iz a horizontal line.

To show that this is the case, when two bodies
balance each other, being partially supported upon
inclined planes; the strings being parallel to the
planes.

A

R c

Let », w be supported upon the inclined planes
AB, AC, by a string paAw: and let p, w, be their
positions when they are in the same horizontal line.

Therefore, their centre of gravity, &, will be some-
where in that horizontal line, and at such a point
that PG is to ¢ w as w is to p.

Now suppose p has been moved to p, and w to .

Then, if we join p w, cutting the horizontal line
pw in g, ¢ will be the centre of gravity of the bodies
at p and .

For if pm, w n are drawn perpendicular to » ¢ w;
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the angles at m and » are right angles: and the
vertical angles m g p, w g w, are equal to one another.
(Buclid, i. 15.)

Hence the triangles pmg, g wn are equiangular
and their sides proportional (Euclid, vi. 4): or pg
is to gw as pm is to n w.

Also, by the principle of virtual velocities, (Les-
son xiii.,) p m, the space through which »p is raised,
in the direction of its action, is to » w, the space -
through which w descends, in the direction of its
action, as w is to p.

Hence p g is to g w as w is to p.

And, therefore, g is the centre of gravity of the
bodies in the positions w, p, respectively.

If the weight w were at 4, the common centre of
gravity of the two bodies would be at the point p;
and if w were made to descend gradually towards
¢, so as to draw the body P up to 4, the common
centre of gravity of the two bodies would move
along the horizontal line » G w, from the point P to
the point w.

Prorositron 46.

A Bopy will rest upon a plane, supposing that
it is prevented from sliding, if the vertical line
passing through the centre of gravity of the body,
or the line of direction, falls within the base, and
not otherwise.
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Let M~ represent a body resting on the plane p q,
which is either horizontal, fig. 1, or inclined, fig. 2.
Let a be its centre of gravity. Draw e B vertical,
through ¢ ; and & A through ¢ to any point in the
circumference of the base of the body, if the plane
P Q 1s horizontal, or to the lowest point of that
circumference, if the plane, P @, is inclined.

Join G 4, and draw B¢, ¢ B, perpendicular to « 4 ;
and B E parallel to ¢ A:

Then, if the point B is within the base of the
body, if we take B @ to represent the weight of the
whole body considered to be collected in @, we may
resolve ¢ B into two forces, ¢, GE: of which ¢¢
acts in the direction @ 4, and has no tendency to
produce motion about the point A: and ¢ = acts in
such a manner as to counteract any force which
might be applied to overthrow the body by turning
it over at the point A. It is, in fact, a steadying force.
Hence there is no force tending to overthrow the
body, which will consequently remain at rest.

But, if the line of direction, B, falls without the
base of the hody, as in fig. 3, p. 171, taking A, the
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point of the circumference
of the base nearest to B,
and joining & A, and draw-
ing BC, ¢ E perpendicular
to ¢ A, and BE parallel to
GA: we may take ¢ B to
represent the effect of the
weight of the whole body applied at ¢ ; and resolve
it into two forces, ¢ ¢, cE: of which @ ¢, as before,
has no tendency to produce motion about a ; but
the force ¢® tends to draw the point & in the
direction ¢ . And this force is not counteracted.
Therefore motion will ensue in that direction, or the
body will be overturned.

If the body should be of
such a form, and in such
a position, that the line of
direction falls exactly upon
the circumference of the
base, the body will just be
suppmted but will be liable
to be overturned by the smallest force tending to
move it in the direction 6 E.

The necessity of having the line of direction fall
within the base, in order that the figure may be
supported, is the cause of the variety of postures
which we are obliged to assume, in order to perform
different actions with ease. Thus, if a man carries
a weight before him, the centre of gravity of himself
and of the weight which he carries, considered as
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one mass, is forwarder than his own centre of gra-
vity is. He is, therefore, compelled to lean back-
wards, in order that the line of direction, passing
through the centre of gravity of the two, may not
fall beyond the part on which his feet stand.

A corpulent man is thus obliged to carry himself
more upright than a thin man.

If a man carries a load on his back, he will fall
over backwards, unless he leans forwards, so as to
bring the line of direction within the base on which
he stands.

All the postures, assumed by persons who balance
weights upon their hands or heads, are regulated by
the same principle. But the most remarkable,
although the most common, instance, in which
we have recourse to it, is in the action of walking.
When we first rise from our seats, we lean
forwards, so as to bring the line of direction nearly
to the edge of our chair; and we then, by a mus-
cular effort, raise ourselves.into an upright position.
When a person is thus standing easily, the line of
direction may fall anywhere between his feet, or on
one of them. When we now begin to walk, we rest,
for an instant, upon one foot, the line of direction
then falling upon it: and we then throw forward
the body, in such a manner that we should fall, if
we did not, at the same time, bring forward the
other foot, upon which the body rests in its turn.
Thus, the act of a man’s walking is a succession of
escapes from falling ; and the action is so difficult to
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imitate, that no automaton has been yet constructed
so as to perform it. A figure was exhibited, a few
years since, which was called a walking figure; but
although very ingeniously contrived, its action was
more like skaiting than walking.
The property last mentioned shows the import-
ance of not over-loading carriages towards the top.
Suppose a heavy wagon is passing
~along an inclined road. And, first,
"suppose the heaviest goods are all
packed at the bottom of the wagon,
or hung beneath it, and the lighter ¢
goods stowed at the top, so as to =g _
have the centre of gravity of the ki
whole as low as possible, as, for
instance, at the point c.

Then, in the position represented in the figure,
the line of direction, c ¢, falls within the base, that
is between the wheels of the wagon, and the whole,
therefore, will be supported.

But if the goods are differently arranged, or more
heavy goods are placed at the top, the centre of
aravity of the whole may be higher than ¢, and may
be in such a position, G, that the line of direction,
G g, falls just within the wheel of the wagon. In
this case, the least jerk, tending to throw the wagon
over, will overturn it. And if the centre of gravity

~ is still higher, as at », so that the line of direction,
» d, falls without the wheel, the wagon will overset
by its own weight.
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We have seen that a hody will rest or not, accord-
ing as the line of direction, or vertical line through
the centre of gravity, is supported or not. But if a
body does so rest, and is then acted on by a force
tending to overturn it, it may be in such a condition
that its own weight either opposes or favours such
an impulse, or that it neither opposes nor favours it.

For instance, if an egg is lying on its side, and a
force is applied to rock it, by raising one end of the
egg and depressing the other, the egg, when left to
itself, will return to its first position. In such a
case, a body is said to be in a condition of stable
equilibrium.  If, again, an egg is balanced on a
smooth table upon one of its ends, and is then acted

-upon by ever so small a force, it will fall over. In

such a case, a body is said to be in a condition of
unstable equilibrium. But if the egg is again placed
upon its side, and is caused to r0ll, by some external
force, causing the egg to turn about a line passing
from end to end of the egg, it will rest in the posi-
tion in which it is so placed, without either returning
to its first position or falling further than the external
force urges it. In such a case, the equilibrium of a
body is called an equilibrium of indifference.

These three comditions depend upon the position
of the line of direction of a body, relatively to the
base on which the body rests.

Suppose A B¢D (fig. 1, p. 177) to be a body, of
which ¢ is the centre of gravity; and, first, that the
body rests upon a horizontal plane, P, and that the
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line of direction & x falls within the base, and, con-
sequently, the body will stand.

32 : 8.
SRRy =

Now suppose the body to be slightly tilted, into
the position represented in fig. 2. Then drawing
G oK vertical, and taking any portion of that line,
as G o, to represent the effect of gravity upon @, and
joining G A, and drawing G N, Mo perpendicular to
G 4, the force ¢ o may be resolved, as in the last
proposition, into ¢N, ¢Mm: of which ¢~ tends to
move the point ¢ back to its former position, or to
replace the body upon its original base A B.

Hence the position represented in fig. 1, is a
position of stable equilibrium. But if we suppose

2 SN n n
C

agic

the body to be placed, as in fig. 3, so that the line
of direction passes through the angular edge a, and
N
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that the body can be caused to remain balanced in
that position, it will be liable to be disturbed by
ever so small a force, and will have then no ten-
dency to recover its position.

For if it be moved from the position of fig. 3
into that of fig. 2, there is, as we have just seen, a
force @ N, tending to make the point ¢ move in the
direction & N, or to withdraw it from the position of
Jig. 3.

On the other hand, if it be moved in the opposite
direction, as in fig. 4, and G o be taken to represent
the force of gravity, and resolved into M in the
direction G A and &N perpendicular to G a, the force
G N now tends to cause the point ¢ to move in the
direction @, and therefore to overturn the hody,
instead of replacing it in the position of fig. 3.

Hence the position represented in fig. 3, is a
position of unstable equilibrium.

If, again, we take a body of such a form that its
lower extremity, Ax B, is part either of a cylinder

K

or of a sphere, and that the centre of gravity, G, is
the centre also of the circular section A kB, and
suppose that the body is placed upon a horizontal
plane @ ; then, the body will rest in the position
represented in fig. 1, p. 179, for the line of direction
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¢k falls perpendicularly upon the plane rq, and
therefore the body will be supported upon that
point.

i, g
;,-‘1 D ” /\
i & \
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And if the body be moved into a different posi-
tion, as in fig. 2, so that any otker point of the
cylinder or spherical surface is in contact with the
horizontal plane, the line of direction ¢ x still falls
perpendicularly upon pq at the point x; and
therefore the body will still rest in the position
represented in fig. 2.

Hence such a body, when disturbed, has no
tendency to move, by its own weight, either in the
direction of the disturbance, or in the opposite
direction ; and it is therefore in the condition called
an equilibrium of indifference.

If there be a figure, the base of which, as in that
last supposed, is a cylinder or sphere, and the figure
is symmetrical with respect to some line E ¢ x*, but
the centre of gravity of the figure, @, does not coin-
cide with o, the centre of the circular section A K B,

* See p. 160, note *,
N 2
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the equilibrium upon & will be stable or unstable,
according as G is below or above o.

j’zy 7 e )
e B0 D)
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For if & is below o, and the figure is placed in
the position of fig. 2, and ox is vertical, x is the
point at which the figure is in contact with the
horizontal plane. And the effect of the weight of
the body is the same as if the whole were collected
in the centre of gravity . Suppose the whole
weight so collected. Then the effect of a weight at
¢ would evidently be to turn the body round the
point x, towards its former position. Hence the
equilibrium in this case is stable.

Vi
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But if ¢ is above o, as in fig. 3, and the figure
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is placed in the position of fig. 4, and the whole
weight of the body is considered to be collected in
G, as the body rests upon the point k, the effect of
the weight at ¢ will be to cause motion towards p,
or to increase the deviation of the body from its first
position, in fig. 3. Hence the equilibrium in this
case is unstable.

Upon this principle we can explain why an egg-
shaped body, or oblong spheroid, of uniform density,
resting upon an horizontal plane, has an equilibrium
of a different kind, according as it rests on different
parts of its surface, and is disturbed by forces acting
in different directions, as we supposed in p. 175.

The centre of gravity of 2
the whole body is the cen- r
tre of the figure, @, and 10 \

A

that figure is of such a na-
ture, that the section AcBK \ ] /
is an ellipse, (see p. 161, 7
notet,) of which the part * <3 o
about ¢ and x is not so much curved as a circle of
which the centre is @, but may be considered as part
of a larger circle, the centre of which is somewhere
above @, as at o.

If then the point B be
raised, and the point A be
lowered, the effect of the
whole weight of the body,
applied at @, is to bring back
the body to its first position,




182 MECHANICAL POWERS.

hence the equilibrium is
stable.

But if the body be placed,
so as to rest upon one of its
smaller ends, as A ; the part
of the figure about A is more
curved than a circle of which
the centre is 6, and may be

considered as part of a smaller circle, of which the
centre 1s some point o, lower than c.

If then the point » be
raised, and the point ¢
lowered, the body will rest
upon some point &, and the
effect of the weight of the
body collected at ¢, is evi-
dently to cause the body to
move in the direction in

which the disturbance has taken place, or the equi-
librium is unstable.

If, again, we consider the
body to be resting as in the
first instance, upon its side,
and suppose a section MDNC
to be made through a, by a
plane perpendicular to A B,
that section will be a circle
of which ¢ is the centre: as

wil be easily understood, if we imagine an egg to
be so cut through the middle, as in fig., p. 183.
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If, then, the body be moved 5
about the axis A B, by raising the ¢,

point M, ( fig., p. 182,) and lower-
ing N, the body will be brought
to rest upon some other point, K,
of the circle pN¢, of which G is
the centre.

Hence the body will be supported upon K, as well
as it was upon p; or the equilibrium, in th1s case,
is an equzlzbrmm of indifference.

It is plain that the nature of the equilibrium will
depend upon the nature of the surface on which a
body rests, as well as upon the lower surface of the
body itself.

Thus, a body A B, placed upon A
a sphere ¢, and resting upon the
point k, will, if just disturbed,
either settle back to its first
position, or fall off, according to G
the height of its centre of gravity,

G, above K, relatively to the
radius of the sphere c k.

The equilibrium will be stable, if ¢ x is less than
CK: but the investigation of this case is not suffi-
ciently simple to be here introduced.

A body, ¢, (see_fig., p. 184,) which would not rest
upon the smallel end upon a Aorizontal plane, may
yet have a position of stable equilibrium when placed
in a cup of the proper degree of curvature. But the
consideration of cases such as this must also be
here omitted.

G
< B
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In some instances, it is a convenient way of ascer-
taining whether the equilibrium is stable, to inquire

et

N

whether the centre of gravity can get any lower than
it is, in consequence of the body obeying: a small
impulse given to it. If the centre of gravity can
get any lower, motion will ensue, and the equili-
brium is wnstable. If the centre of gravity would
be raised, in consequence of the body obeying the
impulse, the body will return to its former position,
or the equilibrium is stable. If the centre of gravity
neither rises nor falls, in consequence of the body
glving way to the impulse, the equilibrium is one of
indifference.

QUESTIONS.

Find the centre of gravity of a uniform straight bar.

Find the centre of gravity of a parallelogram and of a
triangle.

When is a figure said to be symmetrical with respect to
any point or line ?

How may an ellipse be traced ?

Show that if a body is suspended freely, it will not rest till
the centre of gravity is in the vertical line passing through
the point of suspension.
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Find the centre of gravity of an irregular body.

Under what circumstances will a body rest upon a plane ?

In what manner does the position of the centre of gravity
influence persons in walking, and other actions of the hody ?

Whence arises the danger of overloading carriages at the
top ?

When is equilibrium said to be stable 2 when wunstable 2
when indifferent 2 :

Give instances of each.

In what positions will an egg-shaped body, or oblong sphe-
roid, have its equilibrium upon a horizontal plane, stable or
unstable 2

In what manner may it be disturbed so that its equilibrium,
when resting on its side, may be an equilibrium of indiffe-
rence 2 ;
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LESSON XVI.
ON ABSOLUTE AND RELATIVE MOTION.

A BoDY is absolutely at rest, when its position in
fixed space remains unchanged : and it is absolutely
un motion when its position in fixed space is changed
from time to time. Hence motion may be defined
to be the act of a body changing its place.

The simplest kind of motion is that which is wni-
Jorm, or that in which equal spaces are constantly
passed over in equal successive portions of time ;
as one mile in one hour; two miles in two hours:
and so on.

The motion of a body is said to be accelerated,
when a greater space is passed over in each equal
successive portion of time. Thus, if a person walks
one mile in the first hour; two miles in the next
hour; three miles in the following hour; or a ball
rolls one foot in one second of time, three feet in
the next, and five feet in the next: the motion in
each case is accelerated ; the acceleration taking
place at the end of each interval of time.

The motion of a body is said to be retarded,
when a less space is passed over in each successive
portion of time. Thus, if a person walks three
miles in the first hour, two miles in the next hour,
and one mile in the following hour; or a ball is
thrown up an inclined plane, and describes five feet



ABSOLUTE AND RELATIVE MOTION. 187

in the first second of time, three feet in the next,
and one feet in the next: the motion, in each case,
is retarded ; the retardation taking place at the end
of each interval of time.

The velocity of a body is the rate of its motion at
any instant of time.

If the motion of a body is wuniform, its velocity is
measured by the space uniformly described by it in
a given time.

If the motion of the body is nof uniform, its
velocity is measured by the space which it would
describe uniformly in a given time, if the motion
became and continued uniform, from that instant of
time.

Thus, a stage-coach would be moving with a
velocity of eight miles an hour, on passing a given
mile-stone, if it had travelled that distance uni-
formly in the preceding hour, and went on uniformly
to complete an equal distance in the next hour.

But it is evident, that it might still be moving at
the same rate, that is, with the same velocity, a¢
the given instant, however its rate of travelling were
altered before or after that instant.

The unit of space and time taken in order to
measure velocity may be assumed of any magnitude.
In estimating the speed of horses or carriages, the
time is usually expressed in hours, and the distance
in statute miles. The rate of a ship’s sailing is
reckoned by the number of /nots described in half
a minute, or the 120th part of an hour. The /Anof
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is the length between two divisions of the log-line,
each of which is the 120th part of a geographical
mile. Hence the number of knots which the ship
runs past in kalf a minute, is the number of geogra-
phical miles which she would sail in an hour, at the
same rate. So that if eight knots run off the reel in
half' a minute, or the ship is going eight knots, she
1s sailing at the rate of eight miles an hour.

In Mechanics, one second (1%) is usually taken
as the unit of time; and one foot as the unit of
space : so that if a body is said to have a velocity of
25, it is implied that the body is moving at such a
rate as would cause it to describe 25 feet uniformly
in 1s,

We have often occasion to consider whether a
body is at rest or in motion mwith respect to other
bodies. The terms relative rest and relative motion,
are used to signify these conditions respectively.

Two bodies are relatively at rest, when their
position with respect to each other remains un-
changed.

This will plainly happen, either where each of
the two bodies is absolutely at rest, or where each
moves in the same direction and with the same abso-
lute velocity.

Thus, the passengers in a stage-coach are rela-
tively at rest, with respect to one another, as long
as the coach either stands still, or moves smoothly
along, however rapid the motion of the whole
may be.
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Two bodies are relalively in motion, when their
position with respect to each other is changed from
time to time.

Thus, if two vessels are one mile apart, at a given
time, and their distance from each other continually
increases for an hour, they are relatively in motion
during that time.

T A
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Absolute and Relative Motion.

If one of these two vessels should be at rest, as
lying at anchor, and the other in motion, still eac
of them is in relative motion, with respect to the
other. For, after a certain interval of time, the
sailing vessel has removed one mile further from
that at anchor than it was at first, and the relative
distance of each from the other is equally changed.
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Relative velocity is the rate of a body’s relative
motion; and is measured either by the space uni-
formly described by each body, with reference to
the other, in a given time, or by the space which
would be so uniformly described, if their relative
motion became, and continued to be, uniform at the
given instant of time.

If two bodies move uniformly in the same straight
line, and in opposite directions, their relative velo-
city is equal to the sum of their absolute velocities.

Thus, if two coaches set out in opposite directions
from the same place, and one travels for an hour
uniformly at the rate of 6 miles an hour, and the
other for the same time uniformly at the rate of 7
miles an hour, they will at the end of the hour, be
found at the distance of 13 miles from another ; and
they will have been separated from onme another at
the uniform rate of 13 miles an hour.

Again, if two coaches set off, at the same instant,
from two places, 13 miles apart, and move towards
each other uniformly, one at the rate of 6 miles an
hour, and the other at the rate of 7 miles an hour,
they will meet at the end of ome hour, having
approached one another uniformly at the rate of 13
miles an hour.

If two bodies move uniformly in the same straight
line, and in the same direction, their relative velo-
city is equal to the difference of their absolute
velocities.

Thus, if two coaches set out from the same place,
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and in the same direction, travelling uniformly, one
at the rate of 7 miles an hour, and the other at the
rate of 6 miles an hour; at the end of an hour the
first will be one mile in advance of the other; and
they will have been separated from one another
uniformly at the rate of one mile an hour, which is
the difference of their rates of absolute motion.

If the two bodies move in the same direction,
and with the same absolute velocities, their relative
- velocity is equal to nothing, or the bodies are
relatively at rest.

It is not so simple a thing as it may at first sight
appear, to determine whether a body is in motion or
not. Although a body appears to be at rest, with

7

Absclute and Relative Motion,
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reference to any surrounding objects, it may yet he
in motion; for all those objects may be moving wilk
the body itself, and at the same rate; and in that
case they will all be relatively at rest.

For instance, if two persons are playing at chess
in the cabin of a vessel moving smoothly along, the
chessmen will remain in the places in which they
are set, until the players move them ; that is, they
will be relatively at rest, with respect to each other,
and to the chess-board. But yet they are all the .
time carried on by the motion of the vessel.

Again, a body may be al rest, although it appears
to be in motion. Thus, if passengers in such a
cabin as we have just supposed, look towards a
vessel which is fixed, it appears, to them, to be in
motion.

Hence, it appears, that we must know the ecir-
cumstances in which a body is placed, in order to
determine whether it is in motion or not. When-
ever a body is apparently in motion, when referred
to another body, either one or both of the bodies is
absolutely in motion. Thus the apparent daily
motion of the sun and heavenly bodies must arise
either from a motion of those bodies, or from a
motion of the earth itself, or from both those causes
united. It was a long time hefore the fact was
completely made out, that the rising and setting of
the sun are caused by the earth turning round its
axis.

The momentum of a body in motion, is measured
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by the product of the numbers expressing its velo-
city and its quantity of matler, which is proportional
to its weight.

Thus, if one body A, whose weight is 6, moves
with a velocity 5, and another body B, whose weight
1s 8, moves with a velocity 7, their momente are in
the proportion of 5x 6 to 7% 8, or of 30 to 56, or
of 15 to 28. ‘

When we are considering the condition of bodies
kept at rest by any forces, it is sufficient to regard
the forces as pressures, which may be represented
by weights. (See page 5.) DBut when force is
employed Zo set bodies in motion, or to act upon
bodies already in motion, several effects are pro-
duced, which must be carefully distinguished ; such
as wvelocity and momentum; and some particular
names must be given, to point out what modification
of force we are speaking of.

Suppose two leaden bullets, one weighing 1 ounce,
the other 2 ounces, to be let fall freely from the
ceiling of a room, by their own weight. They will
be found to come to the floor exactly at the same
time; and their velocities (which can be found in a
manner which will hereafter be explained) are
found to be the same.

If, therefore, in considering the effect of forces,
we regard only the velocity generated by the action
of the forces in a given time, and we call this modi-
fication of force dccelerating force, we should say
that the accelerating force acting upon each of these
bullets, was the same.

0
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But if the effect of force, which we wish to con-
sider, is the momentum generated in a given time,
and if we call this modification of force Moving
Jorce, since the quantity of matter in each bullet is
as 1 and 2, and their velocities equal, the moving
forces are in the proportion of 1 to 2.

Since the moving jforce is proportional to the pro-
duct of the velocity and quantity of matter, and the
accelerating force 1is proportional to the velocity
simply: it follows that the moving force is propor-
tional to the product of the accelerating for& and
quantily of matter, expressed in numbers; and the
acceleraling force is proportional to the quotient
obtained by dividing the moving force by the quan-
lity of matter.

For instance, suppose one hody 4, whose weight
18 3, is set in motion by the action of a certain force,
and in 15 acquires a velocity 11; and another body
B, whose weight is 4, is set in motion by another
force, and in 1S acquires a velocity 13.

Then the Moving force on A is to the Moving
Jorce on B, as 3 x 11 to 4x 13 ; or as 33 to 52.

And the Accelerating force on 4, is to the Accele-
rating force on B, as 11 to 13; or as 33 divided by
3, 1s to 52 divided by 4.

Exampre.—Suppose a body, whose quantity of
matter is represented by 18, acquires in 15 a momen-
tum of 108, what is the accelerating force 2

The moving force, measured by the momentum,
is 108 ; and the quantity of matter 18. Hence the
accelerating force is 128, or 6.



ABSOLUTE AND RELATIVE MOTION. 195

QUESTIONS.

‘When is a body said to be absolutely at rest, or absolutely
in motion ?

Define motion.

‘When is motion uniform ?

‘When is it accelerated or retarded ?

What is velocity ; and how is it measured ?

‘What units of space and time are usually taken to measure
the velocity of a body in mechanics ?

How is the rate of a ship’s sailing estimated ?

‘When are two hodies said to he relatively at rest, or relas
tively in motion ?

What is relative velocity 2 How is it measured ?

If two bodies move uniformly and in the same straight line,
how is their relative velocity found ; when they move either in
opposite directions or in the same direction ?

What is the momentum of a body in motion ?

Show that two bodies may be absolutely in motion, yet rela-
tively at rest.

How is accelerating force measured ?

How is moving force measured ?

If the moving force and the quantity of matter moved are
known, how can we find the accelerating force ?

02
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LESSON XVII.
ON THE LAWS OF MOTION.

Tue simplest principles to which all motions can be
reduced, are called the Laws of Motion. They are
three in number.

TIHE FIRST LAW OF MOTION.

If a body s sel in motion, it will conlinue to move
uniformly in a straight luze, until it is acted upon
by some exler 7zalf0) ce.

Trars law of motion implies two things: first, that a
body, once set in motion, has in itself no tendency
to stop ; and secondly, that its motion is uniform,
and in a right line.

With rcspect to the first part of the law, it must
be allowed that it seems at first to conhadxct our
common experience. If we set any body in motion,
as by shooting a bullet from a gun, throwing a
stone, rolling a hoop, or the like, we ﬁnd that, when
left to 1tself' it gradually loses its motion, and soon
comes to a state of rest. But on further consi-
deration, it will be found that, in all these instances,
and any others which may be proposed, there is an
external force acting upon the body, and destroymcr
its motion.

To take a simple example ; suppose a bullet shot
along a level road. It leaves the gun with a certain
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velocity, for instance, with a velocity of 1000 feet in
a second. Yet at the end of five seconds, instead
of having advanced 5000 feet, and then continuing
to move with the same velocity as at first, it may
probably not have described half that space, and have
already come to a state of rest.

Let us observe, then, what external forces have
acted upon the bullet. These are, first, the friction
against even the smoothest part of the road itself,
which sensibly diminishes the motion of the bullet ;
secondly, the resistance of rough obstacles, such as
stones, against which the bullet strikes, losing part
of its velocity by every such blow: thirdly, the
resistance of the air, which, although small for
bodies of inconsiderable bulk moving slowly, becomes
very great when bodies move rapidly; as may be
readily conceived by any one who has travelled in
an open carriage with very great speed, even when
the air 1s still.

If now another bullet be discharged, under more
favourable circumstances, that is, with a less velocity,
so as to have less resistance of the air, and along a
smoother road, so as to be less retarded by obstacles,
it will be found to retain the velocity of projection
for a longer time. And since, in all experiments
which can be made, it is found that the more we
can remove the causes which retard the motion of a
body, the longer that motion is continued, we con-
clude that, if all such causes were removed, the
motion would continue without diminution,
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Again, such a bullet, projected along a rough road,
would move very irregularly; it would be found
sometimes to leap up into the air, and again to start
aside to the right and left. But all such deviations
from a right line can be shown to arise from the
action of some external force, as that caused by the
striking against- stones and other obstacles. And as
these are removed, the motion is found to become
more rectilinear.

I’rom such instances, and from numerous experi-
ments which have been made for the express purpose
of determining the fact, we conclude, that if we
could remove all the external obstacles which tend
to retard the motion of a body, and to cause it to
deviate from a right line, the motion would continue
to be uniform and rectilinear.

THE SECOND LAW OF MOTION.

Motion, or change of motion, is proportional to the
Jorce impressed, and takes place in the direction
in which that force acts.

Ir a force acts upon a body at rest, it will set it in
motion, unless some other force act upon the body,
s0 as to counteract the effect of the first force.
And if a force of a certain magnitude produces a
certain quantity of motion, or causes the body to
move with a certain velocity, a force twice as great,
acting in the same manner, must produce double the
quantity of motion, or double the velocity, in the
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same body. And, in like manner, if the force be
altered in any proportion, the quantity of motion
produced must be altered in the same proportion as
the force.

This follows 1mmedlately from our notion of force,
as measured by the effects which it produces.

But this law further asserts that, if a body is
already in motion, it yields to the impression of a
new force PlCClS(’ly as if the body were at first at
rest. d
That this is really the case may readily be con-
ceived, by observing, that while we are ourselves
smoothly in motion, as in the cabin of a vessel, or
in the inside of a carriage, any motion which we
communicate to a body produces the same relative
effect as if we were at rest. A body let fall, descends
to the point immediately beneath it. A ball, thrown
from one person to another, is caught as readily as
if each person were standing still. Thus, also, in
feats of horsemanship, a person, riding round a ring
with great rapidity, is able to spring from his saddle,
and ahght upon it again, and that, by leaping, not
Jorwards, but upwar ds

If a person in a balloon, at «, (fig., p. 200,) ver-
tically over the point 4, were at such a height
that a bottle, let fall from the balloon, would take
one minute in descending ; and if, in that time,
the balloon itself would move uniformly from e
to b, a point vertically over B; the bottle would
reach the ground, not at A, but at B, having been
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direclly under the balloon at every point of its
descent.

The effect which the resistance of the air would
have upon the motion of the bottle 1s, of course,
here neglected.

If a body have communicated to it at the same
instant Zwo motions, it will be found, at the end of
a given time, at the same point, as if each motion
had been communicated to the body in succession.

i 7 Thus, suppose a ship,- at A,
@T‘— fires a shot at a battery, in the

~ direction A c¢. If the ship is

' \ at rest, the shot, at the end of
B-—————>  a given time, will be found at
the point ¢, having described

A ¢ uniformly, by the first law of motion. (Neg-
lecting the effect of gravity and the resistance of the
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air.) But if the ship itself is in motion at the
instant when the shot is fired, with a velocity which
would cause it to move uniformly through the space
A B, in the time in which the shot is fired, and B D
is drawn parallel to A ¢, the shot will describe the
diagonal, A p, of the parallelogram A ¢ p B, and will
strike the battery at the point b, having described
the line A » uniformly in the same time in which it
would have described 4 ¢, if the ship had been at rest.

The point » is the same at which the shot would
haye arrived if it had first described A B, in the given
time, with the velocity of the ship, and had then
described B D, in another equal interval of time, with
the velocity communicated to it.

It will be at once seen that this property of the
composition of motion is analogous to the composition
of force, as laid down in Lessons III. and IV., and
1t may be expressed in these terms :

If two motions, which, if communicated scpal ately
to a body, would cause it to describe the two sides
of a parallelogram uniformly, in a given time, are -
communicated at the same instant, the body will
describe the diagonal of the parallelogram uniformly
in the same time.

THIRD LAW OF MOTION.

When a bOdJ us sel in molion by pressure, the moving
Jorce is proportional to the pressure.

Tuis law will be proved, if it can be shown that,
when bodies are set in motion by any pressures,
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their momentum, or the product of the velocity mul-
tiplied by the quantity of matter moved, in each
case, is proportional to the pressure.

Suppose that two pulleys are mounted upon two
frames, M, N, resting on wheels, as in the annexed

M

figure, the frames being freely moveable upon two
horizontal bars: and that two equal weights, P, @,
are hung to a string passing over both pulleys, the
part of the string, A B being horizontal.

Then, from Prop. 1, 2, (p. 10, 11,) it is evident
that the force which stretches every part of the cord,
P A B Q, is the same, and is equal to the weight of ».
Hence, the pulleys, A and B, are urged towards each
other by equal pressures.

1. Let the weights upon the frames, », N, be
equal ; and let them be permitted to approach each
other. - Then at any instant they will be found to
be moving towards each other with the same velo-
cities, and they will meet at a’ point half-way be-
tween the points from which they set off.

2. Suppose that one of the frames, v, is loaded
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with weights, so that ar together with p is twice as
heavy as the other, N, together with q, then » will
be found to move only half as fast as N. But the
quantily of matler moved with » being double the
quantity of that moved with n, the momentum of m
will be exactly equal to that of .

In this case, the bodies will meet at a point
which is twice as far from the original position of
B as from the orginal position of A.

3. Let u be loaded, so that the weight of ar,
together with p is to that of n, together with Q, as
3 to 2. Then the velocities will be found, at any
instant to be as 2to 3; and consequently the momen-
Zum of m will be equal to that of x.

In like manner, if the weights of a and n be
altered in any proportion, the momentum generated
by the same pressure, will be found to be the same
in each body.

If the weights P, o, and therefore the pressure on
the string, be increased in any proportion, the whole
weight on M, N, remaining the same, it will be found
that the velocities communicated to w, N, in the
same time, are increased in the same proportion as
the pressure is increased.

Another experiment of the same kind, but more
casily made, is the following.

It o and B represent two pieces of cork, having
each a magnetized needle placed upon it, and float-
ing in water. Then, if the needles be placed so
near as to attract each other, each will move towards
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the other. And if one of the bodies, as a, be
lighter than the other, B, the lighter body, will move
faster than the other, in such a manner, that, neg-
lecting the resistance of the water, the momentum
of A is equal to the momentum of &.

If the attraction of one of the bodies, A, upon
the other, is called the action of 4, and the effect
produced upon B is called the 7eaction, and each of
those is measured by the momentum which it gene-
rates in the same time, we may say that “ Action
and reaction are equal.”

If a man in a small boat pushes against a larger
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boat, each boat being freely moveable, the pressure
which he exerts upon the boat-hook, will occasion
motion in each bhoat; the smaller boat moving
faster than the larger in proportion as its weight is
less, so that the momentum of each is the same.

If the pressures, which act upon two bodies, and
set them in motion, are proportional to the quan-
tities of matter in the bodies, the welocities gene-
rated in the same time will be equal ; or the acce-
lerating forces, which are measured by those velo-
cities (See p. 193), will be the same. For the
momentum of each body, or the product of the velo-
city multiplied by the quantity of matter in each, is
proportional to the pressure, and consequently pro-
portional to the quantity of matter itself; which
cannot be, unless the velocities are the same.

For example, suppose a weight of 2 ounces to be
acted on by a pressure of {mo ounces, and another
weight of 3 ounces to be acted on by a pressure of
three ounces, then the momentum of each body, after
a given time, will be as the pressures, or as 2 to 3.

Suppose the velocity of the first body to be of
any known value, as 10; then the velocity of the
second body at the same time must also be 10;
and their momenta will be 2 % 10, or 20, and 3 x 10,
or 30, respectively, which are proportional to the
pressures 2 and 3.

- Hence, when different hodies fall freely by the
action of gravity, or by their omwn weight, the velo-
cities, which they will all acquire in the same time,
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are the same, the resistance of the air being neg-
lected.

By experiments, made for the purpose, it is ascer-
tained that the force of gravity gemerates a velocity
of 32 feet, nearly, in one second.

The reason why a heavy body, as a leaden bullet,
- generally falls more quickly than a lighter body, as
a feather, is that the surface of the bullet 1s much
less, in proportion to its weight, than the surface of
the feather; and if each moves through the air
with the same velocity, the resistance to the feather

is much greater than that offered to
~ the bullet. If this cause of inequa-
lity be removed, by placing both
the bullet and the feather under the
receiver of an air-pump, from which
the air is drawn, they are found each
to descend with the same rapidity.
A contrivance such as is repre-
sented in the annexed figure affords
M the means of showing the truth of
the third law of motion.
N A pulley, ¢, is made to move very
frecly upon its axis ; and, when great
accuracy is required, peculiar con-
trivances are employed to diminish
the friction.
Two boxes, A and B, are sus-
pended over ¢ by a fine cord, and
the upright bar, o &, is graduated.
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Suppose the two boxes to be equal in weight, and
each to weigh 20 ounces; and that a bar, @, which
weighs one ounce, is laid upon the box, A ; and that
a moveable ring, s, is placed at N, so that when the
top of the box A has descended from m to w, the
bar, a, may be intercepted by the ring.

Suppose also that m ¥ is found by experiment to
be the space through which the box a descends,
when « is laid upon it, in one second of time.

Then, when the weight @ is removed, since the
two boxes A and B exactly balance cach other, a
will continue to descend, and B to ascend, uniformiy,
by the first law of motion. And if ~ o is the space
through which A is found to move in one second of
time, ¥ o will measure the velocity which the whole
system had acquired during the action of the pres-
sure of 1 ounce in one second of time.

Also the quantity of matter moved will be the
sums of the two weights, A and B, and the weight
a; which, in the case supposed, would be 41 ounces.
To this must be added the resistance to motion
arising from the inertia of the pulley ¢, and from
the friction, the effect of which is the same as if
an additional quantity of matter were to be moved.
Hence, the momentum generated in the given time,
15, will be known ; and, when the experiment is
carefully conducted, it is found to be proportional to
the pressure.

By varying the weights 4, B, and @, the pressure
and the quantity of matter can be varied at pleasure,
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A very perfect machine, upon this principle, was
invented by Atwood, and has been used by himseif
and others to establish the laws by which the motions
of bodies are regulated.

The accelerating force, in the case supposed, is
found by dividing the moving force, or the pressure
employed, which is proportional to the momentum,
by the quantity of matter moved.

Thus, if the accelerating force with which the
weight @ alone would descend is called 1, the acce-
lerating force of the system, neglecting the inertia
and friction of the pulley, will be the weight of a .
divided by the sums of the weights moved, A, B,
and «; which, in the case supposed, would be 41.

Hence, the accelerating force would be the frac-
tion 4 : and if the velocity acquired by « falling
freely in 15 would be 32 feet, or 384 inches; the
velocity acquired by the system in 15 would be &S
inches, or 912, or 94 inches nearly.

QUESTIONS.

‘What is the first law of motion ?

How is it proved to be true ?

‘What is the second law of motion ?

By what experiments is it established ?

‘What is the composition of motion 2

‘What is the third law of motion ?

By what experiments is it proved ?

What is meant, when it is said, that action and reaction
are equal?

Give an example.
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If the pressures, which set two bodies in motion, are in the
same proportion as the weights of the bodies, show that the
accelerating forces are the same.

Why does a heavy body generally fall more quickly than a
lighter body ?

How can it be shown that each would fall with the same
rapidity, if all external causes of retardation were removed ?

Explain the construction of a machine, by which the third
law of motion may be illustrated.
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LESSON XVIIL
ON UNIFORM MOTION.

It will be rembered that the motion of a body is
uniform, when it describes equal spaces in all equal
intervals of time.

Thus, if a body describes 5 feet in 15, 10 feet in
95, and so on continually, its motion is uniform.

Prorosrrion 46.

Ir two bodies move uniformly during different
times, and with different velocities, the spaces
described will be represented by the product of
the numbers expressing the times and velocities
in each case. ;

Suppose a body, A, moves uniformly with a ve-
locity 5, for a time 7; and another body, B with a
velocity 6, for a time 8.

Then the space described by a in each interval of
time, will be 5; and the whole space, in 7 such in-
tervals, b % 7, or 35.

In like manner, the space described by B 1is 6 X 8,
or 48.

Tx. If one man walks at the rate of 3 miles an
hour, for 5 hours; and another at the rate of 4 miles
an hour, for 6 hours; the distance which each will
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travel respectively will be 3% 5, or 15; and 4 x 6,
or 24 miles.

If the welocities, with which two bodies move
uniformly, are to one another in the same proportion
as the Zumes of their motion, the spaces described
will be proportional to the product of the numbers
representing the Zimes, multiplied by those numbers
themselves; that is, to the squares of the times: or
again, to the product of the numbers representing
the squares of the velocities.

Thus, if the velocities are 3 and 5, and the times
6 and 10, the spaces described will be 3 % 6, or 18,
and 5 % 10, or 50; which are to one another in the
proportion of 36 and 100, the squares of the times ;
or in the proportion of 9 and 25, the squares of the
velocities.

Prorosirion 47.

Ir the time during which a body moves is di-
vided into equal intervals, and the velocity of
the body is increased or diminished by the same
quantity, at the end of each interval of time,
but continues uniform during each interval, the
space described is the same as if the body moved
wniformly during the whole time, with a velocity
which is equal to half the sum of the greatest
and least velocities.

Suppose a body moves uniformly for a time 1,
P 2
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Half the sum of 7 and 11 is 9. Hence the whole
space described in 128 is 12 x 9, or 108 feet.

That: this is veally the case is easily seen by ob-
serving, that in the first 45 the body describes 4 % 7,
or 28 feet; in the next 45, 4 % 9, or 36 feet; and in
the last 45, 4 x 11, cr 44 feet; and the sum of the
spaces, 28, 36, and 44, is 108 feet.

Ex. 3. A body moves for 99s; it describes 1 foot
uniformly in the first second of time, 2 feet in the
next second, and so on; deseribing 99 feet uni-
formly in the last second; required the whole space
deseribed.

Half the sum of 1 and 99 is 50: hence the whole
space 1n 995, is 50 % 99, or 4950 feet.

Ex. 4. Suppose a body moves for 1005, on the
same supposition. Half the sum of 1 and 100 is
50%. Hence the whole space is 503 x 100, or 5050
feet.

Ex. 5. Suppose that, as in the last example, a
body moves for 100%; but that its velocity is in-
creased at the end of the lenth part of each second
of time: describing the tenth part of a foot uni-
formly in the first tenth part of a second, two-tenths
of a foot uniformly in the next tenth of a second,
and so on; so as to move with a velocity of 100
feet during the 100th second of time. Required
the whole space described.

Half the sum of 1 and 100 is 505%. Hence,
the whole space will be 501 % 100, or 5005 feet.

Ex. 6. Let the same supposition be made, except
that the body changes its velocity at the end of the
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100t% part of each second of time; and let the whole
space be required.

The velocity for the first interval of time is 1%5;
and, for the last interval of time, is 100.

And half the sum of 15 and 100 is 50534
Hence, the whole space will be 50535 % 100, or
5000% feet.

By comparing the results of examples 4, 5, 6, it
appears that, by dividing the time during which the
velocity is continued uniform, into parts less and
less, the whole time of motion 100%, and the last
acquired velocity, 100 feet, being the same, the whole
space described approaches mearer and mnearer to
5000, which is the product of 50 x 100; 50 being
half the greatest velocity, and 100 representing the
whole time. )

Prorosrrion 48.

Ir the body moves as before, except that its
motion during the first interval of time is o, that
1s, if the body does not begin to move till the
beginning of the second interval of time, and
then moves uniformly, its velocity being in-
creased by the same quantity at the end of each
mterval of time, the space described will be the
same as if the body had moved during the whole
time, with half the greatest velocity.

For, in this case, the least velocity is o; and

therefore, half the sum of the greatest and least
velocities 1s half the greatest velocity.
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ExamprLe 1. Suppose one man, a, sets out at 12
o'clock at noon, and travels uniformly at the rate
of 6 miles an hour; another man, B, sets out from
the same place at 1 o’clock, and travels till 2 o’clock,
at the rate of 2 miles an hour; from 2 o’clock to 3,
at the rate of 4 miles an hour; from 3 o’clock to 4,
at the rate of 6 miles an hour, and so on; increasing
his rate of travelling every hour; how far will he
travel before he overtakes the first?

B will have described the same space as 4, who
travels uniformly at the rate of siz miles an hour,
when B has travelled the last hour at the rate of
twelve miles an hour.

And since his rate of travelling in each hour,
reckoning from noon,is 0, 2, 4, 6, 8, 10, 12, the
number of hours from noon will be 7; or he will
overtake the first traveller at 7 o’clock in the after-
NnooMN.

This is easily shown to be true, by observing
that, in 7 hours, 4 will have passed over 6 %7, or
42 miles ; and B will have passed over a number of
miles represented by the sum of 2, 4, 6, 8, 10, 12,
which is also 42.

Ex. 2. Suppose one man sets out at 12 at noon,
travelling at the rate of 6 miles an hour; and
another sets out at Zalf~past 12, travelling for half
an hour at the rate of 1 mile an hour, and increas-
ing his velocity each kalf hour, at the rate of 1 mile
an hour; how far will he travel before he overtakes
the first ?

The second man’s rate of travelling, for the first
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half-hour, is 0 ; and his rate, for the last half hour,
must be 12, as before.

Also his rate of travelling for each Zalf hour,
reckoned from noon, being 0, 1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12; the number of half hours, reckoned
from noon, 1s 13.

Hence, he will overtake the first traveller at Zalf~
past 6 o’clock.

This also may easily be shown to be true, as in
the last example. Since the first man travels 3
miles in every Aalf hour, in 13 half hours he will
have travelled 39 miles.

The distance travelled by the second man, in each
successive half hour, reckoned from noon, will be as
follows :(—

Half-hours. Miles travelled.
1 0
9 01
3 1
4 5 11
5 2
6 21
7 3
8 31
9 4

10 41
5k 5
12 51
13 6

Total distance .. 39 miles.
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QUESTIONS.

Determine the space described by two bodies moving uni-
formly during different times, and with different velocities.

If the time during which a body moves is divided into equal -
intervals, but the motion is uniform during each interval of
time, and the velocity is increased or diminished by the same
quantity at the end of each interval of time, how may the
whole space described be determined ?
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LESSON XIX.

ON THE MOTION OF BODIES UNIFORMLY
ACCELERATED OR UNIFORMLY RETARDED
IN A STRAIGHT LINE.

TaE motion of a body is said to be uniformly accele-
raled, when the increase of its velocity is proportional
to the time of its motion; and to be wniformly re-
tarded when the duminution of its velocity is propor-
tional to the time of its motion.

Thus, if a body moves from rest, and is found
to have acquired a velocity of 5 feet in 15, of 10
feet in 23, of 15 feet in 3%, and so on for any pro-
portional time, its motion is uniformly accelerated.
And if a body begins to move with a velocity of
15 feet in a second, and, after 15, is found to be
moving with a velocity of 10 feet; and after 25, to
be moving with a velocity of 5 feet; and after 33,
to be brought to a state of rest; its motion is uni-
formly retarded.

Prorosirion 49.

Ir a body moves from a state of rest, by the
action of a uniformly accelerating force, the velo-
city generated 1s proportional to the time of the
body’s motion.

Accelerating force is measured by the velocity
which it produces in a given time; and if it acts
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uniformly, it must add equal quantities of velocity
to the body, in all equal portions of time.

Hence, if in a time 1, a certain velocity be com-
‘municated, in a time 2, the velocity will be twice
as great; in a time 3, three times as great; and so
on for all proportional intervals of time.

Hence, the velocity generated is proportional to
the time.

If the time is divided into equal intervals, the
velocities acquired at the end of each interval of
time, will be in arithmetical progression.

Thus, if the times are .1, 2, 3, 4, &c., and the
velocity at the end of the first interval of time is 32,
the velocities at the end of the 2nd, 3rd, &ec., inter-
vals of time, will be 64, 96, 128, &c., which are in
arithmetical progression.

If the force is represented by the velocity which
1t generates in a body moving from a state of rest,
in 15, the velocity generated in any other time, will
be represented by multiplying together the numbers
expressing the force and the time.

Thus, if a force generates a velocity 32, in 18, the
velocity generated in 125 is 12 x 32, or 384.

Hence, genecrally, the velocity generated is the
product of the force multiplied by the time.

Ex. 1. Suppose a body, falling from rest for 18,
acquires a velocity of 32 feet. Required the velo-
city acquired in falling for 10s,

Since the velocity is proportional to the time, the
velocity acquired in 10% is 10 times as great as the
velocity in 15; and therefore is 320 feet.
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Ex. 2. On the same supposition, how long must
the body fall from rest, to acquire a velocity of 640
feet ? :

The time, in seconds, will be found by dividing
the whole velocity by the velocity acquired in 1%;
and therefore the time is 640 divided by 32, or 205.

This property may be shown experimentally, by
the simple machine described in page 206.

Suppose the weights, A and B, to be equal; and
that a weight « is added to a, and causes A to
descend.

Observe how far A descends from rest in 1%5; and
let the moveable ring N be placed so as to take off
the weight « at the end of 1.

The system will then continue to move uniformly,
according to the first law of motion ; and if a stage
be placed so that A may just reach it at the end of
the next second of time, the distance which A will
thus move wuniformly in 15, will measure the velocily
which the system had acquired in 15, and this velo-
city will therefore be known.

Now let the weights be replaced in their first
position, and let the space through which 4 descends
from rest, in {wo seconds, be observed; and the
moveable ring s, placed so as to intercept the weight
a, at the end of 25,

Then, the space which A will describe uniformly
in the next second of time, will be found to be (wice
as great as in the first instance; or the system, in
2s, will have acquired a velocity which 1s double of
the velocity acquired in 15,
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And, by repeating the experiment for 35, 45, &c.,
it will be found that the velocity acquired is propor-
tional to the time of falling from rest.

Prorosrrion 50.

Ir a body is projected with a given velocity in
the direction opposite to that of a uniformly
accelerating force, the velocity lost is propor-
tional to the time.

For the force, acting uniformly, must produce
equal effects in equal times; and those effects are
the addition of velocity, in the direction in which
the force acts, which is the same as the destruclion
of velocity in the direction in which the body is
projected. .

Ex. 1. Suppose a body is projected with a velo-
city of 320 feet, in the direction opposite to that of
a uniformly accelerating force, which would generate
a-velocity of 32 feet in 18,

Required the velocity with which the body is
moving at the end of each successive second, until
all the velocity is destroyed.

The velocities destroyed at the end of ], 2:8,:&e,
seconds, are 32, 64, 96, &ec., feet.

And these are taken from the original velocity of
projection, 320 feet, with which the body would
continue to move uniformly, by the first law of
motion, if it were not acted upon by any force.
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Hence we may set down the velocities in the
following table :—

Time of Motion. : S ;
Fhatiew Velocity lest.  Remaining Velocity.

Seconds.
0 0 3 - 320
i 32 i o 288
2 64 2 s 256
S 96 X : 224
4 128 : : 192
9 160 : & 160
6 192 : ¢ 128
7 224 : > 96
3 s 256 : ; 64
0y & : 288 : 3 32
$0: s ; 320 2 ; 0

Tt, appears, then, that at the end of 105, the whole
velocity will be destroyed ; and, if the body con-
tinues to be acted upon by the accelerating force,
it will descend again, acquiring a velocity of 32 feet
in every successive second of time.

Prorosition 51.

Ir a body moves from rest by the action of a
uniformly accelerating force, the space described
from rest is half the space which would be
described in the same time, with the last ac-
quired velocity continued uniform.

If the time is divided into equal inlervals, of any
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magnitude whatever, the velocities at the ends of
those times will be in arithmetical progression, by
Prop. 49, p. 220.

And 1f the motion commences at the beginning
of the second interval of time, and is afterwards
uniform during each successive interval, the whole
space described will be equal to that which would
be described in the whole time with half the greatest
velocity acquired, by Prop. 48. And this conclusion
will be true, whatever be the magnitude of the equal
intervals of time.

And if the intervals of time are taken continually
less and less, the time before the beginning of the
body’s motion will be continually less and less.
And when those intervals are diminished without
limit, the body will begin to move from a state of
rest at the beginning of the time, and its motion
will be uniformly accelerated.

Therefore, in this case, the space described will
be equal to that uniformly described in the whole
time with %alf the last acquired velocity ; and, con-
sequently, will be Zalf the space which would be
described in the same time with that last acquired
volocity continued uniform.

Examere. If a body falls from rest for 15, and
describes a space of 16 feet, it will acquire a velo-
city which will carry it uniformly over 32 feet in 1.

And generally the space described from rest is
half the product of the numbers expressing the
time and the velocity.
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- This proposition may be illustrated by an expe-
riment, with the machine already described in p- 206.
Let the weights 4, B, be equal; and
the weight @ be added, as in the expe-
riment described in p. 213.

Let the moveable ring s be placed so
as to intercept the weight « after any
interval of time; and let the distance
m n, through which the lowest part of a
has moved in that time, be measured.

Then, if o be measured equal to
iwice mn, and a stage be placed at o,
the body A will be found to describe 7 o
uniformly, after the weight ¢ has heen
talen off, and to reach o in the same
time in which it described m#n from

rest. s
This experiment may be made with l
great accuracy, by permitting A to de-

scend just as the pendulum of a clock heats. If
mn is the space described in 18, o will reach the
stage o exactly at the second beat of the pendulun.

Prorostrion 52,

Ir a body descends, by the action of a uniformly
accelerating force, the spaces described in dif-
ferent times reckoned from the point of rest, are
in the same proportion as the squares* of the

* The square of a number is the product of the numbe
Q
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time, or as the squares of the velocities acquired ;
that is if the #imes, and therefore the velocities,
are taken as the numbers 1, 2, 3, 4, &c., the
spaces will be as the numbers 1, 4, 9, 16, &e.

The spaces described from rest, in any time, will
be half as great as the spaces which would be
described in the same time, with the velocity acquired
in those times, by Prop. 51, and therefore will be
proportional to the products of the numbers express-
ing the times and velocities, by Prop. 46.

And those velocities will be themselves propor-
tional to the tumes, by Prop. 49.

And therefore the spaces will be proportional to
the product of the numbers expressing the #umes
multiplied by themselves ; that is, to the squares of
the times. '

And the velocities being proportional to the times,
the spaces will also be proportional to the squares of
the velocities. (See Prop. 46, p. 210.)

If the forces by which two bodies move are dif-
ferent, the velocities generated are proportional to
the product of the forces multiplied by the times.

Hence generally, when the forces are different,
the spaces will be proportional to the product of the
forces multiplied by the squares of the times.

For instance, suppose the forces are % and 1;

multiplied by itself. Thus the square of 1is 1x 1, or 1: the
square of 2 is 2X 2, or 4: the square of 3 is 3X 3, or 9.
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and the times 3 and 2: then the spaces will be as
+%x9tolx4oras3to 2.

If the space described in a time 1 is known, the
space in any other time is known by multiplying
that space by the square of the time.

ExampLE. Suppose a body descends from rest 16
feet in 15, and therefore acquires a velocity of 32 .
feet, by Prop. 51.

Then, in 2 it will acquire a velocity of 64 feet,
by Prop. 49; and, if not further accelerated, it
would go on to describe 64 feet uniformly in 15, or-
128 feet in 25, the whole time of its falling.

And the space described from rest will
be Lalf thislast space, or 64 feet. Again,
in 3%, the velocity acquired is 96 feet.

The space which would be described
uniformly with this velocity in 3 is 288
feet ; and the space described from rest is
the half of 288 or 144.

In the same manner we may proceed
for 4 or more seconds.

Hence, the spaces from rest in the
times, 18, 25, 3s, are 16, 64, 144, &c.,
which are in the proportion of 1, 4, 9,
&c., or as the squares of the times.

This proposition also may be rendered
evident by experiment.

ExperiMENT 1. Suppose that two equal
weights A and B are suspended on a
fixed pulley, in the manner described

Q2
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in p. 21, and another weight is added to 4, so as to
set the whole in motion.

Let the space, BF, through which A descends in
18 be observed.

Then, if Ec be taken equal to 4 timesEF; EH
equal to 9 times B¥; EX equal to 16 times E¥; and
the system be allowed to move till A reaches K, it
will be found that A is at ¥, at the end of 15, at g,
at the end of 2%; at m, at the end of 3%: and at x,
at the end of 4s. &

- The spaces, therefore, are proportional to th
squares of the time from rest.

Experivent 2. If a body is sustained upon an
inclined plane, by a force acting parallel to the plane,
it is proved in Prop. 28, that the power is in the
same proportion to the weight, as the height of the
plane is to its length.

Hence, if the power which sustained the body
is removed, the body will begin to slide down
the plane, if there is no friction; and the force
which accelerates the body, will he constantly to
the force of gravity as the height of the plane is
to its length; and will therefore he a uniformly
accelerating force.

If the body be of such a form as to 7oll down the
plane—as a sphere or a cylinder,—it can be proved,
by principles which cannot be here introduced, that
the force is still a uniformly accelerating force, but
not so great as when the body slides; being only #
of that force for a sphere, and % for a cylinder.
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The following experiment, however, depends only
upon the circumstance that the body is uniformly
accelerated, and not upon the actual amount of the
accelerating force.

Let a smooth groove, MmN, be cut upon a plane
AB, of a given length, as 32 inches; and let a
spherical ball, of brass or iron, be permitted to roll
down the groove from m to N, when the plane is
inclined, by raising the end A .

Let the plane be inclined at such an angle, that
the whole time of the sphere’s rolling down the
plane is a certain number of seconds, for instance, 45,

Then, if m~ be so divided that M x, ML, m o, &c.,
are as the squares of the numbers 1, 2, 3, &ec., or 1,
4,9, 16, &c., the sphere will be observed to be at
the points K, T, 0, N, at the end of 15, 2s, 3s, 4s,
respectively.

If M~ is 32 inches, Mk will be 2 inches ; M L
8 inches ; and M o 18 inches.

This was the kind of experiment by which
Galileo first established the laws of bodies falling by
the action of a uniform force.
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ProrosiTion 53.

Ir a body moves from rest by the action of a
uniformly accelerating force, the spaces described,
In successive equal ¢imes, will be as the odd num-
bers 1, 3, 5, 7, 9, &e.

For the spaces reckoned from rest, at the end of
the times 15, 25, 38, 4, 53, &c., are in the proportion
of the numbers 1, 4, 9, 16, 25, &ec.

Hence, the space in the time 18, is 1.

The space described in the next second is the
difference of 4 and 1, or 3.

The space described in the third second, is the
difference of 9 and 4, or 5. And so on continually.

Hence the spaces are as 1, 3, 5, 7, &ec.

Again, if the intervals of time are taken, each 28,
the spaces from rest, at the end of 28, 45, 65, &c., are
4, 16, 36, &c.; and the spaces in each equal inter-
val of 28, are 4, 12, 20, &c.; which are to one
another in the proportion of 1, 3, 5, &e.

And the same may be shown, whatever equal
intervals of time are taken.

Prorosition 54.

Ir a body is projected in a direction opposite to
that of a uniformly accelerating force, and moves
till its whole motion is destroyed; the spaces
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described in successive equal times will be as
the odd numbers, 3,7 1= 5, 8,1 75,3, 1 . &
the numbers of intervals varying according to

the time which is requisite to destroy the whole
motion.

For the body will now be retarded, in the same
manner as it would be accelerated, if it moved in
the direction of the uniform force; the spaces
described from the beginning of one motion, being
the same as those described in equal times from the
end of the other motion.

Prorosition 55.

Ir a body is projected in the direction of a uni-
formly accelerating force, the space which 1t
describes in a given time is equal to the space
which 1t would deseribe in the given time uni-
formly with the velocity of projection, together
with the space through which i1t would fall in
the same time by the action of the uniformly
accelerating force.

For, by the third law of motion, the effect pro-
duced by the constant force, is the same as if the
body had no motion given to it by the force of pro-
jection. And the motions arising from the uniform
force, and from the force of projection are in the |
same direction; and the spaces described will be the
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sum of the spaces, which the body would describe
by the action of each force separately.

ExameLe. Suppose a body projected downwards
with a velocity of 80 feet in 1S, into a pit 800 feet
deep ; the force of gravity being represented by 32
feet: required the place of the body at the end of
809538 &e.

The spaces in successive equal times, when a
body falls by gravity, will be 16, 48, 80, &c., by
Prop. 53. :

In 15 the body would describe 80 feet with the
velocity of projection ; and 16 feet by the force of
gravity.

Hence, in the first second, it will describe the
sum of those spaces, or 96 feet.

In the next second, the sum
of the spaces is . 80 and 48, or 128
ot Hhird, i ; 2 90 . B0 E ()
S dourgh . 4 o 00 100 L] 2T SR
e CRith; . A o (Lol b 2 s 90 |

And the sum of all these spaces is 800 feet.

Hence, the body will reach the bottom of the pit
in 55; whereas, if it had fallen by the action of
grayity alone, the space which it would have de-
scribed would have been 16 x 25, or 400, only half
as great as the space it actually describes. The
other 400 feet is the space which it would have
described uniformly in 55, with the velocity of pro-
Jjection 80.
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If a body is projected downmwards, or in the di-
rection in which a uniformly accelerating force acts
upon it, it will continually descend, and it will be
found at a given distance below the point of pro-
jection, only at one instant of time.

For instance, if a body is projected from A
towards b, and acted on by a uniform force in
the same direction; and if A B is the space
through which the body would move in a g
given time, with the velocity of projection,
and Bc is the space through which it would ¢
move in the same time, from rest, by the
action of the uniform force, the body, at the
end of the same time, will be found at ¢, having
described the space A ¢, equal to the sum of the »
two spaces, A B, BC.

But if a body is projected upwards, or in the
direction opposite to that in which a uniformly
accelerating force acts upon it, it will rise to B
a certain height, and afterwards begin to
descend; and there will be ¢wo instants of »
time, at which it will be at any given distance,
above the point of projection, and between .o}
that point and the highest point to which the
body rises.

Thus, if A B is the space through which the
body would move, with the velocity of pro- ,
jection continued uniform, and B¢ the space
through which the body would fall from rest by
the action of the constant force, in the same time;
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at the end of the time, the body will be found at
the point ¢, at the distance A ¢ from 4, Ac being
the difference of the two spaces A B, Bo.

And if p is the highest point to which the body
rises, it will be at the height c, at two different
times, first as it rises, and again as it descends.

Motion of a Body mniformly accelerated or retarded.
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For instance, suppose a boy stands at the foot of
a tower 144 feet high, that there is a window 128
feet from the bottom of the steeple, and that he
shoots up an arrow with a velocity of 96 feet, gravity
being represented by 32 feet (that being the velocity
which it generates in 18); and that it is required to
find whether the arrow will rise as high as the top
of the tower, and at what time it will be at the
height of the window.

If we set down the space which the arrow would
have described uniformly in any time, with the
velocity of projection, and subtract from that space
the distance through which it would fall from rest
in the same time, both of which are known by Prop.
46, 52, the difference will be the height of the
arrow above the lowest point at that time.

Differences of

el Space with Space deseribed g e b
Sgé;lrllils. ulefo.l.'my o R.eslf’ Y or Heighth;]L)(:)(irsé
e ee e Granty, the lowest point.
1 96 1xl6or 16 80
2 192 4% 16 or 64 128
3 288 9% 16 or 144 144
4 384 16 % 16 or 356 128
5 480 25 % 16 or 400 80
6 576 36 % 16 or 576 0

Tt appears, then, that the arrow will have come
to the ground again in 6 seconds, three of which
will be occupied in its ascent, and three in its
descent: that it will just reach the top of the tower,
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144 feet, at the end of 35; and that it will pass the
window, 128 feet from the ground, at the end of

2% in its ascent, and again at the end of 4s, in its
descent.

NoTE.

The properties of motion, when a body is acted on by
auniformly accelerating force, can be best understood,
when expressed in general terms. Thus, if v represents
the velocity generated by a body falling from rest, during
a time £, and f represents the force, or the velocity
which the force will generate in a time ¢;

By Prop. 49, v = £t (1.)

That is, to find the velocity, multiply the force by the
time.

By Prop. 51, 52, 's'="L % (2

That is, to find the space, multiply Aalf the force by
the square of the time.

v V>

f.’S:Tzif: f,
(%

2

And, since ¢ =

<iva

Therefore v> = 2 fs. (3.)
That is, to find the square of the velocity, multiply
double the force by the space described from rest.

Also from (1) ¢ = %, or the time is found by di-

viding the velocity by the force.

S 2 %
, or the square of the time is

2
Also, from (2) £ = =
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found by dividing double the space described from rest
by the force.

Example 1. Find the velocity generated by gravity
(32 feet), in 12s.

By () 0= 3258 k2. — 384,

Example 2. Find the space described from rest in the
same time.

By (2)s = 16% 122 = 16 x 144 = 2304 feet.

Example 3. Find the velocity acquired in falling by
gravity through 2304 feet.

Bye(8)) v =645¢2304

=64X16%X144
Thereforev = 8x4x12
; =383

QUESTIONS.

When is the motion of a body said to be uniformly accele-
rated, or uniformly retarded ?

Show that if a body is uniformly accelerated, and moves
from a state of rest, the velocity generated is proportional to
the time ; and is represented by the product of the numbers
expressing the force and the time.

Show that if a body is projected in a direction opposite to
that in which a uniformly accelerating force acts, the velocity
lost is proportional to the time.

Prove that, if a body moves from rest by the action of a
uniformly accelerating force, the space deseribed from rest is
half the space which would be described in the same time
with the last acquired velocity continued uniform.

Prove that, on the same supposition, the spaces from the
beginning of the motion are proportional to the squares of the
numbers expressing the Zimes of motion, or to the squares of
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the numbers expressing the velocities: and that the spaces
described in equal successive times are as the odd numbers, 1,
)y 0, 7l (54es

By what experiments can the last four questions be shown
to be true?

How can the space be determined, which a body describes
.when it is projected either in the same direction, or in the
opposite direction to that in which a uniformly accelerating
force acts ?

On the same supposition, how can we find the instant of
Zime, at which the body so projected is at a given distance
from the point of projection ?
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LESSON XX.

ON THE MQTION OF BODIES DOWN INCLINED
PLANES, AND UPON CURVED SURFACES,
AND ON OSCILLATING BODIES.

Prorosition 56.

Tue velocity acquired in falling down an in-
clined plane, is the same as that acquired in
falling freely by gravity down the perpendicular
height.

By Prop. 52, and by the note at the end of Lesson
xix, it appears that, if a body moves by the action
of a uniformly accelerating force, the square of the
velocity is found by multiplying double the force by
the space described. '

Hence, if the force is diminished in the same
proportion as the space is increased, the velocity
acquired is the same.

Now, if one body falls A
freely by gravity from A to s

I

¢, it describes the space / i
Aq.
And if another body falls / [

down the plane A B, it de- g

scribes A B, which is greater than A ¢; but the force
which accelerates the body, is less than the force of
gravity, in the proportion of A ¢ to A B, by Prop. 28.
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Hence, the velocity acquired by the body in fall-
ing down the plane from A to B, is the same as that
acquired in falling freely from A to c.

For example: suppose A ¢ is 16 feet, and A B 64
feet, or 4 times as great as Ac; and therefore the
force on the plane is 1 the force of gravity, which is
represented by 32 feet.

Now, the square of the velocity acquired in fall-
ing through A ¢, or 16 feet, is 2 x 32 x 16, or 1024 ;
and therefore the velocity itself is the square root™
of 1024, or 32 feet.

And the square of the velocity acquired in falling
through 4B, or 64 feet, on the plane, the force
being %2, or 8, is 2 x 8 x 64, which is also 1024 ;
and the velocity itself 32 feet, as before.

Hence, if any number of bodies fall down diffe-
rent inclined planes, all having the same altitude,
the bodies will all acquire the same velocity at the
lowest point of their several descents.

Thus, if A ¢ is 16 feet, and BcF horizontal, and
bodies fall from A down the planes A B, AD, A m, A F,
they will all have acquired a velocity of 32 feet, on
reaching the line Br.

If a body falls from rest down the plane 4 B, and

* The square root of a number given is such a number as, -
when multiplied by itself, produces the number given. Thus,
since 1 X 1 is 1, 1is the square root of 1; since 2 x 2 produces
4, 2 is the square root of 4; so 3 is the square root of 93 4
the square root of 16,
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then goes on to describe BD, without any loss of
velocity, and continues to fall down the plane B D, it
will have acquired at » a velocity equal to that
acquired in falling from A to c.

Let pB be produced to meet the horizontal line.
AE in E. Then, the velocity acquired in falling
through A B is equal to that acquired in falling
through E B, which is of the same altitude.

And no velocity being lost at B, the body goes
on to describe Bp, in the same manner as if it had
fallen through E B.

Hence, the velocity acquired at p, is that which
would be acquired in falling through EDp; which is
equal to that acquired in falling through A ¢, the
perpendicular height.

A
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In the same manner, if a body descends down
any number of planes A B, BD, DE, EF, if no velocity
is lost in passing from one plane to the other, the
velocity acquired at ¥ is equal to that acquired in
falling down the perpendicular height 4 c.

And if the number of planes is continually in-
creased, so that the series of planes becomes a curved
surface AT, the velocity acquired at r is the same as
that acquired in falling through the perpendicular -
height A c.

Hence, if two = A
curves AF, BF, are /
united at their low- \
est point F, and - c
have the same per-
pendicular altitude A ¢, BE, and a body falls down
the curve A F, and loses no velocity in passing from
one curve to the other, it will rise up the curve rB
to the point B, which has the same perpendicular
altitude as that from which the body fell.

It is not very easy to make experiments upon
‘bodies sliding, or even rolling, upon curved surfaces,
in consequence of the friction and other disturbing
causes. DBut the same effect may sometimes be
produced by suspending a body by a string.

If a small body, B, is descending a cylindrical
surface, A BT, of which the lowest point is ¥, and
the centre ¢, the pressure of the surface against the
body is perpendicular to the surface, or in the direc-
tion of the radius Bc. For it will be supported for
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with which the body is
moving at any point B is
the same as that acquired
in falling through the
perpendicular height » E.

Also,if the body begins
to fall from the point 4,
andis permitted to ascend
again, on the other side
of the lowest point F, it

will rise to a point @, which is at the same perpendi-

cular height above F as A is: and the velocity of the

body at any point, b, of its ascent, will be the same

as that which it had at the point B, at the same

perpendicular height above ¥, in its descent: the

effects of the resistance of the air being neglected.
This kind of motion is called oscillation.

(¢

An easy experiment,
first made by Galileo,
shows that the velocity
at the lowest point is the
same, 1n different circles,
provided the perpendicu-
lar height from which
the bodyfalls is the same.

Let a body, B, be sus-
pended from the point ¢,
and descend from A to ¥
in the circular arc AF,
of which the centre is c.
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In the vertical line, ¢F, let a nail, ¢, be placed,
against which the string ¢ cr will rest, so that the
body, after passing ¥, will rise up the circular arc
F b a, of which the centre 1s c.

Then it will be found, that, if the body falls from
A, it will rise in the arc F «, to the point a, which is
at the same perpendicular altitude as A, above r.
Or, if it begins to fall from «, it will rise to A.
And if the body begins to fall from any other point
B, it will rise to b, a point at the same perpendicular
height.

This experiment may c
be varied, by placing N
any smooth curved sur- 1
face c¢c against which
the string may be
wrapped, after the body
has reached the lowest
point F, so that in rising
again, on the side Fa,
it may describe some
curve F b a, the nature of which will depend upon
the curve cec.

And it will be found, that the point «, to which
it rises, is always at the same perpendicular height
above F as A.

In these experiments, the resistance of the air

will cause some little variation; for which allowance
must be made.

i
&
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Prorosition 57.

Ir two bodies fall from rest, one down an
mnclined plane and the other down its perpendi- -
cular height, the time of falling down the plane
s to the time of falling down the height in the
same proportion as the length of the plane is to

its height.
(& To show that this is
" true,we will take a par-

Sr ticular case, and sup-
—— pose the height of the
£ | ¢« plane, ac, to be half
its length, A B: so that,
if Acis1, AB is 2. Therefore, by Prop. 28, the
force upon the plane is %alf the force of gravity, or
16; since gravity is represented at 32..

Also, by Prop. 52, and by the note at the end of
Lesson XIX., it appears, that when a body falls
from rest, the square of the time is found by dividing
double the space described, by the force.

Hence, the square of the time down the plane A B,
or 2, is represented by the fraction L.

And the square of the time down the height ¢,
or 1, is represented by the fraction -2, or 1.

Hence, the square of the time of falling down the
plane, is to the square of the time down the height
as 44 to {1, or as 4 to 1.

And therefore the time down the plane is to the
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time down the height, as the square root of 4 to the
square root of 1; or as 2 to 1; which is the propor-
tion of the length of the plane to the height.

By using general terms, the same may be proved
for any inclined plane *.

Hence, if different bodies fall down different
planes, having the same perpendicular height, the
times of falling down the planes will be in the same
proportion as the lengths of the planes.

Thus, if AB 1s b
feet, AD 4 feet, AE 1B

3 feet, and A ¥ 2 feet, 4
the times of falling / \
from A, down these

planes, will be in the -/ : G

proportion of 5,4, 3,
and 2.

5 s . 2s
* Since s=1 ft2 t2=7—

And if % is the height of a plane, and 7 its length, and g
the force of gravity, fz—?—_ g- and s=/.

5 A
Theref01'et2=2—.l—- =%. and = / i
h gl gh

7'9
And if a body falls through % by gravity, and ¢ is the

9
time t'2=“_h. and ¢’ = /ﬁ
2 A/
g Y g5
2h

Therefore ¢ : ¢ & ¢ E-.l:\/_::l:/z
gh g ;
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Prorositron 58.

Ir two bodies descend from rest down two planes
equally inclined to the horizon, and then, without
any loss of velocity, proceed to descend down
two other inclined planes, also equally inclined
to the horizon, the lengths of which are to each
other in the same proportion as the lengths of
the first two planes, the squares of the times of
their whole motion will be in the same proportion
as the lengths of the planes.

Let the plane, A B, be 4 times as long as ¢ b, and
equally inclined to the horizon; and the plane, Bo,
be also 4 times as long as b ¢, and equally inclined
to the horizon.

N
| b

Then, the proportion of the height to the length
being the same, in the planes Ac, and ac, the
accelerating force will be the same; and therefore,
by Prop. 52, the squares of the time falling through
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A B and a b, will be in the proportion of AB to a b,
or as 4 to 1.

Also, if ¢B be produced to b, and ¢ b to d, by
Prop. 56, the velocities which the bodies have at B
and b, will be the same as if the bodies had fallen
through o B, d b respectively, which have the same
perpendicular height as A B, @ b.

And the bodies will describe B¢, b ¢ respectively
in the same time, whether they have first fallen
through A B and a b, or p B and d b respectively.

But if they fall through o B and d b, the square of
the time of falling through B from rest, will be 4
times as great as the square of the time of falling
through db6; and also the square of the time of
falling through Dc from rest, will be 4 times as
great as the square of the time of falling through
dc from rest.

Hence, the square of the time of moving through
BC, when the body has first fallen through A B, is
4 times as great as the square of the time of falling
through 6 ¢, when the body has first fallen throug
ab. v

And the square of the whole time from A to o,
will be 4 times as great as the square of the whole
time from a to ¢. Or the squares of the times will
be to each other in the same proportion as the
lengths of the planes.

Hence, the times themselves will be to each other
as the square roots of the lengths of the planes.

The same reasoning will apply to any number of
planes similarly inclined.
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Thus, if ABcDE, abcde, are two systems of
planes, of which each part, as A B, is to the cor-
responding part, b, as 9 to 4; and two bodies
descend from rest, through each, no velocity being

A

/

B ’.'
A b
o A
D / 2= RS

lost in passing from one plane, as A B, to another, as
B0, the time from A to E will be to the time from «
to ¢, as the square root of 9 to the square root of 4,
or as 3 to 2. .

If the number of planes between A & and a e, are
increased without limit, we shall have two similar

‘ /// | QJ

curves ; and the times of falling down those curves
will be in the proportion of the square roots of their
lengths.
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If a body, on reaching the lowest point of a series
of inclined planes, or of a curve, were projected
back with the velocity acquired, it would rise to the
same point, 4, in the same time as that in which it
descended, if there were no friction or other extra-
neous cause, to prevent it so doing. And if a simi-
lar system of planes, or a similar curve, were placed
on the other side of E, it would rise up the system
of planes, or curve, after reaching E.

ProrosiTion 59.

Ir the force of gravity should be diminished or
increased, the time of falling down a series of
planes, or down a curve, will be ¢ncreased, or
diminished, in the same proportion as the square
r00t of the force is diminished, or increased.

1t is plain, that if the force of gravity is dimi-
nished, the body is not so much accelerated, and
will take a longer time in falling down the planes.

Also, as in Prop. 52, and note at the end of
Lesson XIX., if a body falls in a straight line from
rest, the square of the time is found, by dividing
double the space by the force.

Hence, when a body falls in a straight line,
through any space, the square of the time is in-
creased or diminished in the same proportion as the
Jorce is diminished or increased.

Hence, the time itself is increased or diminished,
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in the same proportion as the square root of the
force is diminished or increased.

And, by proceeding as in the last proposition,
the same relation can be shown to subsist, when
bodies move down a series of planes, or down a
curve.

For example :—Suppose two bodies descend from
rest, down two planes of equal length, and similarly
inclined to the horizon ; the length of each plane
being 16, and the height 8. Therefore, the force
accelerating the body on the plane is -8, or half
the force of gravity, by Prop. 28, p. 86.

And if gravity, acting upon one of the hodies, is
represented by 32, the force on the plane is 16.
Hence, the square of the time of falling down the
plane, is found by dividing twice the length of the
plane, or 16 by 16 ; or, the square of the time is 13
and therefore the time itself is 1s.

Again, suppose that the force of gravity acting
upon the other body, is by some means reduced so
as to be one-fourth of 32, its former amount, or 8;
that is, that the force is diminished in the propor-
tion of 1 to 4, or the square root of the force dimi-
nished in the proportion of 1 to 2.

Then the accelerating force of the body on the
plane would be one-half of 8, or 4.

And the square of the time of descending down
the whole length of the plane, &, will be 16 divided
by 4, or 4s.

Hence, the time itself is 25; or the time of de-
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scent is increased in the same proportion as the
square 1oot of the force is diminished.

Prorosition 60.

Ir two bodies, considered as points, oscillate in
similar eircular arcs, the times of their oscilla-
tion are in the proportion of the square roots of
the lengths of the strings by which they hang.

c
Lf.\
o -
2 ‘ : \k A
K\\‘“lv’/\ﬁ/

Suppose two bodies B, b, to be suspended from
two points ¢, ¢, by strings ¢B, ¢ b, which are in any
proportion to each other ; for instance, as 4 to 1.

And let the body, B, be drawn up to A, and b to
a, so that the arc, A ¥, measured from the lowest
point, F, is to @ f; as 0B to ¢ b, or as 4 to 1, in this
case. Then AF, af, are similar arcs. Now let
cach body descend, describing the circular arcs, A T,
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af, and rising to D, d, respectively, in the same
time in which they descended through A F, a f.

Then the times of the bodies moving from A to D,
and from «a to d, are called the times of their oscil-
{ation, and will be twice as great as the times of
falling from A to F, and from « to f, respectively.

Now, by the last proposition, and Prop. 55, the
times of falling from A to ¥, and from « to f; will
be in the proportion of the square root of Aw, to
the square root of af, or, in the proportion of the
square root of ¢B to the square root of cb; or, in
this case, as 2 to 1.

If the arcs, through which the two bodies oscil-
late, are small, the same conclusion will be nearly
true, even if the arcs described by each are not
sumilar, or are not in the some proportion as the
lengths of the strings; for it may be proved that
the time of oscillation in small circular arcs, does
not sensibly vary by slightly alter-
angsithe length fof ‘the-are  And o o
thus the truth of the proposition
is capable of being easily verified
by experiment.

Let ca be 4 times as long as
¢B; and let A and B each be made
to oscillate.

Then it will be found, by count-
ing the number of oscillations made
by each in a given time, that B
makes {wo oscillations, while A 4

¢

|
L




MOTION OF BODIES. 257

makes one oscillation ; or that the fimes of each
oscillation of A and B, are to each other as 2 to 1.

If c A is 9 times as long as ¢ B, the time of A’s
oscillation will be three times as great as that of B.

If ¢ Ais 16 times ¢ B, A will oscillate only once,
while B oscillates four times.

And, by altering the lengths of the strings at
pleasure, the same relation may be shown to subsist
for any lengths of the strings.

It the length of a pendulum remains the same,
and the force of gravity is wncreased, by Prop. 59,
the time of each oscillation is diminished, in the
same proportion as the square root of the force is
increased ; and therefore the number of oscillations
which the pendulum will make in a given time,
will be increased in the same proportion.

The reverse is the case, if the force of gravity is
diminished ; and since the number of oscillations in
a given time is capable of being observed with great
accuracy, this circumstance enables us to discover
very small variations in the force of gravity, at dif-
ferent parts of the earth’s surface.

For instance, if the force of gravity should be
increased in the proportion of (10,001)* to (10,000),
or of 100,020,001 to-100,000,000, or of 10,002 to
10,000 nearly ; the number of oscillations which a
pendulum would make in a given time, would be
increased in the proportion of 10,001 to 10,000.
Hence, a clock, which kept true time, would gain
one second in every ten thousand seconds; which

s
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would amount to 8:64%, or more than 838 in 86,4003,
or 24 hours.

The length of a pendulum which vibrates seconds,
in the latitude of London, is found by experiment
to be 39:1386 inches. The length at the equator
is only 39:0117 inches; and that at the poles
39:2193 inches.

It has been shown, in p. 146, that the sensible
gravity of a body increases, in passing from the
equator towards the poles, in consequence of the
centrifugal force arising from the rotation of the
earth upon its axis. This effect is rendered very
sensible by means of a pendulum. Ior, although
the time of one oscillation cannot be accurately
observed, the number of oscillations in a given time,
as in 24 hours, can be readily ascertained, by com-
paring the number of oscillations made by the
pendulum in a certain time, with the number made,
in the same time, by a pendulum which vibrates
seconds.

The best method of observing this, is
» by causing the two pendulums to be sus-
\ pended, one hefore the other, so that
| (1) when they both hang vertically, one may
I be seen exactly in the same line with the
\\ other, as in fig. 1.
l\ Suppose that the larger pendulum, a,
‘ oscillates once in a second ; and that the
!@ smaller, B, oscillates nearly, but not ex-
(2) actly, in the same time; and let each of
the pendulums be set in motion.
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At first, they will appear to keep nearly together ;
but after a little time they will separate, as in fig.
2, till that which vibrates the fastest, as B, has
gained one whole oscillation on the other, . They
will then cross each other, at the lowest point,
moving in opposite directions; and when at the
highest points, will be as far apart as they can be,
as in fig. 3.

o <

A |
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After that time, they will approach more and
more nearly to each other, when at their lowest
points, until the fastest pendulum, B, has gained ¢wo
whole oscillations upon 4, when they will again be
together at the lowest point, moving in the same
direction.

At that instant, the pendulum B will be observed
at the lowest point, exactly before the pendulum a,
as in fig. 1 ; and, although each is in motion, B will

appear, as it were, to hang to 4, for an instant,
s 2
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since each is moving in the same direction, and,
sensibly, with the same velocity.

And the number of oscillations made by 4, in
the given time, being known, the number made by
B in the same time, which will be two more than
the number made by A, will be known.

For instance, suppose a pendulum, B, which
vibrates seconds under the equator, is carried to
another latitude, and there is found to be coincident
with a seconds’ pendulum, 4, at the end of every
1000th beat.

Then the pendulum, B, makes 1002 oscillations
in 1000 seconds, or gains 25 in every 1000 ; which
amounts to nearly 3 minutes in 24 hours.

Also, the time of each oscillation is 1999,

And the force of gravity in the given latitude,
will be greater than the force of gravity at the equa-
tor in the proportion of 1002° to 1000% or nearly as
1004 to 1000.

Experiments thus made are capable of great
accuracy; and afford the easiest means of detect-
ing small variations in the sensible force of gravity
in different latitudes.

Since a pendulum of given length vibrates in a
certain time, if we can connect a pendulum with
machinery, as in a clock, it will regulate the rate at
which the machinery moves.

Thus, if a weight, w, is attached to a string wound
round a cylinder A, upon the same axis as a toothed
wheel B, if the cylinder and wheel can revolve
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freely, w will descend
with a uniformly-acce-
lerated motion.

But if a ratchet, ¢, be
so placed as to be alter-
nately elevated and de-
pressed on each side by
the action of the pendu-
lum, p, suspended at E,
and communicating 1its
motion to ¢ by means
of the bent wire D at-
tached to the axis MN
on which ¢ turns, only
one tooth of the wheel
B can escape, at each beat
of the pendulum. And
if the pendulum is suffi-
ciently heavy, the de-
scent of w will be
checked at each beat

of the pendulum, and the motion of the machinery

will be rendered uniform.

Such a ratchet as ¢, is called a scapement. That
represented above is one of the most common. Buf,
among other defects, it interferes with the free

motion of the pendulum itself.

In clocks which are required to keep time with
great accuracy, a scapement of a different construc-

tion is employed.
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If a clock loses, or the pendulum oscillates too
slowly, the pendulum must be shortened, by turning
the screw at the bottom, which raises the bob of the
pendulum. If the clock gains, the pendulum must
be lengthened. And, in either case, the quantity
by which the pendulum must be altered depends
upon the principles already laid down.

ExampLE. Suppose a clock, the length of the
pendulum of which is known, gains a minute in a
day ; how much must the pendulum be lengthened.

The number of minutes in 24 hours is 1440.
Hence, the number of oscillations made by the
clock, is to the number made by a seconds’ pendu-
lum, as 1441 to 1440. And the time of ecach of its
oscillations is to the time of each oscillation of a
seconds’ pendulum as 1440 to 1441; since, the
quicker the oscillation, the greater number of oscil-
lations is made in a given time. Hence, by Prop.
60, the length of the pendulum is to the length of
the seconds’ pendulum as (1440)* to (1441)% or,
as 1440 tp 1442 nearly*, or as 720 to 721.

Hence, the pendulum will require to be length-
ened by a quantity equal to -1 of its own length.

The principles upon which depend the motion

* (1440)% : (1441)% : : (1440)2 : (14404-1)?
s: 1440% : 1440242 144041
2 1440 : 1440 2.k
s dd0 " 44D nearly.
The principle of reduction here introduced is one of fre-
quent use.
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of a compound pendulum, that is, of one in which
the oscillating body cannot be considered as a point,
are too complicated to be here introduced.

‘When a body describes a straight line, it has.no
tendency to recede from that line. But if a body
is caused to describe a curve, some force is meces-
sary to retain it in that curve. For, suppose a body
to be moving in the curve, A pq B, from A to B, and
that p 7 is a straight line which touches the curve at
the point p. - Then,. g
at the instant when N
the body is at P, it is \
moving in the direc- A
tion pT; and, by the
first law of motion, it
would go on to de-

scribe the line PR, \ /
unless acted upon by %
some external force. :

Suppose PR to be ®</
the space through
which the body would B // 4
move uniformly in a &
very small time, and pq to be the space through
which it does move in that time, then the space,
- maq, is that through which it must be drawn, or
turned aside from the straight line, by some force,
in order that it may describe the curve, r Q.

If sp is a string to which » is suspended, and
perpendicular to P R, then, if the string were cut at
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the instant when the body was at p, in the next
instant the body would be found, not at q, but at
R, having receded or fled, as it were, from the centre
s, through the space @ . This tendency of arevoly-
ing body to recede from the centre, is called a
centrifugal force. It must be remembered, how-
ever, that the body does not exert any force, matter
being quite passive, but that it cannot be kept in
motion in a curved line without constant constraint.

When a body oscillates, the string is stretched
partly by the resolved part of the force of gravity,
and partly by the centrifugal force.

The centrifugal force of a body increases with
the rapidity of its motion. Ponderous mill-stones
have sometimes been split by the enormous centri-
fugal force produced by their revolving too fast.
And when fly-wheels are attached to machinery, it
1s found unsafe to permit a rim of the best malleable
iron to revolve with a greater velocity than thirty-
three feet in a second.

QUESTIONS.

How is it proved that the welocity acquired by a body in
falling down an inclined plane is equal to the velocity acquired
in falling down its perpendicular height ?

Is the same thing true of a curve ?

By what experiments can this fact be established ?

Prove that the zime of falling from rest down an ineclined
plane is to the time of falling down its perpendicular height,
as the length of the plane is to its height.

Show that if two bodies descend down two systems of planes
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similarly situated with respect to the horizon, the times of
their falling to the lowest point are proportional to the square
roots of the lengths of the planes.

If the force of gravity is diminished or increased, in what
proportion is the time of falling down a given plane increased
or diminished ?

Show that, if two bodies oscillate in similar circular arcs,
the times of their oscillation are in the proportion of the
square roots of the length of the strings by which they hang.

How can this be verified by experiment ?

If the force of gravity slightly varies, how may the varia-
tion be rendered sensible by means of a pendulum ?

How may a pendulum be employed to regulate the rate of
a clock’s motion ?

If a clock gains or loses, how can the pendulum be altered
50 as to make the clock keep true time ?

How is centrifugal force produced ?
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LESSON XXI.

ON THE WORK DONE BY MACHINES, AND BY
ANIMAL FORCE.

'WE have already investigated the general principles,
upon which depends the proportion between weights,
or forces of any kind, which sustain one another
upon any machine. But, in the case of equilibrium,
the machine, by which such forces act, is supposed
to be kept at rest; or, if set in motion, as in Lesson
XIIIL., to be moved by some force different from
that of the forces sustaining each other.

But the principal use of machinery is to do work;
and this will be effected by causing one of the forces
acting upon a machine to become greater than that
which is sufficient simply to sustain another force.

For instance, in the wheel
and axle, a weight, acting
at », will sustain the weight
Q, if the weight bears the
same proportion to @, as
the radius of the axle to
the radius of the wheel.
(Prop. 21, p. 62.) If a
weight, P, greater than this,
be suspended to the wheel,
it will more than counter-
balance the weight @, and @ will be raised.

If p descends through any space, @ will be
raised through any space which is to that described
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by p, as the radius of the axle to the radius of the
wheel. ;

In this case, the pressure exerted by p, remains
the same during the whole descent of ».

If a pressure, p, acts in such a manner, that it
is not altered by the rate of working, and descends
through a space, s, and this pressure is caused to
raise a weight, q, through a space, s, the pressure
exerted, and the weight, would balance each other,
if the product of the pressure, p, multiplied by the
space, s, were equal to the product of the weight, q,
multiplied by the space, s. (Lesson XIIL., p. 120.)
And if the pressure beat all greater than the quan-
tity sufficient to sustain @, @ will be raised.

The product of such a pressure, p, by the space,
s, through which the pressure acts, is the measure
of the power of a m(cchme, or the efficiency of the
Sorce.

For example:—Suppose a man, whose weight is
150 lbs., mounts a ladder 40 feet high, and then
descends in a bucket, the cord of which is attached
to any machinery, and is caused to raise a weight.
The efficiency of the force employed, measured in
pounds and feet, is 150 x 40, or 6000. And this
force may he caused to raise ‘a weight of 6 Ibs.
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through a space of 1000 feet; or a weight of 1000
Ibs. through a space of 6 feet, or a weight of 6000
lbs. through a space of 1 foot.
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Efficiency of Force.

It has been found that a man can ascend 10,000
feet in the course of a day. If we suppose that,
the time employ ed in his descent is not taken from
that employed in working, and that his weight is
1501bs., his daily efhcwncy 1s 150 % 10, OOO or
1,500,000.



MACHINERY AND ANIMAL FORCE. 269

Hence, a man so employed, would raise a million
and a half of 1bs., to the height of one foot, in a day.

By experiments made of the weights which por-
ters can carry up a flight of stairs, it appears that
the daily efficiency which a man can exert when he
is loaded, including his own weight as part of the
weight raised, is not more than 800,000 ; or little
more than half the preceding.

In this instance, too, the man exerts ineffectually
a considerable part of his force in descending with-
out a load.

Under favourable circumstances, it is said that a
good labourer can raise 370 Ibs., 10 feet high, in a
minute, which would give 3700 for the efficiency in
a minute; or, in 8 hours, 1,776,000.

The power of a horse, by experiment, appears to
be 22,000 in a minute.

The estimaled horse-power adopted by engineers
is greater than this by one-half, being such a force
as will raise 33,000 through a height of one foot in
a minute ; or through 15,840,000 feet in 8 hours.

Hence, to produce the power of every {wo horses,
as estimated in the effect of an engine, the labour of
three horses would be required for the same time.
And, since the engine may bhe made to work for 24
hours in the day, which would require three relays of
horses, the power of every {wo horses as estimated,
would be nearly equivalent to that of nine horses.

A small deduction must be made for the time of
stoppage, and the necessary oiling and stuffing of
the machine.
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It must be observed, however, that, owing to the
different form of a man and horse, the work which
they can perform is very different, as their force is
differently applied. The most advantageous way in
which the power of a horse can be employed, is in
draught ; and perhaps the least advantageous is in
carrying weights up a steep ascent.

A man’s force, on the other hand, is advantage-
ously employed in climbing ; provided he has but a
small weight to carry: A man can exert his force
to the greatest advantage in the action of rowings
the muscles of his arms, his legs, and many of those
of his body, being then all put in action.

The following appears to be nearly the relative
force which a man of ordinary strength can exert in
different methods of employing his muscular power.

Digging . : 3 5.
Turning a winch : 6.
Ascending stairs 5 10.
Ringing . . : 13,

Rowing . A 6 et

There is great difference in the estimate which
different writers make of animal force.

One horse will not be able to draw up a steep hill
so much as three men can carry up the same ascent.
‘Whereas, a horse, drawing on'level ground, will
move a weight which seven men could not draw.
In the first of these cases, the force of the horse is
applied to the least advantage ; and that of the men
very advantageously. In the second, the force of
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the horse is applied advantageously, and that of the
men, to the least advantage.

A man of ordinary power, who could carry a
burden of 100 1bs. up a steep hill, could not exert
a greater force than the pressure of 271bs., when
drawing horizontally.

This shows the difficulty of comparing the force of
men and other animals; as well as the importance

of employing animal force in the most efficacious
way.
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Overshot Wheel.

If water falls upon a mill-wheel, so as to set it
in motion by the weight of the water, the wheel is
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called an overshot wheel ; and if the water descends
through any space, the efficiency of the force may
be computed in tlie same manner as above.

Hence, it is convenient to estimate any force, by
the weight which it would raise through a space of
one foot: since that weight would represent the
efficiency of the force employed.

Thus, suppose a reservoir of water contains 1000
cubic feet, each foot weighing 621bs. ; and that all
the water is employed, without loss of force, in
setting an overshot mill-wheel in motion, the water,
while acting upon the wheel, descending through a
space of 10 feet.

The weight of water employed will be 62,000 1bs. ;
and the efficiency will be 62,000 x 10, or 620,000;
which is the number of pounds which could be
raised through one foot.

The ‘same principle of measuring force is used to
estimate the effect produced by means of any engine,
as, for instance, a steam-engine. Thus, the average
effect produced by the consumption of a bushel of
coals, in the Hual Towan engine in Cornwall, in
1829, was such as would raise seventy millions of
pounds’ weight through a space of a foot. This is
equivalent to the daily labour of about 40 men; or
somewhat less than 5 horses.

The quantity of work thus done by the consump-
tion of one bushel of coals, is called the duty of an
engine.

The duty of an engine can be computed, if we
know the weight which it raises through a given
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space, by the consumption of a given number of
bushels of coals.

Exampre. Suppose an engine is found to raise
40,320 cubit feet of water from a depth of 120
fathoms, or 720 feet, by the consumption of 36
bushels of coals, and that one cubit foot of water
weighs 62 IDs.

The weight, in pounds, raised through 720 feet
is 40,320 % 62, or 2,499,840. This work being done
by 36 bushels of coals, one bushel of coals would
raise that weight through a 36th part of the same
height, or through 20 feet.

Hence it would raise through one foot a weight 20
times as great, or 20 x 2,499,840, or 49,996,800 1bs.

And the duty of the engine would be about 50
millions.

If a weight is employed to raise another weight,
the pressure is not altered in consequence of the
motion of the system. But in many kinds of force
the pressure is very different in a state of rest, and
in a state of motion.

Suppose, for instance, a man turns a crank.
(See plate opposite p.108.) At the beginning of
the motion, he presses with all the force which the
muscles of his arms can exert in that position ; but
as soon as the crank begins to move, part of his
force is employed in moving his own arm, so that
he can now no longer press upon the crank with the
same force as at first. This is seen, in the familiar
instance of turning a heavy grindstone. The orind-

D
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stone itself, when once set in motion, continues to
move with the velocity acquired, and at length it is
caused to move round so fast, that the hand can only
Just keep up with the crank, and ceases to press
upon it at all.

When horses draw a carriage, the force with
which they draw, is diminished as they move with
greater rapidity. Thus, if the utmost speed of a
horse unloaded is 12 miles an hour, and he were
placed in a carriage which was moving at that
rate, all he could do would be to keep out of the
way of the coach. Whereas, if the carriage moved
at the rate of only 6 miles an hour, he would be
able to exert some part of his force in drawing the
coach, but not so much as he could exert af« dead pull.

Another familiar instance of the same kind
occurs, when a stream of water is made to move
an wundershot wheel, upon which the water acts by
its impulse, not by its weight, as in an overshot
wheel, or in a breast
wheel, in which the
water falls upon part
of the wheel, but is
not brought over the
wheel.

Suppose a stream
of water to be flowing
from A towards B:
° and that a wheel, with
= floats attached to its
circumference, has its
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lower end immersed in the fluid. Suppose also that
the stream flows at the rate of 3 miles an hour,
and that, while the wheel is. at rest, the pressure
upon the floats immersed, tending to set the wheel
in motion, is equal to some given weight, as 60 Ibs.,
and is attached to machinery of such a nature that
a weight of 900 1bs. exactly balances the pressure of
the stream upon the wheel at rest.

Now suppose the machinery loaded with some
less weight, and the wheel to be set in motion by
the stream, and observe what change takes place.

As soon as the wheel begins to move in the diree-
tion of the stream, it is no longer acted upon by so
great a force as when it was at rest. This is plain;
for if the wheel moved at the same rate as the
stream, or 3 miles an hour, it would move on witk
the water, and be neither accelerated nor retarded
by the action of the water moving at the same rate.
If the wheel moved with a greater velocity than the
water, as the paddle of a steam-vessel does, for
instance, it would drive the water in the direction
of its own motion, and be retarded by the water
instead of being urged forward by it.

But if the wheel moves in the same direction as
the water does, but with a velocity less than that
of the water itself, the pressure of the water on the
floats of the wheel will become less and less, as the
velocity of the wheel becomes more nearly equal
to the velocity of the stream. Thus, if the velocity
of the stream, as we have supposed, is 3 miles an

T 2



276 MECHANICAL POWERS.

hour, and the pressure on the floats, at rest, 60 lbs.;
if the wheel have a motion of one mile an hour, the
pressure of the water upon the wheel will be dimi-
nished by one-third, or will now be 40 1bs. If the
wheel moves at the rate of two miles an hour, the
pressure will again be diminished by one-third of its
first amount, and will now amount to only 20 Ibs.

In order to find the quantity of work done in
such a case, it would be mnecessary to introduce
principles different from any which we have hitherto
established, and too complicated for our present
purpose.

In the instance supposed above, the greatest
quantity of work would be performed, if the wheel
moved with one-third the velocity of the stream, or
at the rate of one mile an hour;-and the weight
with which the machine was loaded was 400 Ibs.,
being four-ninths of the weight (900 lbs.,) which
would balance the pressure of the stream upon the
wheel at rest.

‘When the pressure is diminished, or the resist-
ance increased, in consequence of the motion im-
pressed upon a system, the velocity of the motion
increases to a certain point, after which it becomes
uniform.

Thus if a windmill is set in motion by the action
of the wind blowing with a velocity of 15 miles an
hour, the rate at which the sails revolve increases
for a time ; but as the velocity of the sails increases,
the effect of the wind to increase the motion dimi-
qishes; and the motion becomes uniform as soon as
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the force of the wind upon the sails is just sufficient
to balance the resistance occasioned by the friction
of the various parts of the machinery, and other
obstacles to the motion. If the force of the wind
should now increase to 20 miles an hour, the velocity
of the sails would also increase, until another uniform
rate of motion was attained greater than the first.

If a body falls by the action of gravity in per-
fectly free space, it will continue to move more and
more quickly, according to the laws of uniformly
accelerated motion. But if a body falls by the
action of gravity in a fluid, as, for instance, if a
stone bullet descends in water, its velocity soon
becomes uniform ; for in that case, the resistance
increases with the velocity; and as soon as that
resistance is equal to the force with which the body
is acted upon in the fluid, no further increase of
velocity takes place; but the body moves on uni-
formly with the velocity acquired, according to the
first law of motion.

Various contrivances are employed to render the
work done by machinery and by animal force uni-
form, although the intensity of the force itself, or
the resistance to be overcome, may vary from time
to time.

If the machinery itself is ponderous, as in mill-
work, when once it is set in motion, and has attained
a uniform rate, it will continue to move with a
nearly uniform velocity, although the force or the
resistance should be considerably altered for a short
time. In many machines a heavy wheel, called «
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Sy-wheel, is introduced, for the purpose of equaliz-
ing the motion. Thus, in driving piles, the force of
many men or animals is employed to lift a very
heavy weight, which is suddenly detached and let
fall upon the pile. The instantaneous removal of
the resistance would be accompanied with serious
consequences, if a large wheel were not attached to
the machine, which keeps on uniformly revolving,
when the weight is removed, and prevents any in-
convenience from the sudden jerk. A fly-wheel is
also very mecessary to accumulate force, so as to
overcome a sudden resistance. In the operations of
coining, drawing iron plates, and many others, a
comparatively small power is employed for some
time in setting in motion a large mass, and the whole
momentum so collected is expended in producing a
force of great intensity.

In many machines the moving power itself is
capable of being regulated. Thus, in some wind-
mills, notwithstanding the variable nature of the
force of the wind, considerable uniformity of motion
is produced by having the sails so constructed as to
yield to the pressure of the wind. The sails are
formed of a succession of flat plates, moveable upon
an axis, and kept in their position by the pressure
of a weight. If the pressure of the wind upon
those plates becomes greater than that of the weight,
the plates open, and part of the air passes between
them. When the force of the wind again decreases,
the plates close, and the wind produces its full effect.

In the steam-engine, and in watermills and other
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machines, avery simple but efficacious method is used,
to regulate the force of the original moving power.

The governor, as
1t 1s called, is thus
constructed.  Two
heavy balls, cc, are
suspended to some
part of a wvertical
axis, A B, which re-
volves by the action
of the machine. Two
bars, moveable upon
joints at each end,
are attached, at p, ¢,
to the arms on which
¢ ¢ are hung; and at
theirotherextremity
arefastened toa ring,
E, moveable upwards
and downwardsupon
the axis, A B, and carrying a lever, D.

If now the balls, ¢ ¢, were in the position repre-
sented in the figure, and the velocity of the machine
were increased, by increasing the force of the moving
power, the balls would revolve more rapidly; they
would therefore recede further from the axis, A B,
by the increased effect of the centrifugal force aris-
ing from rotation, and consequently would elevate
B, and with it the lever b. That lever is made to
communicate with the valve of the boiler in a steam-
engine, and with the door which supplies water, in




280 MECHANICAL POWERS.

a watermill; and thus at once reduces the moving
force to the degree requisite for securing uniformity
of motion.

The same contrivance is employed to separate
the mill-stones in a windmill, to the distance which
is most proper, according to the rate of motion of
the mill.

QUESTIONS.

What is meant by the measure of the power of a machine,
or the efficiency of the force ?

How much is @ horse-power 2

Mention some of the most advantageous ways in which
the power of a man and of a horse can be employed ?

How many men would it require to do as much work as a
horse can do ?

What is meant by the duty of a steam-engine ?

In what manner is the effect of water upon the floats of an
undershot water-wheel changed, when the wheel is set inmotion ?

In machines, urged by a force which continually acts, as a
windmill driven by the wind, what causes tend to make the
motion uniform ?

‘What is the use and construction of a fly-wheel ?

By what means may the motion of a machine be rendered
uniform ?

THE END.

LoxpoNi—Joun W. PARKER, St. MARTIN’S LANE,
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FAMILIAR LECTURES on the LORD'S PRAYER.
By.a LADY.: “ls.

EASY POETRY FOR CHILDREN. 1s. 6d.

SIMPLE STORIES for YOUNG CHILDREN. Cuts. Is.

THE CHILD’S VERSE-BOOK OF DEVOTION. 1s.

SONGS for CHILDREN. With ENGRAVINGS. 4d.

FAMILIAR LECTURES to CHILDREN; in which the

frnartant TRITTHSR afthe COSPET areeraocinelveet forth. 1< . 6d.



PUBLISHED BY JOHN W. PARKER.

VENTOUILLAC’S RUDIMENTS of the FRENCH LAN-
GUAGE; or, FIRST FRENCH READING-BOOK. New
Edition, Revised and Corrected by F. J. WATTEZ, First As-
sistant French Master in King’s College, London. 3s. 6d.

LIVRE DE CLASSE; with ENGLISH NOTES, by the
late L. T. VENTOUILLAC, Professor of French Literature in
King’s College, London. 5s.

FRENCH POETRY’; with ENGLISH NOTES, by the
late L. T. VENTOUILLAC, Professor of French Literature in
King’s College, London. 2s.

LE BOUQUET LITTERAIRE. Recueil de Beautés

Religieuses et Morales, de divers Auteurs. Par feu L. T. VEN -

“TOULLLAC, Professeur de Littérature Francaise au Collége
Royale a Londres. 3s. 6d.

BRASSEUR’S EXERCISES on FRENCH PHRASEO-
LOGY ; witha Lexiconof IDIOMATIC VERBS. By the French
Professor of King's College and the Charter-house, London. 3s. 6d.

COLLOQUIAL EXERCISES on the PRINCIPAL
IDIOMS of the FRENCH LANGUAGE. By F.J. WATTEZ,
First French Master, King’s College School, London. 2s. 6d.

The FRENCH SCHOOL CLASSICS. Edited and Abridged
bysMARIN DE LA VOYE, French Master in the East India
College at Addiscombe.

WHILE the necessity of introducing the best standard ‘French works into our
schools and families is universally acknowledged, serious doubts are entertained
as to the propriety of placing the writings of some among the French authors
in the hands of Christian youth. In order to remove all difficulties on this
subject, the Editor has been induced to undertake a careful Abridgment of
such works as are in most general use; and he has made it his object to extract
from the original every word and sentence relating either to religion, polities, ox
philosophical speculation, respecting which Christian parents or teachers can
have the least difference of opinion.

A purified text of the best French Classical Works is, therefore, now offered foy
the use of young persons of both sexes, in a state which, it is trusted, will be
found altogether unobjectionable.

TELEMAQUE. 2s.6d. PreErrE LE GRAND. 25,
Vovaces pE Cyrus. 2s. Cuarvres XII. 2s.
Berisaire. 1s. 6d. . G BLaSDE SANTILLANE. 4s.
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Price 1s., bound in sheep,

+ THE BIBLE WORD-BOOK ;

OR,
THE RUDIMENTS OF ENGLISH GRAMMAR, TAUGHT BY THE
WORDS OF THE OLD AND NEW TESTAMENT,

Classed according to the Parts of Speech ; the several usages and variations of each
Panrt being alphabetically arranged according to the Number of Syllables.

Tar Compiler of this little Work has observed, that Children who are required
to read the Bible before they can easily spell the Words, not only lose much time,
but, considering it to be a hard Lesson-book of Words, often use the Bible itself
with little reverence, and habitually regard it with other feelings than those of
pleasure and delight. The obvious remedy is, to provide a book which shall
render it unnecessary to make a Lesson Word-Book of the Bible; and so to
arrange in it the Words which the Bible contains, as to assist the learner in his
progress from that which is easy to that which is difficult.

A complete Index, in short, of every Word used in the Bible, is here put into
the learner’s hand ; and if, at any future period of his life, he shall be desirous to
know what any word is as to its sort, he will be able to obtain the grammatical
information which he seeks, by a mere reference to the word, as it is alphabeti- -
cally arranged, according to the class to which it belongs, and the number of
its syllables, '

Seven Volm’nes, at 2s. each, with Wood-Cuts,

*THE INSTRUCTOR;

OB,
PROGRESSIVE LESSONS IN GENERAL KNOWLEDGE.

A Series of Elementary Books, especially adapted for Schools and Families,
VOLUME I. (orin Nos. 1 to6.)
TALES and CONVERSATIONS on Familiar Subjects. -
. VOLUME II. (orin Nos.7 to 12.)

The HOUSE. FURNITURE. FOOD and CLOTHING.
VOLUME III. (orin Nos. 13 to 18.) 3

The UNIVERSE. The THREE KINGDOMS of NATURE.

THE HUMAN FORM. LESSONSon HEALTH.

VOLUME 1V, (orin Nos.'19 to 24.)

The CALENDAR. SEASONS. APPEARANCES of NATURE.
VOLUME V. (orin Nos. 25 to 30.)
DESCRIPTIVE GEOGRAPHY ; The various Divisions of the

World ; their People and Productions; with MAPS.
VOLUME VI. (orin Nos. 3l to 36.)
ELEMENTS OF ANCIENT HISTORY.
' VOLUME VII. (orin Nos: 37 to 42.)
ELEMENTS OF MODERN HISTORY.

Loxvon JOHN W. PAR_IEER, PI};L—ISHER, W EST STRAND.

















