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PREFACE,

THE following Treatise is respectfully submitted by the
author to the teachers of Canada, in the confident beliof
that it will materially lighten the labor of the instructor,
and, at the same time, facilitate the puplls progress dlld
his thorough comprehension of the prineiples of the seience
of algebra. It is the earnest hope of the author that it
may meet with the same flattering reception, and very
general introduction into the schools of the country, that
his fellow-teachers have so kindly accorded to his previous
productions.

The order of succession of the different chapters depends
of course mainly on their importance and difficulty, and
that here adopted is the one that appears preferable to the
author; but, as every chapter is nearly independent of the
others, the teacher can easily modify the arrangement to
suit himself.

The aim of the work is to embrace all that can be pro-
fitably discussed in the time usually allotted to a common
and grammar school course; and, indeed, this volume will
be found to contain at least as much of the subject, as is
required to be read for the ordinary degree of B. A. in
the British and Canadian Universities. Chapters on con-
tinued fractions, logarithmic series, probabilities, and
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the general theory of equations were prepared, but, in
accordance with the advice of some of the leading educators
of the province, they were omitted as unsuited to the design
of the work, and to the requirements of common or gram-
mar schools.

The author has approached the subject with the con-
viction, founded on many years’ experience as a teacher of
mathematics, that the science of algebra tries, beyond all
others, the powers and patience of the learner. The pupil
is commonly introduced to it while hig mind is yet in an
undeveloped state; its language is new to him, and he is
unprepared by previous training to comprehend its
abstractions. The difficulties which thus beset his path
are, of course, for the most part, only to be overcome by
his own perseverance, aided by the knowledge and ingén-
uity of his instructor, yet it appears to the author that .
very much also depends upon the style and thoroughness
and adaptation of the text-book employed. Accordingly
in the preparation of this volume no pains have been spared
in rendering the statement of principles, and the demonstra-
tion of theorems as clear and concise as possible, or in
fully illustrating each rule by numerous examples carefully
worked out and explained, or in selecting and arranging the
examples of an exercise so as to begin with the simple,
and gradually pass on to the more difficult.

The author hopes that while he has insisted upon
great thoroughness by numerous and appropriate problems,
he has, at the same time, rendered the pupil's advancement
easy and certain by the many explanations and illustra-
tions introduced.

The great majority of the problems and exercises are
new,—being now published for the first time, but there are .
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-algo a number already familiar to the teacher. In select-

inz these the author has, he believes, in every case rigidly
adhered to the rule, adopted by Todhunter, Colenso, and
others, of not inserting a problem unless it had already
appeared in at least two British authors—in which case it
is to be regarded as common property.
" Recognizing the fact that very many of the pupils of our
common and grammar schools study with the view of com-
pleting their education at some one of our excellent Cana-
dian universities, the author has, at the end of the book,
introduced a collection of problems and theorems, embracing
among others all or nearly all of the pass and honor work
in algebra which has been given on the examination papers -
of the university of Toronto during the last eight or ten
years. These will serve to shew the pupil the style of
questions he is expected to answer at our universities,
and will, at the same time, in a measure prepare him for
his examinations.

As no teacher would think of introdueing his pupils to
arithmetic without, to some extent at least, first drilling
them in notation and numeration, so no intelligent teacher
will negleet to drill his pupils in algebraic notation and
numeration before introducing them to the ordinary rules.

" The teacher is respectfully referred to exercises ii, iii,
and iv, and is recommended to extend and continue these
until his pupil is thoroughly and practically acquainted
with the definitions.

Well konowing the great inconvenience to both teacher
and pupils of inaccuracies and mistakes in a work on
algebra, the author has subjected this treatise to a searching
revision ; and he believes that the few correetions marked
on the back of the title page are the only errors in the
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letter-press of the exercises and answers of the work
The teacher is respectfully recommended to cause his
pupils to make the six or eight trifling alterations there
indicated in the body of the work with pen and ink.

A key, containing full solutions to all the more difficult
problems, is in press and will be issued almost immediately

ToronTo, January, 1864,
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ALGEBRA.

 SECTION I.

-

DEFINITIONS AND AXIOMS.

‘1. Algebra is Arithmetic generalized ; or, in other
words, it is a kind of Arithmetic in which the numbers or
quantities under consideration are represented by letters,
and the operations to be performed on these mdwated by
signs.

2. The symbols employed in Algebra are of five kinds
viz. :— »
1st. Symbols of Quantity.
2nd. Symbols of Operation.
3rd. Symbols of Relation.
4th. Symbols of Aggregation.
5th. Symbols of Deduction.

SYMBOLS OF QUANTITY.

3. The symbols of quantity are the Arabic numerals

and the]letters of the alphabet.
B
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4. Algebraic quantities are of two kinds, viz.:—

1st. Known or determined quantities, or those
which may be assumed to be of any value
whatever.

2nd. Unknown or undetermined quantities, or
those whose value can be determined only’
by actually performing the operations
involved in the solution of the problem,

&e.

5. The first letters of the alphabet, a, b, ¢, d, &c., are
used to represent known quantities, and the last letters of

_ the alphabet, =, ¥, z, w, v, &c., are employed to represent
unknown quantities.

6. The symbol O is called zero, and indicates the ab-

sence of quantity, or it represents a quantity infinitely
emall, 1.e. less than any assignable quantity.

7. The symbol oc is called infinity, and denotes a quan-
bity infinitely great, i.e. greater than any assignable quantity.

.NoTE.~The symbol « is also employed to indicate that one quantity
varies as another. [See the section on Variation.]

SYMBOLS OF OPERATION.

: — . 2,34 &g,
8. The symbols of operation are +,—, ~, x ,=+, o
Wb h&e,y Y 4 Ko

9. The sign + is called plus or the sign of addition, and

indicates that the quantities between which it is written
are to be added together.

Thus, 7+9, read 7 plus 9, means that 7 and 9 are to be added
fogether,

@+ b, read a plus b, denotes that @ and & are to be added
tagether, '
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10. The sign — is called minus or the sign of subtrac-
tion, and indicates the subtraction of the quantity following
it from the quantity preceding it.

Thus, 11 ~6, read 11 minus 6, means that 6 is to be taken
from 11.

a-b, read a minus b, implieé that the quantity @ has to be
decreased by the quantity b.

11. The multiplication of one algebralc quantlty by
another may be indicated—

1st. By writing the sign x between them,
2nd. By writing a dot . between them.
3rd. By writing them in juxtaposition.

Thus, e x b and a. b and ¢b each indicate the multiplication of
the quantity ¢ by the quantity b, and are read a multiplied into
b, or simply @ into b. The last is the method commonly em-

" ‘ployed to indicate multiplication in algebra. Arithmétical

multiplication is expressed only by the sign X, the other

methods being obviously inapplicable to numbers.
NOTE.—Quanﬁﬁes' connected by the sign - or X may be read in any

order. Thus 6+ 3 isthe same in value as 3 -|- 6, for each is equal to 9; so
6 % b is the same in value as § X 6, for each is equal 1o 30.

12. There are three modes of representing the division
of one quantity by another, namely,- by writing between
them the common arithmetical sign of division + or by
writing between ther either the sign : or the sign —

Thus, ¢ + b, and a:b, and 7 each represent the division of the
quantity @ by the quantity 6. The last method, i.e. writing the
quantities in a fractional form' is that usually made use of in
algebra.

NoTe.—Quantities connébted by the sign — or -- must be read just as
they are written. Thus 8—38 is very different in value from 3—8; so
12-+-4 is quite distinet from 412,
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13. The symbol ~ written between two quantities indi:
cates that the less is to be subtracted from the greater.
“Thus, 7~3 or 3~7, read the difference between 3 and 7,
denotes that 3 is to be taken from 7. Soa~bd or b~e« indi-
cates that ¢ is to be taken from b or b from @, according as & is
less or greater than b.

NorE—The symbol ~ is employed ouly when it is not known which of
the two quantities is the greater.

14. An exponent is a small figure or letter placed to the

right of a quantity to show how often it is taken as a factor.

Thus, ¢® = eaa, the 3 indicating that @ is to be taken three

times as factor.

m? = mmmmmmm, the 7 showing that m is to be taken seven
times as factor.

(@+d)* = (a+d) (a+d) (¢+b), &e., to n terms, the » denot-
ing that the quantity (a+b) is to be taken as factor as many
times as there are units in n.

Nore.—When the exponent is wnéty, it is not commounly expressed.

15. The extraction of a root is indicated either by writ-
ing it with a fractional index or by placing it under the
radical sign +/. .

Thus, /7 or 7% denotes the square root of 1.

#a or o} denotes the cube root of a.
, 1
Ha or ¢ denotes the n* root of a, &c.

16. The number 3, or 4, or 5, &c., placed in the radical
sign or as denominator in the fractional exponent, is called
the index of the root. The index 2 is never used in con-
nection with the radical sign ; thus, Va is the same ag ¥q.

17. When a fractional exi)ouent is employed the nume-
rator denotes the power and the denominator the oot to
be taken.,



Ants. 13-24.] DEFINITIONS. . 13

4
Thus, a7 denotes the 4% power of the 7t root of a or the Tt
root of the 4% power of a.

zindicates the 2t root of the mts power of z, or the mth power
of the nt" root of x.

SYMBOLS OF RELATION.
18. The symbols of relation are :, =, 1, >, and <.

19. The symbol : denotes ratio.
Thus, a :b denotes the ratio of a to b,

20. The symbol = is the sign of equality.

Thus, 7+ 4=5+6 denotes that the sum of 7 and 4 is equal to
the sum of 5 and 6. = b denotes that « is equal in valueto d.

21. The symbol :: is also a sign of equality, but is used
only to denote the equality of ratios.

Thus 9: 27 :: 5: 15 denotes that the ratio of 9 to 27 is equal
to that of 5 to 15.

a:b:: c: ddenotes that the ratio of @ to b is equal to that of
¢ to d.

22. The symbol > greater than, and the symbol < less
than, are signs of inequality.

Thus 7 > 5 denotes that 7 is greater than 5.
a > b denotes that ¢ is greater than b.
5 < 7 denotes that 5 is less than 7.
o < b'denotes that a is less than b.

Nore.—The opening of the angle is always towards the greater quantity.
SYMBOLS OF AGGREGATION.

28. The symbols of aggregation are —, |, (), { }, and
L]

24. The symbol — is called a vinculum, and indicates
that the quantities over which it is placed are to be regarded
as constituting but one quantity.
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Thus, @ + b — ¢ x d means that the quantity formed by the
subtraction of ¢ from the sum of a and b is to be multiplied by d.

ﬂ/1n+a:+y denotes that the square root of the sum of m, z,
and ¥ is to be taken.

25. The symbol | is called « bar, and indicates that the
quantities in the column directly preceding it are to be
considered as forming but one quantity. '

+al?

Thus, +b | denotes that the quantity formed by the subtrac-

—~¢| tion of ¢ from the sum of a and b is to be squared.

26. The parentheses (), braces§ }, and brackets [ ],
denote that the quantities contained within them are to be
regarded as constituting one quantity.

Thus (a +b)x denotes that the sum of ¢ and b is to be multi-
plied by z.

{e= (b+¢)}® indicates that the sum of b and c¢ is to be taken
from ¢ and the remainder cubed.

[e-{m — (b+c)z}]y denotes that (b + ¢)x is to be taken
from m and the remainder subtracted from a, and that this final
remainder is to be multiplied by v.

SYMBOLS OF DEDUCTION.
27. The symbols of deduction are ., and -

28. The symbol .. is equivalent to therefore, whence,
thence, consequently, from which we infer, &e.

Thus, a=bandc=b.,.a=c.

29. The symbol - signifies since or because.

Thus, e=c-.-a=bandc=b.
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80. The parts of an algebraic expression separated from
each other by the sign of addition or subtraction, expressed
or understood, are called terms.

Thus, @ is an algebraic expression of one term and is called &
monomial,

a+b is an algebraic expression of two terms, and is called a
binomial.

a+b-c is an algebraic expression of three terms, and is
called a trinomial.

2a+38b—4c+x—-y is an algebraic expression of five terms,
and is called a mulfinomial or polynomial.

31. The parts of an algebraic expression connected by
the sign of multiplication, expressed or understood, are
called factors.

Thus, the factors of the expression ab are ¢ and b.

The factors of the expression a?bc® are @, @, b, ¢, ¢, and ¢,

The factors of the expression (z-4)2(a-~ my)" are (:c— )
(z=v), (a—-my), (¢ =my), and (¢~my).

32. The terms of an algebraic expression which are
preceded by the sign + are called additive or positive
terms ; those preceded by the sign — are called subtractive
or negative terms.

Thus, in the expression Ta—3c-4d + 5m+ Tz +8y~mx ~ ab,

the terms 7a, 5m, Tz, and 8y are additive or positive, and the
terms 3¢, 4d, mx, and ab are subtractive or negative.

NoTe.—When no sign is expressed before a quantity it is understood to
be additive. Thus, in the above ¢xpression, 7 is written for + 7a.

33. A coefficient is a number or letter written to the
left of a quantity to show how often it is to be taken as
addend.

Thus, 7o indicates that the sum of seven ¢'s i3 to be taken in
an additive sense.

-5z denotes that the sum of ﬁve — '3 i3 to be taken in an
additive sense. _

Here 7 is called the coefficient of e, 5 the coefficient of x, &e.
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84. Like algebraic quantities ave those that consist
of the same letters affected by the same exponents.

Thus, ~ 3a, — 24, 4a, - 5a are like quantities.

a?bc, Tatbe, — 3a%be are like quantities.

5 (a?=b+c3), T(a?-b+c3) and {5 (0~ b + ¢*) are like quan-
tities.’

But a®be, and eb?c are unlike quantities, because the same
letter is not affected by the exponent 2. '

So also a?b¥ct, a¥b%ct, and a*b3c? are unlike quantities.

85. Homogeneous terms are those in which the sum of
the exponents of the literal factors in each are equal.

Thus 2a*y and T¢?y® are homogeneous, and the sum of the
exponents of the literal factors in each being 5, they are called
homogeneous terms of five dimensions.

30xy®, 40 x2y?, 9aby, Tazy®, and y’ are homogeneous, the
sum of the exponents of the literal factors in each term being 1,
and they are called homogeneous terms of seven dimensions. -

36, The reciprocal of a quantity is unity divided by
that quantity.

Thus, the reciprocal of 3 is ¥, of a is £, of— is 7, of +is I, &ec. -

AXIOMS.

87. An axiom is a theorem which cannot be reduced to
a simpler theorem,

The following are the principal axioms made use of in
algebra:— -

1. The whole is equal to the sum of all its parts.
II. If equal quantities or the same quantity be added to equal
quantities, the sums will be equal.
II1. If equal quantities or the same quantity be subtracted from
equal quantities, the remainders will be equal,
IV. If equals be multiplied by equals or by the same, the pro-
ducts will be equal.
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V. If equals be divided by equals or by the same, the quotients

will be equal.

VI. If the same quantity be both added to and subiracted from

another, the laiter will not be altered in value.

VIL. If equals or the same be added to or sublracted from

VI

I

unequal quantities, the sums or remainders will be
unequal.

II. If unequals be wmultiplied or divided by equals or by the
saime, the products or the quotients will be unequal.

X. Egquimultiples of the same quantities or of equal quontities
are equal to one another,

X. Egual powers or equal roots of the same or of equal quan~_
tities are equal to one another.

X1. Things which are equal to the same thing are equal to one

D = M O jh W =

another.

Exerocise I.

. What is algebra ? (1)

. Classify algebraic symbols. (2)

. What are the symbols of quantity ? (3)

. What are the symbols of operation? (8)

. Write down the symbols of relation. (18)

. Express the symbols of aggregation. (23)

. What are the symbols of deduction ? (27)

. What letters are employed to denote known quantities ?

Unknown quantities ? (5)

9.

What is the meaning of the symbol 0? Of the sym-

bol c? (6 and 7)

10.
11.
12.
13.
14.
15.
16.
117,
18.

What is an exponent? (14).

What is a ceefficient ? _(_3?;)

What are the terms of an algebraic expression ? (30)
What ave the factors of an algebraic expression? (31)
What is 2 monomial ? A binomial ? A multinomial ? (30)
What are like quantities ? (34) .

What are homoggneous terms ? (35)

What are additive terms? (32)

‘What are subtractive terms ? (32)
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19. What are positive and negative terms ? (32)
20. When no sign is expressed before a term how is it re-
garded? (32)

21. How many ways have we of indicating the extraction of
aroot? (15)

22. What is the index of the root? (16)

23. What does the denominator of a fractional index denote ?
What the numerator? (17)

24. How are quantities connected by the sign 4 or X to be
read ? How those connected by the sign —or <~ ? (11 & 12, Notes)
25. What are axioms? (37)

26. Give the principal axioms employed in algebra. (37)

Exercise 1I.

Read the following expressions and explain what each indi-
cates .— .
13 +clea
1. a, 5a, 9¢2, 40%, 2%, 3(a+b), 5z(y+ z - ¢), — 34m
x

2. 3a+4-T¢, (z-y—2)3, abe, ;_'.L;y, Xab (m+5v;4')

a® +2ab - 23
30-4¢f + ¥/m
4 T+a>a-3, a¥<d?, fa-(+0)}3 =¥ @sp_o?

5. "Se>band b>c..c<la. n N

6. a - 3ab + 4a2c? — Tabx + 3y? - TWiy + (a=b+e)s—Hay +
(a~m).

3. (m+x) ~ (z +y), a:-:, a?-b?=(a+b) (a-b),

Of the above algebraic expressions :—

7. Which are monomials ?
8. Which are binomials?
9. Which are multinomials ?
10. Which are coefficients ?
11. Which are exponents ?
12. Which are terms ?
13. Which are factors ?
14. Which are additive or positive terms? -
15. Which are subtractive or negative terms ?
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Exgromse ITI.

. Write down @ added to b.
. Write down « subtracted from 5.
. Write down the difference between ¢ and b.
. Express in three different ways the product of a and b.
. Express in three different ways the division of « by b.
. Express the fourth power of a + b.
. Indicate in two different ways the extraction of the fifth
root of a.
8. Indicate in two different ways the fourth power of the fifth
root of ab.
9. Indicate that the sum of am and xy? is greater orless than
the difference of-a® and c.

~y B O i W DO e

10. Express the equality of the ratios a to m and xy to ¢f.
. '_ a? s . %
11. Write down the reciprocals of Pt iym a+bd-¢

’ Py
(z + y)".

12. What is the difference in meaning between « + b2 and
a®+ 5% and (a+b)2? ‘

13. What is the difference in meaning between ax2y, axy?, and
a’zy?

14. What is the dlﬂ‘etence in meaning between 'ma:3 m}.r, and
(max)b.

15. What is the difference in meaning between a - (z~¥) aud
(e-x)~y?

16. What is the dlﬁ'erence in meaning between am-—c and
am~c?

17. Write down four homogeneous terms of 7 dimensions
each. .

18.. Write down three homogeneous terms of 13 dimensions
each.

19. Write any six like algebraic quantities.

20. Write down in an abbreviated form the product of ¢, ¢, a,
a, m, m, m, (x+7y),(x+y) and em (+7).

21. Resolve the e¥pressions Ta%4a%y?, adm?y (a+b)?, atz?
(e —m)? into their simple factors.
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22. Express the division of the sum of mx* and y3 by the
square of the sum of @ and b.

23. What is the coefficient and what the exponents of @ and =
in the expression ax ?

38. To find the numerical value of an algebraic expres-
sion, when the value of each letter entering into it is given :—

Rune.—Substitute for each letter its numerical value, and per-
Jorm upon the resulting numbers the operations mdzcater] by the
signs connecting them.

Thus, in the following exercise, wherever a occurs in an
expression, we write its assumed value, 1; for b we write 2 ;
for ¢ we write 3; for 4 we write 4; and for m we write 0 : then
we multiply, divide, add or subtra.ct these quantities as directed
by the connecting signs. For example, taking a=1,b= 2,c= 3,
and m = T, we thus find the value of the expression :—

_  be+
Jm(3e — 4c + 2b%) — cre
S 2x341 o 6+1
= TBRI~4xB12X2" ~ _5_7__ = 47(3—12+1b) -

= TxT=2=f49=-1=T~1=6 .Ans.

39. We are said to show that one algebraic quantity is
numerically equal to another,

When by substituting the values for the individual letters in each
we show that the numerical value of the first expression is the same
as that of the other. -

For example,ifa=4,b=3,d="7and f=0

a?bdf +ab~d=2d - (a+2b)+ 1

Here we at once throw out the quantity «?bdf, because f being
= 0, the whole quantity into which it enters as a factor must = 0,
and, therefore, as an addend, it disappears; then snbstxtufmg
their-values for the others,

4x3-T=2xT—-(4+2x3)+1
12-7=14-(4+8) +1
12~T=15~10
5=5
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Exgroiss IV.

Ifa-1,b=2 ¢=3, d=4,and m=0, find the value of :—

1. a3 ~1. 2. ~38c. | 3. ab +cd.
4. @~ (c—u). 5 Jb+c+d. 8. a’m?zd?
.6 (a~c?). 8. (b2d? —cem2)¥, 9. (&+b) (d—m)2,

10. 4{a—(d-oF. 11 @redn)t 12, (d2-be)? (c-bed)®.

L+ 1 b+1 c+1
13. Show that e I =b, —}T =¢, &c.
14. Show that 14a (3b+ c) < d%*-b (b+c)
15. Show that (a?b - c?d+abc)m = a2b2d?m.

16. Show that «/ab%a TG+ dyc> i@+ (d2rer)

17. Show th ubtc —bd b (b+c)+abied

- Show that —.—— = =0 ( +c)+ab2edm,
2¢? + 2abedm - (d —c)®
a?c abedm — ( c)———{dc—(d+c+b+u)}
YVa(d v ey 1 b (erd)

‘18. Show that

Find the numeral value of the following expressions :—
19. (2-0) (Ba+4b —¢) + {ab+ (3d - 2¢)} - 4a (2¢ — 3D)
- {abe? —(3c+a)}4-{abd ~ (c+d) alb.
20. (c?—a?) (b7 —m?) +m{bed (a—b*)d }+3Bufa+e(d-3a)}.
21, {(e=b)yt(c+ )E+{(c+m) - (b )PP~ {(m+d) + (2b-c) }2.
2./ (@rey d+ /et (@rb) + {2 (d + be)® £ (Td~b¥ec) }i~

( bed +a)?, )
T(amyh+ +3«/¢ ~ (bd +4c) | a?bie =Td + { d3 (ate)|¥ _
23. 3 abc+ (cd.m)‘r—_— § (b-ay+o* Pid=(b+m) t
Yabed—dz . ‘

24, 1 {ab (a+d)} =L {bc (c+a) }+4 {(ca~b) (e®h+ 3)} +
+ \d+c) (1+3b-2c+d)?}
o c(a+b-c)? +11{(3a+2c) (2o b+ 3d)! &
B T (B by ST rbtomy
$ (e+3d)i— Y~(c*+ 5b)=(c+d) }f+ (2ab +cd - bd) (¢ rey

abm +det —a - 7(d+ab?)
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SECTION II.

' ADDITION, SUBTRACTION, USE OF BRACKETS,
MULTIPLICATION, AND DIVISION.

ADDITION.

40. When the quantities are similar and have the same
sign :—

RuLe.—Add the coefficients, annex the literal part, and prefix the

proper sign.

M@ ®) ® (5

Jda ~2d  6(z+y) -8(cd-a?) 20-3m+ y - eVa+b
3¢ -3cd 2(zty) -—-4(cd-a?) 3a- 5m+6y - 3¥arb
5a - cd  5(z+y) -3(cd—a?) Sa-Tm+3y - 5¥Ya+b
lla -5cd° 8(z+y) - (cd—a?) SBa-3m+2y ~ Ya+b
3a ~ cd (x+y) -T(cd-a%) 3a-2m+ y

2¢  —8cd 11(x+y) -2(cd-a?) a-"m

3la -20cd 33 (z+y) —25(cd—a?) 220-2Tm+13y-15¥a + b

Exzercise V.

Find the sum of :—

1. 3a, 2a, 9a, 11a, a and 17a.

2. —4ab®, — Tab?, -~ 11ab?, —~ ab?, and - 3ab?,

3. 3(a+b—cz) 6(a+b-cz), 2(a+b—cz), (a+b~c?), and
T(a+b-c?).

4. 4a (z~ y2)3 9a(z-y )3 3a (x- yz)" and 11 (z - y2)3

5. 30-4y+7, 6a-3y+3, 5a—-3y+3, Ta— y+2, and 6a-— 2y+8

6. 3 (z+y)+Ta—abe,5 (x+y) +5a—3abe,2 (x+y)+1la— 'mbc
(z+y) +2a-abe, 2 (w+y) +a—5abe, and 3(x + ) + 2a ~ 3abe.

7. (@+b)zx - \c+d)y @+1)z, 5(a+b)r—6(c+d)y - Wd+ 1)z,
2(e+b)z~3(ctd)y~4(d+f)z, 4(a+b)z- 5(('+d)y_
6(d+f )z, and 3(a+b)z 4(c+d)y 5(d+f)=.

8. a?b3a} +a3b2:r:a—a,zbJ:Acf’—a."ba:zc2 3a2b3z% + 7a“bzz§'—5a2b§x"
_eaﬁba:c- Tazbéat +3a3b2xs-5a2b§x3 2035522 and 4a2b3x’{
+ ad b”a:?? 2a’bsz3-—8a3baa:2 '
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41. When the quantities are similar, but all have not
the same sign :—

Rune.—JArrange the quantities so that similar terms shall be in
the same vertical column. JAdd separately the positive and negative

coefficients ; to the difference of these two sums prefix the sign of the
greater and affiz the common literal part.

®» @ ©) @)

4a 5a~-3c Sab+6cy~ 3 5(a+x)~3a’zy + Tyfa+b
~Ta 2¢+4¢ —8ab-3cy+11 9(a,+:c)-6az:l:y—8(a,+b)*
-3¢ -3a+9c -Tab+4cy~ 6 —7(a+z)+5a2:cy-6(a+b)%
-2a 6a—5¢ 1llab—8cy+ 7 3(a+x)—3a2xy-—5(a+b)%
5a 4a+3c 3ab—4cy+ 6  1l(a+z) - 5azxy+3(a+b)
6a ~Ya-12%¢ —Tab+ ¢y~ 1 -—13(e+x)+6a%ry — 8ya+b

3a Ta—4c -3ab-4cy+14 8(a+zx) -6a* —17(a.+b)z

ExpLANATION.—In (1) the sum of the positive coefficients 6, 5,4 =15,
sum of the negative coef. 2, 8, 7=12; then 15 ~ 12 =3, which is positive,
because 15, the greater, is the sum of the positive coeflicient.

In (2), left hand column, the sum of pos. coef. 4, 6, 2, 5 =17, and of
neg. coef, 7, 3=10; then 10 ~ 17 =7, which is pos. because 17 is pos. In
right hand column sum of pos. coef. 3, 9, and 4 == 16, and of neg. coef. 12,
5, and 8 =20; then 20 ~ 16 = 4, which is neg., because 20, the sum of the
neg., ig the greater.

Exgrowe VI.
Find the sum of :—

1. a+band a-b; 2¢+b~cand a~b+4c; 4a—3b+c and Tb—
8c.

2. %ab + 3ay — cd, 6ab ~ 2ay + 5cd, 3ab - 6ay + 2¢d and
— 3ab-2ay+ Ted. .

3. ba’z3 -3(a+b) -T2y + 1, a’x"f - 7(a+b) 81§y 11, and
—a2x? + 3(a+bd)+ 3zty — 16.

4. a+b—c-d,a=b—c+d, a-b+c—d, ~a-btctd, ~a+b-ct+d
and a=b+c—~d.

5. 3zy+ Tab-3, bxy+ 3ab+ T, Axy - Tab+11, aud Txy+llab+2,

8. 3+7a-—6b+c 7a+3 4b - 2¢, 7b-3a~ 7+3c and 6c—2b+ .
G~ 30,
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1. ab—xy+ed—m+c, 6c—3zy+4m—cd—3ab, Sed—6m + 5¢ +
8ub — 3y, 5m+6¢—3cd + 2zy—3ab and 11lzy — 3m - 2¢+ 3ab - Ted.

8. 5miz+3zy-T, 71:1/-1—3—8mzz +yz, 17—-yz+ Txy—11m% and
— 11mZz + 3zy + 4. ’

9. 6m’}n5 9a5d2+10m2z4, ga3d: —~6mizt — '1371.%, 203d3 ~
3miz? —-3min? and - m‘.’m?f mizh +addi,

10. 42443+ 44§ l—c" 114/2- 993+ Wa— 64/4+{fe, —3¥3+
T2+ 44— 7(&5-}-8&'/0 1145 - 4/2+ 383+ T4/4, and 96— 4a5+11§/4

11. 3zy—Tay+2cx~ .'cz—}-3\/‘/, 2xy+114/z - Tay, 13y — llcz+
2ay, 128y — Tet +3cz— ay, 11zy-+3ay + 6cx and 4ry— Az —38fy.

12. (ax +by— c,,)za\/m}-n—(x—-y), Tym+n+3(z —y)-aztby—cz,
T(x—y)+8%az +by - c‘.—ll(m+ﬂ)x 6\/m+nr17(u:c+by cz)k -
(z-y),~12 (ax + by—cz)t —3 (~y) + 4 (m+m)} and wm -
ofjax +by —cz +11(z~¥).

42. When the guantities are unlike :—
Ruve.— Connect them together by their proper signs.

¢))
3a

e
d

-bm

Sum = 3a—4c+7d - 5m
¢))
Ba+3c—6Jatb
2m— 4a®h + 3ab*
—6zy +3a3bd

Sum = 5a+3c~64/a+b+ 2m — 4a% + 3ab?— 6xy + 3aibl

+43. When the quantities are partially similar :—

Ruove.—Add the similar quantities by Art. 38, 39, anc/l to the
partial sum, thus formed, affix the unlike quantities by their proper
signs.
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® @
2a—4c+db - 3az%y + ay - 10x3 + 30%p
Ta-3c+m ~Bax?y + 3ad4 Tafp-mn
—9a+6c+3ab - —~8ay —13a*p+qp
+ Tam 4az?y+ ay+ 'Tzd +m3

—ct+b+m+3ab4-Tam  2axPy - 3a®p — mn + gp + m?

Exgreise VIL

Find the sum of :—

1. a+b, m+c, z+y, and 3p.

2. 2ap — 3zy + 4mn, bmn - 3zz + Tzry, 3mn - 5¢® + 2ap, and
—4ap — 4xy ~-12mn.

3.3(@+d)+T(z~y), Tc+8 (a+d), 11 (x ~y) + 427 and
~16 (z~y)-11(a+d).

4. br% -3y’z+4, Ty’z-Tm-3, 5zPy+ 3y’2-a%, and 6+Tm
- T2z,

5. a+b+c, 3b-z+y, 5(atb)+ 3z, Tc~3m?n, 5ab+6b- 3y, and
3(z+y)-8c.
N6. Tax?- 3aby+ Tatf —34/z+5, 71/.7: 3 Taby - 6ax?, 3m ~5v/aty
+10aby, 11 - dz?+54/% - 92%y% ~ Tm, and 2x%%+ 4m - 34/ + 5.
o7, o8 -3z82-y3 -2y + 37, 2y% + 7a:“yz+3y’.- 9, 4yz+ 3+ 3x% - 5y3
+ 3% 2y° — 6272+ 2y, ~ Byz—z%+ 4% and 6532
A3, 5(::y+xz—fyz)§+3(a+y)c Ta%y, 8(zy+az~y2)¥- T (a+y)e
+3m, 8/{/:z+my yz—~4am, 1(e+y)c—11%z2 ~yz+ay, Sem —3m
~3(a+y)c— (zz—y2+2y)} and 2%y -m3.

SUBTRACTION.

44. Tagorem.—The subtraction of anypositive quantity is equty-
alent to the addition of the sume quantity taken negatively ; and the
subtraction of any negative quantity is equivalent to the addition of
the sume quantity taken positively.

DEMONSTRATION L. @a=a+b-b (Ax. vi); subtract+b from each.
Then (Ax. 1) a—(+d)=a-b=a+(-b)
£ Il a :£L+b ~b (Ax. v1) ; subtract~b from each,
Then (Ax. 1) ¢—(=b)=a+b=a+ (+b)

C
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SUBTRACTION. [Sl‘w"t‘. 1T,

45. To subtract one algebraic quantity from another.—

Rure.—Change all the signs of the subtrahend or imagine them

to be

changed, and then proceed as in addition.

Noter—Once the signs of the subtrahend are changed, the question is no
longer one in subtraction, but is converted into an equivalent problem in

addition,
From 7a—13zy + 27 Equvaont ¢ 10 Ta—13zy+27
Take 5a—1lzy+19 ustion. g Add~ba+ 1lay~19
Remainder 20~ 2zy+ 8 Sum 2e- 2zxy+ 8
) @)
From 9ab+ 3zy-23 From 32% - Tzy?+323-4
Take 5ab— Tzy+17 Take Sz%y+ 4xy’~523+m
‘Rem. 4ab+10xy—40 Rem. — 622y ~ 11272+ 823 —4—m
3

From 2(z—y)-!;z3(a—b)
Take ~T7(z-y)-a?m+17

Rem. 9(z-y) +28(a~b) +atm—11

Exercise VIII,

. From 4a%P%z— T2y® + buz®~ Yzy+13m~11

Take 3%z +4zy’ ~6az2—1ley~ Tm—11

. From 3a-Tc+4xy® — T/a-b?

Take-1la+ Tc ~ m?+64/a—b?

. From (a+b) ¥«? ~y+ Tam?~cd

Take Tam? —3cd + 4(a+b)(z%-y)}

. From 9(zy+yz—z3)fs‘+3\/x2—-yz+ Tatat - 11{/m + 1zfa+ b

Take 5(xy~23+y2)%+ 1%z (b+a)} + 3m¥ — Tatzt +3(ty?)d

- From 8+4/2-5z +§/4 - Ty+8%-6/a=b

Take 4/2 - 13+ 4% ~64/8— 52 + 16y +3(a—b)}

. From 5a—6b—"Tc+4d~11e+ Tm~16z+y~ Tz

Take 4d-—7z+5a—6b+m—~5c+9x—-11'y-i-abcd
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i

USE OF BRACKETS.

46. Much difficulty is commonly experienced by .a
beginner in the management of brackets. His attention
is therefore particularly directed to the following rules,
remarks and exercise.

Rure 1.—If any number of quantities, enclosed within brackels,
be preceded by the sign +, the brackets may be struck out as of no
value.

This arises from the fact that when a quantity is added
the signs of its terms are not changed.

Runs 2.—If any number of quantities, mclosed within braclcets
be preceded by the sign —, the brackeis may be removed if all the
included signs be first changed, i.e. + into — and — info +.

The necessity of thus changing the signs is manifest
from the following illustration :—

@~ (b+c) means that we are to subtract the whole quantity
b+cfrom'a. If we subtract b alone the remainder a—-b is too
great by c, for we were to subtract the sum of b and ¢. Hence
to obtain the correct remainder we must take ¢ from a—5, but
this gives a~b—~c¢. Thereforée a— (b+c¢) = a-b~c.

Again a—(b—c) means that b is to be decreased by ¢, and the
remainder taken from a. If now we take b from a, the remainder
o -b is too small by ¢, because we have' subtracted a quantity
too great by ¢. Hence to make the remainder a—b what it
ought to be we must add ¢, but this gives us a—d+c. There-
fore a~(b~c) =a=-b+c.

RexARE 1,~—The learner must carefully note that in every case in which

- he meets with [ or { or { he mustlook for the counter part ) or } or ] and

that the above rules apply only to the signs of the quantities, simple or
compound, included within the complete or outer bracket,

ReMARK 2.—In removing the brackets from a quantity it is to be care-
fully remembered that the ﬁrg; sign within the bracket, when -, is always
understood, and that the rules above given apply to it as well as to the
other signs,



28

Ex, 1.

Ex. 2.

USE OF BRACKETS. - [smow. 1.

Simplify ¢+ (b-c+d)
OPERATION.
at+(—ctd)=a+b-ctd
Simplify 3a~ (4c—-d+ 3a-m)

OPERATION.

30~ (4c-d+30-m)=3a—4c+d-3atm= —4c+d+m

Ex. 3.

Ex. 4.

Ex. 5.

Simplify 3m-{a+ (c—m)}
OPERATION.
3m~{a+(c—m)}=3m-a~-(c-m)
=3m-—-ag~ctm=4m-a—c

Simplify 1-{1-(1-{1-z})}
OPERATION.
1-{1-(-{1-2})}=1-1+(1~{1-z})
=1-141-{1-x}
-1-141-1+4+x
=z
Simplify (¢—-b)~{-a~(b~a)}-{-(-{-(~a+bd)~c}-b)-¢}
OPERATION.* '
(@-b)-{-a-(b-a)}-{~(~{=(-atb)~c}-b)~c}
za-bta+(b-a)+(~{-(-a+b)-c}-b)+¢c
zg-btatb-a—{~(-a+d)-c}-btc
—a-btetb—a+(—a+db)+c—b+e
—a-bta+b-a-a+db+c-b+c
=12c

* Although, for the sake of illustrating each step, the process is here
made to consist of several lines, the student is recommended to remove
all the brackets at one operation, and thus to make ouly two distinet
steps in the simplification.

ExEroISE IX.’

Simplify the following expressions :—
1. (e¢+m)—(c=6)+(5—m)—(a+e)+(c+3)~ (5ctm)

[

L (a=b-c)-(b-c—a)~(c—b—a) - (a+b+tc)
. (3e-4)~(By—~z)—(5a-4~-6y)~(3a-4+{-6})
L 8-{-(-{g CI-mD D}
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5. (20-3c+4d) ~{5d~(m+3a) }+{5a—(~4-d) } - {30~
(4“?5{1"4)}

\8. MP (P a?) = {=mP= (- 20%) } = { = (= 5m? — [~ (a®~c* 4 3mP)
=2 }~m?) - 247} '

\ 1= (-1 ~{~ (=D }~{~(-{=(-1D)-1}) -1}
8. dh 2z —{ @ ~ (22" {-mP—(aP+ 3z - - n~(30+ 8z + 3mH) ]}
=2m?) ~a?}

9. (a%c+3c®) 4 8ahe~ (m+¢) ~{ - (4aPbc+c) ~ (~3c*-m) }

10. 8a-(2a+1)+{a~(2=a)}={- 1-(=a={-2 ~a+(- 1)}-20)}

1. (ma-b-c)+(a~c) = (c—a)~{- (+{+(+{+(+{-a}-b-¢)
~a}~-3b)}-3b-2¢)~2a}

12. {(am+c)=T}+{(5~Tam+¢)}-{~3a— (~dom~{~c— (-9
=3c-4a)}~6)-5am}

47. It is frequently found necessary in the performance
of algebraio operations to inclose two or more simple terms
within brackets so as to deal with them ag constituting one
quantity. In placing any given terms within a bracket,
attention must be paid to the following rules:—

Rure L—Any term whatever may be selected as the first lerm
‘within the bracket, remembering that the sign of that term must be
placed before the bracket

Ruowe IL—If the sign thus pluced before the brackel be +, the
other.terms may be at once placed within the bracket, each preceded
by its proper sign ; but if the sign thus placed before the bracket
e -, then in placing the other. terms within the bracket we must
change the sign of each, i.e., + into — and ~ into +.

. Nore—The signs are thus changed when the terms are put mto a
bracket preceded by the sign -, in view of the faot that when the brackets

are struck out this - sign has the effect of changing the included signs back
again to their original form.

Ex. 1. Inclpse a—b ‘¢+d in a pair of ‘brackets.
‘OPERATION.
+a=b~ctd=+ (a-b-c+d)
or =—(b~a+c—d)
or =~ (c~a+b=d)
or =+ (d+a-b-¢)
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Ex. 2.—Inclose & — b-+-c—d-m+f, in alphabetical order, in
brackets, using an outer bracket inclosing two pair of inner
brackets.

OPERATION.

g-brcmd-m+f=f{(a=-b+rc)=(d+m=1)}
or=§{(a— BY+ (c—d—m+f)}
or={(a)—(b-c+d+m—=f)}
or={(a-b+c—d)-(m—f)}
or={(a=-b+tc-d-m)+(f)}

Ezsroise X.
Express a—b+c—d—e+m—frr—s+v+iv+x in brackets.

1. Taking the terms fwo together.

[

. Taking the terms fhree together.

3. Taking the terms four together.

4. Taking the terms siz together,

5. Three together, using an inner bracket after the model,

{* (x4 #) }

6. Three together, using an inner bracket after the model,
((=20)12)

1. Four together, using an inner bracket after the model,

8. Four together, using an inner bracket after the model,
{ (k=i )+ x}

9. Four together, using an inner bracKet after the model,
{#+(x+x)¢t %}

10. Six together, using an inner bracket after the model,
[rdedint (x40}

11. Six together, using an inner bracket after the model, .
[(Eedstbris)dxdx}

12. Six together, using two inner brackets after the model,
{x+(*+*)+*+(*+*)}

¢

Nore.—The asterigk is used merely to denote the position to be occupxed
by the given letters with reference to the brackets, the sign &, read plus
or minus, implies here that the student js to determine which one of these
signs is to be employed.
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48. A number or a letter written directly before or
after a bracket, inclosing one or more quantities, implics
that each of the included terms is to be multiplied by that
number or letter. So the line that separates the numerator
and denominator of an algebraic fraction acts as a vinculum
in uniting the terms of the numerator into one quantity,
and hence when the several terms of the mumerator are
written separately the denominator must be placed under
each.

Ex. 1. Remove the bracket from 6 (¢ - am +by?-¢),

OPERATION.
6 (a—am + by? ~c) = 6a — Bam -+ 6by* — B¢
Ex. 2. Remove the bracket from 4 fa~b— (cx+dy-b3)a}m
OPERATION.
4{a-b~ (c:c+dy byajm=dm{c-b~(czx+dy~-b3)a}l
- =dam—4bm ~ 4m(ca:+dy—b3)a
= 4am — 4bm — dam (cx + dy - b3)
= 4am ~ 4bm — dacmx — 4dadmy + 4adb?m
3a~m - (¢¢-mi+a)y

;

Ex. 3. Remove the vinculum from

263 fc
3a—m—(F-m?+x)y 3¢ m cy —m¥y +ay
2b%:/c TRb3ye T 208 | 2b%fc
3 m 2y mZy xy

T 2b%fc T 20%4Jc 2113»\/0 034Jc” 2b%4/c

Nore—In the first step of this operation, when the bracket inclosing

the last three terms is struck out, the included signs are not changed,

because the vinewlum written under ‘these terms still binds thom

into one, but when in the next step this vinculum is removed, the minus

sign preceding it has the effect of changing the signs of the terms as
exhibited in the operation.

Exzgrcisn XI.*

Remove the brackets and vincula from the following expres-
sions :—

1. 3(a-b); 4x(a+b25x3); Bple (1-b—c%) -

2. m(a—b*+mp) +a? (1= 3u~b) ~m%? (3 b ~m?z)

# See Arts, 52, 53, and 57.
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3. 3{1—(x—y)a}+4{1+(a—-b+y)x}—cz{a—(—3-m)y} ,
4. a{a(m—n)-c(p—q)}+c{c(—m+n)+a(—p+q)}
z+y—-(c—-d-m)

5 a-b- .
z
6. m+‘l—_(—z;éc__'_dz
‘ ~(m-3
7. af(m-y)x—c(a+b)}+ay— 6a z%é_p)__
.. —12d- -m)—-4(1
8. 3b{'(“‘¢)d+(nl—n?f}_l {202 C)+53x(21 m) -4 (1-p)}

49. Two or more terms of an algebraic expression that
have & common factor are often written in an abbreviated
form by the aid of brackets, placing the factor common to
the severa] terms directly before or after the bracket, and
the remaining part of each term with its proper sign
within, ‘

Ex, 1.—Collect the coefficients of x%z in the following ex-
pression into one quantity : 5ez?yz — 3z3yz + 5almiz?yz + 3abca?yz
- z%yz,

OPERATION.
Baz*yz - 3x3yz + Safm?zlyz + 3abcizyz ~ 2%z
= (5¢~3x+5a%m? + 3abc? - 1)a%yz

50. Any factor of an algebraic term may be regarded
as the coeflicient of the remaining factor. This is at once
evident from the meaning of the expression coéfficient =
con ‘ together with,” and efficiens “ making ” or “ operat-
ing,” i.e., the part which codperates with the remainder to
make the comyplete term.

Thus, in the term 3abay, 3 is the coef. of abzy ; 3a is the coef.
of bzy ; 3ab is the coef, of zy ; Babz is the coef. of y.; 3aby is the
coef. of z; abzy is the coef, of 3 ; 3zy is the coef. of ab, &c., &c,
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. B1. When terms involving brackets are to be added or
subtracted it is commonly best first to strike out the
brackets by Art. 46, and then after performing the-addition
or subtraction re-bracket the terms, if necessary.

Ex. 1. Add 2a(z -y +3), 5(m —c*~ax), and 2(¢+ay - 4m)

OPERATION.
20(z -y +3) =2ax~2ay+6a
5(m—c?-az) = - Bax + Bm ~ 5¢?
2(a+ay—4m)= 2ay + 2a ~ 8m

Sum = - 3az + 84~ 3m ~ 5¢%
=-3(az +m) + 8a~ 5c?
Ex. 2. From p(z —-y)+q(y—2) take a (z —2) ~b (y +2)
OPERATION. '
pE=Y)+q(y=-2)=pz-py+qy—qz
a(a: 2)-b(y+2z)=ax—-oz-by-bz
Diff. =pz -py +qy—gz~az I—a~+by+b-
=pr— aa:—;py+qy+by gz ¥az+bz
=(p-a)z-(p-g-b)y- -(g-a- b)z
) Exgrosg XIL*

Find the value of :—

1. 3(am -z +y) + Sa(x +3y) + 2(a - y)m +4x(a+1),

2. (a—x+YPM+3(m+ )z +4(a~y)+ 3(a+ 1)y,

3. W(a+b-c)-5(b+z-bc)-3(m-a-c).

4. (@+m)z — 3(am+c)ay + Z(a cm)y? added to (z+7%) a+
(cta)my - (b+S)y"

5. 3 +y+z)am '+ 2¢(x + 2) + (y~2z)ec subtracted from
3(a=b4c)y— (2m ~cyx—3m(ax +ay - az).

6. +2a(p +zy)e ~ 3(m — 2zy + y¥c - 3a(y + ¢) subtracted from
11(a + b)my - 3ry(a~b+c).

MULTIPLICATION.

52. TaroREM.— Quantities having like signs, give, when multiplied
‘together, a product which is positive; and quantities having unlike
signs, give, when multipl%djtogether, a product whick is negative.

Or, as it is sometimes expressed for the sake of brevity,—

In Multiplication, like signs give pLUE, and unlike signs, MINUS.

T * See Arte, 52 and 53, ' )
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DEMONSTRATION L. +a x +b means that +u is to be taken in an
additive sense, i. e., is to be'added as often as there are units in
b. But +« added once gives + ¢; + ¢ added two times gives
+2a; +o added three times gives +3a, and so on. Hence +a
added b times gives + ab, that is, +a x +b = +ab.

II. ~-a x +b means that — & is to be taken in an additive sense
as often as there are units in b, but —« added once gives —a;
~a added two times gives ~ 2a¢ ; —a added three times gives —3a,
and so on. Hence —a added b times gives —abthatis ~ax +b= .
—~ab.

" Otherwise, —¢+a =0 ; multiply each of these equals by +b.
Then —« x +b+ab=0; subtract+ab from each of these equals.
Then —ax+b = —ab, which was to be proved.

III. + a x - b is equivalent to — b x + ¢ since quantities connected
by the sign of multiplication can be read in any order whatever.

But —bx+a=—~0cb by last case. Therefore also +ax—b = —ab.

IV. —a+a =0; multiply each of these equals by -b.

Then —a x —b—ab=0; add + ab to each of these equals.

Then — @ x ~b = +ab, which was to be proved.

53. TaeoreM Il.—Different powers of the same quantity are
multiplied together by adding their exponents.
DEMONSTRATION.~—a* x a® = ugaa X ane = azcagae = a’ = at+3, and
the same is true in all other cases, hence generally a”x g = g+ =,
Case 1.

54, When multiplicand and multiplielr are both simple alge-
braic quantities,

RoLE.—Multiply together the numerical coefficients and write the
letters in juxtaposition after this product.

Thus 3ab x 5¢y = 3 x 5 x abey = 15abey; ~ 20b x 3¢ = - Gabe :
2xyx —11m = - 22mxy ; — 4zy x — Tam = 28amxy. ' ’
. Case IL,
55. When the multiplier is a simple guantity and the multi-
plicand is & polynomial,
Ruve.—Multiply each term of the multiplicand by the multiplier
and connect the several partiol products by their proper signs, ;
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Ex. 1.

Ex. 2.

Multiplicand, 4ax—2ay+ 3z%y?
Multiplier, 2azy
Product, 8a?x%y — da’ry? + Baxdy?

Multiplicand, 4am?- 3acz ~4xy+7
Multiplier,  —~3ay?®

Product, - 12a?m%y? + 9afcxy® + 12axy® — 21ay®

Casg IIL.

56. When both multiplier and multiplicand are polynomials,

RULE.fMuZtipZy each térm of the multiplicand by each term of
the multiplier, and add the several partial products together.

Ex. 3.

Ex. 4.

Ex. 5.

. Ex. 6.

a?~ab - b*
a - b
a3 = d?b — ab®
—~a%h + ab®+ b3
a3 - 2a%b +b3
3ax? - 3u%x + 2a%z*
5a -2z
15a%2%—~ 1503z + 10a3z?
~ 6ax3+ 6a%x?-4a%z3
21a%z? ~ 40223 — 6axd — 153z +10a3x?
2ab? — a%b?+ a3b?
3ab ~ 2ab* - 3a%
6a?h3 —3a3b3 +3atb*
— 4a?b4 + 2a3b% - 2a*D5
— 6a3b% +3a4b3 —3a®b*
6a%h? — 9a%b? — 4a%b* + 3abh* + 3a4b® — 2a1b% — 3abbt

a?— 2ab + b?
a® + 2ab + b2
g4 —20%b + a??
2a3b - 4a?b¢ + 2ab?
aZh? - 2ab? + b4
a* - 207b? +b¢
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Ex. 7, a¢-(a-b)x+ab

T -m
23— (a - b)a? +abz
— mz? +(ma-mb)z - abm

z8 - (a=b+m)z? + (ma—mb +ab)x ~abm
Ex. 8. zd-qgx’-bx+c
T =M
i =axd~ba?+cx
—mz3 +amz?+dmxr—cm
24 - (@+m)z? - (b — em)z2+ (c+bm)z - cm

Exeroise XIII,
1. Multiply @~ 2ay -+ by a? - 2ay +2y¢ ; and a®~3d% +3ab‘—b3
by a*+ 2ab + b2.
2. Multiply 2a*m? + 12amzy + 92%2 by am —zy ; and 3a%z - 3az?
by 3a%z3 = 22 1.

N
.

3. Multiply @* - a®m + o®m? - am® + m* by a+m; and
2a® - 2axy+ 2% by a*—az + 2.

4. Multiply °~382 — 7 by 2 — 4 and a*+ a* +a5 by a?-

5. Multiply a® +2a% +3ab®+ 453 by o - 2ab- 302,

6. Multiply ab—ac +bc by ab+ac-be.

7. Multiply a* - 2a%b—3a%?% - 2ab® + b4 by a?+ 2ab -+ b2,

8.

Multiply 3z° - 2abx - 2a%? by z+2ab; and a®+2zx -3 by
ez + 1.

9. Multiply z* + 22°% +32%+ 22 +1 by 24 - 2234+ 302~ 22 4+ 1

10. Multiply 3y® + 2z%2+ 322 by 2y® — 3a%y? + 523 ; and a"4-bm
by a*+ b,

11. Multiply 2 +3, 3a+4, 54>~ 2, and ¢ - 3 together.

12. Multiply ez +by by az +cy; and an — b + o by am¥1 < pa-»,
13. Multiply @”~c? +¢" by a® ~m3 424,

14. Multiply o?- ax + 22 by a3 — a%z + ax? ~ g5,

15. Mnltiply 2a-b, 3b+c¢, 2¢c-m, and 3m-z together,
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‘DIVISION.

57. Division is the process of resolving a given quantity
into two factors when one of the latter is given. As in
Arithmetic, the given quantity to be resolved or divided is
called the dividend, the given factor is called the divisor,
and the factor to be obtaincd, the quotient.

Since the divisor x quotient = dividend, the sign of the quo-
tient must be such that the sign of its product by the divisor
shall be the sign of the dividend.

+ ab + ab
Thus,—_'_—b—:+a'.'+a,x+b=+ab; —p - - -ax=b=+ab;

- ab —ab
——=+a s =bx+a=—-ab; T

=3 =@ =aX+b=—ab,

Hence, the rule of signs for division is the same as for multiplica-
ton ; that is, like signs in divisor and dividend gwe PLUS in the
quotient, unlike signs in divisor and dividend gi've MINUS in the
quotient.,

58, Since a*xa’=a**2=4", it follows that a” + a* = a3, that
is,a” +a¢=a7" *=qa?%; or generally, since a"xa"=an**,it follows
that g»*": am=a"or a"*" : @* = a™.

Hence, one power of any quantity is divided by cmother power of
the same quantity, by subtracting ihe exponent of the divisor from
the éxponent of the dividend.

Thus, a%h% + a?b? = ¢*b®; z326 + x205 = 2%; ab%3mt + bmd =
‘abc®m, &c. i
Case I.
9. When both dividend and divisor are simple quanti-
ties ‘or monomials, .

Ruie.—Divide separately the coefficient of the dividend by the
_coef. of the divisor, and: the literal part of the dividend by the literal
part of the divisor ; write the partial quotients thusobtained in juxta-
position,,and prefix the proper sign.
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Thus, 14¢7b2¢8+ ~ Ta2bct, 14 + T=2, and a"b%? + adbct = atbct,
and the quotient is — 2a*bc*, because the signs of: divisor and
dividend are unlike.

Similarly ~21a%x + 36% = - Tz ; — 18zy%? + — 2z2% = 9y%, &c.

Note.—If both coef. and literal part of the divisor are not contained as
factors in the dividend, we can only indicate the division by writing the
two quantities in the form of a fraction.

TabZex3
11my

But when we have thus expressed the quotient we can cancel any factors
that are common to both numerator and denominator.

Tor example, Tab2cx3 - 11my can only be expressed thus,

Ua2xy? 8ax X 8ay? _ Bay?

2xy? < 1bonzt= = il
Thus, 24022y ? <+ 160 Thome? 3am X502 ot

Exercise XIV.

Find the guotients of :

1. 15abc? + Bac ; 42ax3y® + Tazy*; 24ePxy + 8axy; — 20x%yiz10
+ 20zy3z7. :

2. — 14ab%cm* + Tabm? ; - 14abz® + 14bx; —2Tmady : —32%;
- 1227y + - 43y,

3. 12ab% + 20awy ; ~17abz® + 1lamz ; —21abzdy + - 35ba%e* ;
ab3cf + - 16ac/x?, S

Case II. -

60. When the divisor is a simple quantity but the
dividend a compound quantity, i. e., a polynomial,

RoLe.~Divide each term of the polynomial by the divisor, as
directed in Case I, and connect the several partial quotients thus
obtained by their proper signs.

Exampre.—Divide 4a%% ~ 3abc® + 12ab3cx — 8aby? by — 4ab.

Here 40%% — 3abe® + 12ab3cz ~ 8aby® + 4apie a— 3abc?
— 4ab = aap 2 84 T and
+12ab3cx — Saby? 32 -
T 4ap W T-&Jz—abc, and+—4—, and — 8b%z, and + 22 =

3c¢%
« abe + g~ 3b%ex + 292
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Exercise XV,
Find the quotients of :—
1. 12axy®~ 29abc* + 12az%y — Sacm + dacx.
2. 21xy®—1lai4 142% — 4992+ 35axy.
3. —64atm ~ 16a’m? + 24a?m — 40mizy + — 16a*m.
4. 3abc + 4a%c® - 16azy® - 30a%m + - 12mxy.
Case III,
61. When both divisor and dividend are polynomials,

Rure L—Jrrange the terms of both divisor and dividend, so that
the different powers of some one letter (which is common to both of
them) may succeed each other in the order of their indices, and place
the divisor thus arranged to the left of the arranged dividend, as in
arithmetical division. . .

.—Divide by Case I. the Firsr TErM of the dividend by the
FrsT TERM of the divisor, and place the resull with its pioper sign
in the quotient,

IIL.—Multiply the whole divisor by the term placed in the quo-
tient, set the product beneath the. dividend, and subtract.

IV.—To the remainder bring down as many terms from the divi-
dend as the case may require ; again divide the first term of this
partial dividend by the first term of the divisor, and place the result
with its proper sign as second term of the quotient ; multiply and
subtract as before, and proceed thus till all the terms are brought

down.
Examprie 1. e+b)a+2ab+b%(a+d

a*+ab

ab +b*
ab +b?

ExPLANATIQN.l——The terms are already properly arranged in
both divisor and dividénd, eince the powers of a follow one
another in regular descending order. Then o (first term of
dividend) + @ (first term of divisor) gives +a as result, and we
place thig in the quotient. Next (a+bd) xa=a%+ab which we
subtract from the dividend, and to the remainder +ab we bring
down b% the other term ofthe dividend. Next +ab (first term
of partial dividend) +a (first term of divisor) gives b for second
term of quotient. Lastly (a+5) x b= ab+b? which we subtract
and find that there is no¥emainder.
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Ex. 2. 3ab+45%) — ab? +6a%? - 12b*
3ab + 4b2) 6a7% — ab? —12b%(2ab = 3b*

6a?h? + 8ab?
-9:16-3_: 1254
—~0ab3 = 12b¢

ExpLaNATION.~Here we see that the terms as given are not
properly arranged, since in the divisor the exponents of & are
arranged in descending order, while in the dividend they are
not ; moreover the exponents of & in the divisor follow one an-
other in ascending order, but in the dividend they follow one
another irregularly. We first then arrange them properly, and
then proceed to divide as follows: 6a%%= 3ab = +2ab, which we
place in the quotient, (3ab+ 4b%) x 2ab = 6a%h% 4 8ab?, which sub-
tracted from the dividend gives a remainder —94b3 —12b*. Next
~9ab? + 3ab=-3b%; (3ab+ 4b%) x - 3b* = —9ab®— 12b*, which sub-
tracted leaves no remainder. ' '

Ex. 3. 3a-6) 6a*-96 ( 2a®+40*+8a+16
6a*~12a3
12a% -~ 96
1203 ~ 2442

240%-96
24a%—-48a

48296
48a - 96

Ex. 4. 2%-zy+y?) ohlf+at+yt

Prezy+yP) 24+ 2l hyt (2P ay eyt
T4 —xdy

3y pyt

zSy_xzyz_l_xya
eyt

THP ey 4yt

e
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Ex. 5.

=20z +2%) at - 40°2 + 6a%3% - 402 + 4z (a? - 207 + TH ——o
—-2a%x+ alx?

xt

P20zt

- 2a3z + ba®x® — 4axs
- 203z + 40227 - 2023

a%r? - 2axd + 4ot
%% 2ax3 +xt

3x* = rem,
a +2a+

Ex. 6. l+a)a®+2a+1(a’-ad+at—~af+
l+a

a®+a3

—a3+2a
- -

a*+2a

a* +af
-a®¥2a
-af - ab

Rem. = ab+2a+1

Nore.—In Examples 5 and & the division does not terminate, or in other
words, the dividend is not exaectly divisible by the divisor, and we write
the remainder as the numerator of a fraction having the divisor for denom-
inator. In Example 6, however, this inconvenience arises from the fact
that the terms of both divisor and dividend are not arranged according to
rule, for if we had arranged the dividend thus(1 4 2a + a2) we should have
obtained 1+ a for the quotient. The student then must be careful to
remember that the divisor and dividend must be arranged either both
aceording to the ascending or both according to the descending powers
of the principal letter, or letter of reference, a8 it is called; and that not
Huly at starting, but throughout the whole process he must take care to
arrange the partial dividends according to the same plan a8 that adopted
in the divisor.

Exeroise XVI

Find the quotxents of tme
M. x2~2zy+y*¢ divided by z-y; and a®+3a% 3ab’+b3 di-
yided by e +b. .
2. m4+4m3x + 6mia® + 4mx3 +x¢ divided by m?+ 2mx + 22,
3. 926 -462° +95x%+ 150z divided by z% -4z -5,
p
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4. ad+5a?b + b3 +5ab? divided by a+b; and - 1+a3y3 divided
by =1 +xy.
5. z6410x - 33 divided by 3 + 2%~ 2z.
6. a®+2a5m?3 =2a%mt ~ 20"m+m® = 2am” + 20°m® divided by
a3 +m? — a®m ~ am?.
7. 1 divided by 1+a; a divided by I-a; 1 ~m divided by
m41;and 1-2x432%+14x~2% )
‘ 8. 6a* = 10a%m - 22a*m? + 46am3 ~ 20m4 divided by 4am + 3a?
- BmA.
9. 4as - 16a°b*+ 10a7h3 + 15ab* — 25b¢ divided by 243 - 5b2%
10. a® + b3 4 ¢* - 3abe divided by o+ b%+ ¢?—be - ac —ab.
11. l4da*- 145227 + 36y+ divided by 4z +3y.
12. 2a®™ + 2amb? — 4a™c" - 3am™b - 3br+1 + 6bc” divided by
am +b? = 2c”.

Nore.—If the teacher is desirous of giving his pupils a greater number
of questions in division he can find material for such in Exercise XIII, in’
which the product may be regarded as the dividend, and either the multi-
plier or multiplicand as the divisor, Similarly, the questions in Exercise

XVI. may be made to furnish additional material for practice in multipli-
cation. . .

DIVISION BY DETACHED COEFFICIENTS.

62. 1t is sometimes convenient in division, as also in
multiplication, to employ only the coefficients. The mode
of proceeding is shown in the following rule and illustra-
tion :—

Ruovp.~Having arranged the divisor and dividend as in ordinary
division, omit the letters, and sef down the coefficients, eack preceded
by its proper sign, and place zero for every term of either divisor
or dividend that may chance to be absent,

* Proceed with these coefficients as in ordinary division, and the
result will be the coefficients of the quotient with their proper signs ;

the Literal part to attach o each of these is easily determined by
inspection, ) o ’
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Ex. 1. Divide 9x* - 144 by 3z - 6:

OPERATION.
3-6)9+ 0+ 0+ 0-144(3+6+12+24
9-18
18+ 0
18 - 36
36+ 0
36 ~ 72
12 - 144

72 - 144

Hence the quotient = 32® + 622 + 12z + 24.

EXPLANATION.—We place three ciphers in the dividend to occupy the
places of the absent terms x3, £2, and z. We ascertain the literal parts te
attach, by observing that x4 < 2 = %3, which wé place after the first
coeflicient, and the others of course follow in regular order,

Ex. 2. Divide x6 + 4x°~ 8x*~ 252°+ 35224 212 — 28 by &+ 5z + 4.

OPERATION,
1+54+4)14+4~8~-25+35+21-28(1~1~%+14~T7
1+5+4
-1-12-25 .
-1~5-4
- 7-21+35
~ 7-35-28
14 + 63 + 21
14 + 70 + 56
- 7-35-28

-~ 7-35-28

Hence quoti‘eni; =at - a2y e -

The student is regommended to apply this method to thé aexmilp]es in
Fxercise XVI, :
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SYNTHETIC DIVISION.

83. The following is a still shorter method of division,
and is peculiarly applicable when the first coefficient of the
divisor is unity. Itisfrequently called ¢ Horner’s Method;”
after the name of its inventor.®

RuLe.—After properly arranging divisor and dividend, if the
first coefficient of the divisor be not unity, divide both dividend and
divisor by the first coefficient of the latter. Then set down the first
term of the dividend for first term of the quotient.

Arrange the divisor in a vertical column fo the left of the divi-
dend, and change the sign of every term. in it except the first,

Multiply all the terms of the divisor, so changed, by the first
term of the quotient, and arrange the products diagonally under the
second and following vertical columns of the dividend.

Add the terms in the second column and the sum will be the
second term of the quotient, Multiply the changed terms of the
divisor by the second term of the quotient, and arrange thé products
under the third and following vertical columns of the dividend.

Continue this process until the remaining vertical columns added
give zero for sum, or until, in other cases, the division is carried as
far as desired.

Nore.~It is usual in synthetic division to perform the work by detached
coefficients, remembering to place 0s for the absent terms in both divisor
and dividend.

Bx. 1. Divide a® ~ 3ata? + 3¢?z* - 28 by a® ~ 3a2z + 3a2% - 2?,

OPERATION.
11140-3+0+3+0-1
+3 3+9+9+3
-3 -3-9-9-3
+1 +1+3+3+1
Quot. = 1+3+3+14+04+0+0 = a*+ 3alz 4 3ax? + 23

* Synthetic division demands the attention of the student not onl-y on
account of its brevity and elegance, but also for its great value in many ot
the higher departments of research, such a5 in obtaining factors prepara-
tory to the integration of finite differences, in constructing a reeurrin
series, in the treatment of reciprocal equations, &c. g
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ExrranATioN.—Using only the coefficients we write a 0 for each absent
term, i. e., for the terms involving a6z, a3x2, and ax.

The first coef. of the divisor being unity, the first step of the rule is not
required,

We set down the divisor vertically on the right of the dividend, and
change all its signs except the first.

Weo place the first term of the dividend for first term of quotient.

‘We multiply the changed terms of the divisor by the first terms of the
quotient, and arrange the products, 3, -3, and 1, diagonally as represented,
80 that the first is under the second term of the dividend, and go that each
is horizountally opposite that term of the divisor from which it was obtained.

We add the second column, and get + 3 for the second term of the
quotient.

‘We multiply the changed terms of divisor by this 4 3, and arrange the
products 4+ 9, — 9, and <+ 3, diagonally, as represented.

We add the third column, and thus get 4 3 for the third term of the
- quotient, and so on.
Lastly we attach the proper literal part to each térm.

Ex, 2. Divide 6a* - o® + 20% + 134 + 4 by 2a* - 3a + 4.

OPERATION.
2-3+4)6-1+2413+4
1 [8-4+1+6§+2

+ 1| +4d+ 6+ 14
-2 -6-8 -2

Quot. = 3+4+1+0 +0 = 3a®+ 4a+1.

ExPLANATION.—Here, as the first coefficient of the divisor is not unity,
we divide both divisor and dividend by 2, the firat coef. of the former,
The rest of the process is similar to that in last example.

Ex. 3. Divide ¢® - 5utz + 100%2® - 10a%2% + Tax?* - 5x° by o
- 20z + 22,
1{1-5+10-10]+7-5
+2 +2-~ 64+ 6[-2
-1 - 1+ 3|=-3+1

4 Apb
Quot. =1-34+ 3-1 |+ 2-4=a®~3d% + 3az? -2+ E;—zf—‘im——z
. a°-20x+
ExPLANATION.—The vertical line is drawn in order to show where the
remainder commences, and it will be observed that this is one less than as
many columns from the extreme right as there are terms in the divisor.
The student is recommended to apply this method to the examples in
,Exercme XVI.
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SECTION III.
THEOREMS* AND FACTORING.

64. The following theorems should be thoroughly mas-
tered by the pupil :—

85. Tagoreu 1.—Zero divided by any given quantity gives zero
Jor quotient.

-DemonsTrATION.—The divisor.x quotient must = leIdeD.d and
consequently the smaller the dividend becomes, the divisor
remaining unchanged, the smaller must the quotient be. Hence
when the dividend becomes less than any assignable quantity,
i. e., = 0, the quotient also becomes = 0, that is 0 + a = 0. '

66. Tasorem I1.—A finite quantity divided by zero gives an in-
finitely large quantity for quotient.

DemonsTRATION.—A finite quantity divided by itself gives
unity for quotient, and as the divisor i3 decreased in magnitude
(the dividend remaining unaltered), the quotient increases.
Hence when the divisor becomes infinitely small, i. e. = 0, the
quotient becomes infinitely large, i. e. = co. Thereforeas 0= cc.

67. Turorey II1.—A finite quantity divided by a quantily infi-
nitely large, gives a quotient infinitely small, or in other words
gives zero for guolient.

DEMONSTRATION.—Since the d1v1sor X quotlent = dividend, it i
evident that (the dividend remaining unchanged), the larger the
divisor the smaller must be the other factor or quotient. When
then the divisor becomes mﬁmtely great the quotient mugt
become infinitely small. Hence a + o« =0,

68. TuroreM [V.—Zero divided by zero gives any quantity what-
ever for quofient.

DemongfraTION.—Bince the divisor x quotient = dividend, and
the di¥idend and divisor are both zero, it follows that the quo-
t1ent may be any quantity whatever, or in other words, 0 + 0
2 a, because 0x a = 0.

* An algebraic theorem is an algebraic property reqmred to be demon-
strated,



Aris, 6471,] THEOREMS. AT

69. Tunormm V.—The zero power of any gquantity is equal fo
unity.

DemonsrraTION.—Since one power of a quantity is divided by
another power of the same quantity by subtracting the exponent
of the divisor from that of the dividend, it follows that ¢+ a=al?

=a; but any qua.nt1ty divided by itself equals unity,hencea + ¢

"= 1. Sinee then a + a=a® and also = 1, it is evident that a® =

Cor. Similarly it may be shown that 5 a and a-1 are equiva-

1 af
lent expressions :—for — = — =a-l=g"1,
@ a

,

Note.—It follows from the foregoing theorems that o being any finite
quantity whatever,

0 .
0, = and Ec_ are equivalent symbols, each representing no guantity, or

the absence of quantity, or a quantity less thar any assignable quantity.

g’— and o are equivalent symbols, each representing a quantity greater
than any assignable quantity. Hence alao, zero and infinity are the recip-
rocals of eaoh othor.

af, and 7 and 1 are equivalent symbols, each representing unity.

% is a symbol of indetermination, i.e. is employed to designate a

quantity which admits of an infinite number of values, or, as we shall see
hereafter, a quantity 'whose value depends upon its origin,

70. TrroreM VI.—The square of the sum of any two quan-
tities is equal to the sum of the squares of tke two quantities to-
gether with twice their pre oduct.

DeuonstraTION.~—Let @ and b be the two quantities; then
a+b = their gum, and (a + b)? = the square of their sum,
Now (e +b)?= (a+bd) (a+b)=a?+2ab + D%

71. ‘TarormM VII.—The square of the difference of any two quan-
tities is equal to lhe sum of the squares of the two quuntities
duumuhed by twice their product.

.DenmongTRATION.—Let a and b be the two quantities; then
a ~b = their difference, and (a2 b)* =the square of their difference.
Now (a~b)?= (e =b) (a~b) = &~ 2ab + b%
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72. Treorsy VII[.—The product of the sum of any lwo quan-
Lities by the difference of the same lwo quantilies is equal lo the
difference of the squares of the two quantities.

DamonstraTION.~—Let @ and b be the two quantities, a being
the greater; then (a+b) = the sum, and (a—b) = the difference
of the quantities, and )

(a+b) (a=-b) = a*-b* = diff. of their squares.

73. TurorsM [X.— Lhe product of two binomiuls having the same
quantity for first term bul their second terms unlike, is equal to,
the square of the first term logether with the product of the two
second terms and also the product of the first term by the sum of the
two second terms.

DeMonsTRATION.—Let (z + &) and (x —b) be the two binomials,
then by actual multiplication (x + &) (z -b) = 22+ (a-b)x —ab.

Similarly if (z-a¢) and (z-b) are the two 'binomials, their
product will be x%+ (~a - b)x + ab = 2%~ (a+b)x + ab. »

74. TeBorREM X.— The difference of the nt powers of two quan-
tities is always divisible by the difference of the simple powers of the
tame two quantities whether the exponent n be an odd number or
an even number, ’

[

DemonstrATION. We are to show that the two quantities being
¢ and z, and the difference of their nth powers being a*—xz», then
a* —x ig divigible by @ -~ x whether 2 be an odd number or an
eveu number.

ar—zxt e~ lg—-x* x(ar~legn-1)

= a1 4 :a_n'-1+
G=-x a—x 8-

Now it is evident that when a*~1-x"-1 ig divigible by a -z
then a"~x" must also be divisible by a - z.

But when n=2, n-1=1, and it is manifest that g—z is
divisible by & ~x, therefore a*— 2% ig divisible by a -=z. ‘

Again if n = 3, n~1 = 2, and since o’ a* is divigible by ¢ - z,
then also a® - 23 ig divisible by & - z, and hence also at=z4 iz
divisible by & - x, and hence also @®~x% and so on. . Therefore
«" - x* is exactly divisible by @ -z, whether n be an odd or an
even number
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75. TuporuM XI.—The sum of the n's powers of any lwo quan-
tilies is not divisible by the difference of the quaniities whether n bc
an odd or an even number.
at -y 2 x(a" Vpgr-1)

a—-x a-—-x

Now a® + z" is div. by a -z only when a" s34 ar-1ig div. by
a-z. %

Takingn=23, n-1 =1, and ¢~ + 2"~ 7 = a +x, whichis
evidently not div. by @ - x, and therefore a? + % is not div. by
a-z.

But when n= 3, » — 1 = 2, and since a? + 2% is not div.bya-=z,
therefore a3 +z3 is not div. by @ - x.

But when n=4, n-1=3, and since a®+ z? is not div. by
a - z, therefore ¢* + x4 is not div. by a — x. 4

And therefore a5 + 2% is not div. by ¢~ =, and therefore af+ x®
is not div. by & - z, and so on.

Therefore whether n be even or odd, ¢”+z" is not div.by a-=.

787 Tasorey XIL.—The difference of the n't powers of any fwo
quantities is not divisible by the sum of the quantities when n is an
odd number.

DEMONSTRATION.

at — g IZ(au -2 z" -2)
:un-l_an—2x+ - R,
at+z a+x

Now a" -z is div. by @+ x only when a"~ - z"~ 2 is div. by
a+z.

Takingn=3,n-2=1,and ¢* *-2z""%=¢~x, which ig evi-
dently not div. by a+x, and therefore a® — x® ig not div. by
o+ . :

But 'when # = 5, 2~ 2 = 3, and since a3 —z? is not div. by a+=
therefore also «® ~ x5 is not div. by ¢ + =.

But when n=17,7 -2 =5, and since a® = 2% is not div. by
a '+ z, therefore also a” — z7 is not div. by e + x, and so on.

Therefore when # is an 0dd number, a*~ 2" ig not div. by d+z.

77. Tugorey XIIL.—The sum of the n': powers of any two
qutmtztws is not divisible by the sum of the quantities when n is an

eren number

Dayonserazion.

w._+x,. x(an-l_a:nv l)
mgp = L e

at+zx : at+x

DEMONSTRATION,
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Now in order that a® + = shall be div. by ¢ +z, @®- % —a"-1
must be div. by a + z. ' !

When n = an even number, n — 1 must = an odd number; and
we have shown (Theor. xu.) that the difference of the odd
powers of two quaniities is not div. by the sum of the quantities.
Therefore when n is an even number, a1 — 2®-1 is not div. by
a +z, and therefore ¢ + 2™ is not div. by ¢+ x when n is an
even number,

78. TreorEM XIV.—~The difference of the n powers of any
two quontities is exactly divisible by the sum of the quantities when

n is an even number.
o =z . z(a® 14 2"-1)
D . = (1,7” rT-—
EMONSTRATION e vz .

Now when a»~1+ 2" -1 is div. by a+ x, then also a" - z" is
div. by a +=z.

But when = 2, n=1 =1, and a + z ig evidently div. by a +z,
therefore o* — 2% ig div. by o + z. )

And by first step of next theorem a3+ 23 is div. by @ + x, and
therefore also a* - x* is div. by a + z, and so on.

Therefore o + z™ i3 divisible by a + x, when = ia an even
number.

Note,—The several steps of this and of the following demonstration
mutually depend upon one another. Thus, the 1st step of the following
depends on the 1st step of this; 2nd step of thiz on 1st step of following;
2nd step of following on 2nd step of this; 3rd step of this on 2nd step of
following; and so on. :

79. TaroreM XV.—The sum of the nh powers of any two
quantities is divisible by the sum of the quontities when n is an odd
number,

a® 4 gt ‘x(a”'l-a:""l)
=gl — . ‘
a+x a+x

Now a®+z" is exactly div. by & + x when a®-1 - a® 1ig div.
by a + x.

But when # = an odd number, » — 1 must = an even nurber,
and "1 - 2" -1 gxpresses the difference of two even powers, and

since (1st step of Theorem x1v.) a?-x? is divisible by a+tz,
therefore also a3 + z? is divisible by a + .

DEMONSTRATION.
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And 'si.nce (2nd step of Theorem x1v.) at — x* is divisible by
¢+, therefore also a’ + z% ig divisible by ¢+ x; and so on.
Therefore a™+ 2™ is div. by ¢+ wben 2 = an odd number.

80. The following is a recapitulation of the latter of
‘these theorems : —

ar - x* is div. by @ — = whon # is odd.

& — " is div. by @ — = when 7 is even.

a* + x" is div. by @ +  when = is odd.

a* — o is div. by o + = when n is even.

All other nth powers are indivisible by either a + & or

a - . )
‘ILLUSTRATIVE BxAMPLES.
Tagorem VI

(2x + 3y%)2 = (2x)2 + 2(2%) (By®) + (3y*)? =4x* + 12xy” + 9y*.

(2az +5yz)® = (2ax)?+ 2 (2ax) (5y2) + (5Y2)? = 4a%2? + 20axyz+25y%2*.

Conversely z%+ 2xyiy? = (x +y)(z +y) ; a?+dax+da?= (at+22) (at2z);
. 9a% + 6axy +2%y* = (Ba+ xy) (3a+ xy) ; 4%+ 1222y +

9y%= (222 +3y) (22° + 3y). ' '

TrEoREM VII.

(m=2x)%=m? - 2(m)(2x) + (2x)% = m? - Lz + 4x”
(4ab-3a%y)?% = (4ab)*-2(4ab)(3x%)+(3x%y)F = 16a%h%~24ada’y+9x4y®.
Conversely m? - 2my +¥2 = (m - y)(m~y) ; 427 - dacxry + a?cE=
(2zy - ac) (2xy ~ ac).
‘ Tarorem VIII.

(m - 2y) (m+ 7Y) = m? - (2)t = m? =z
(3a+ Ty) (Ba~Ty) = (3a)?— (Ty)?= 9a®— 4917, ~
(4a?xy - 3a?d) (4aPzy+3a3D) = (4dPwy)? — (303b)? = 16atx%y"~9abbs,
Conversely z%—4y%= 2% - (2y)%= (2 + 2y) (x ~ 27) ; Y ~m4D%=
(@)= (m?b)? = (a%y? + m?b) (a%y? —mb).
zt ~at = (2% + a?) (a?-?) = (2% + ) (v +a) (z=0a)..
M6 al6h16 = (me 4 gBb8) (a® —a®h®) = (m® + a®bB)(mt +atbi)
(mé—atbt) = (m® £ aPb8) (mé +atbs) (P a?B) (mP - aR?) -
= (m? +a®b?) (m4 +ath?) (m?+a?b?) (m +ab) (m—ab).
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Taporem I1X.
L (z=T) (x+9) =z + (9w -6 ="+ 22-63,
(z-3) (x=T) =2?- (3+ Na+21 =2*~ 10z +21.
Conversely. Find the factors of 2%+ 14w +33. Here since 14
is the sum and 33 the product of the two last terms, we seek to
find by inspection what numbers added will make 14 and multi- A
plied together will make 33, Evidently 11 and 3.
Therefore x*4+ 14z + 33 = (x + 11) (z +3)
a2z -42=(x+7) (@=8) . T+H-6)=1and Tx~-6=-42
2?=9x+20=(z—-5) (x—4) " —b6+(-4)=-9 and -5 x—-4=+20.
22—x-156=(z-13) (z+12) . -13+12=-1and-13x12 =~ 156.

Tueoreys X., XIV., and XV.—By actual division,

4_ gt
at -zt ) o at-z
:a3_‘_alz+ax4+x°;— = ad —ax +ax’-x3.
Q- a+x
ab — xb , ab +xb y .
= at +adx +afxt+axd Lot = at— a3 z+airi-azdtat,

a-x e+

81. In order to be enabled to write these and similar quotients
without actually dividing, observe the following points:—

I. The number of terms in the quotient always = the expo-
nent of @ in the dividend + exponent of a in the divisor.

II. The coef. of each term of the quotient is unity.

IIL. The exponent of ¢ decreases and that of z increases in
the several terms of the quotient, by unity, or more generally by
the exponent of the corresponding term of the divisor.

IV. When the connecting sign of the divisor is minus, all the
signs of the quotient are +, but when the connecting sign of

the divisor is plus, the signs of the quotient are + and - alter-
nately.

V. The sum of the exponents of each term = the difference

between the exponent of « in the dividend and that of a in the
divisor.
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Exsrose XVIIL

Find by ingpection the value of :—

1. (2-3y)%; (Ba+2x)%; (Bay-T)?%; (2ax?-3x)?; (2a+ 3axy?)?,

2. (a-3x) (a+3x); (2a+3y) (2¢ - 3y); (3ab-=zy) (zy+3ab);
(3m?-3xy®) (2m?+ 3xy?).

3. (32 ~2zy) (2zy + 3¢); (20~ 1) (T+20); (z + 3) (3 - 2);
(2+5ay)*; (8a—4x%y3)2 7

4. (x-6) (z+11); (3a-2) (Ba+5); (x-4)(x-9); (x +3)
@-1); @=-2) @=1).

5. (@7 ~z") + (a~x); (ab-z6)+ (a+x) (m® +ab)x (m+a);
(et +at) + (e +x).

6. (V' 4+z1ly1) 2 (a+ay); (a¥m® - r9) : (am-7) ; (aP+mBs?)
+(a—-ms); (at~y2z?) + (@ -y2).

7. (22492 4+ 20) = (x+5); @+ Tx~8): (x~1); (622 +5x~4)
+ (3z+4); (6atz?+adr —d?) + (2az+1). .

82. Theorem VIII. may sometimes enable us to find without
actual multiplication the product of two trinomials or quadri-
nomials, i. e., when we can write one of them ag the sum of two
quantities and the other as the difference of the same two quan-
tities.

Ex.l. (@-x+9) (@-2-9={(e-2)+y} {(a=-2)-y}=
(a-z)? -yt = a?—2ax+ %~ 1%

Ex. 2. (2x-3y - 22 )( 2z +3y - 22)= {(2z - 22)-3y } {(22-22)+3y}
= (2z - 22)%~ (3Y)? = 4%~ 8xz + 422~ Oy’

Ex. 3. (a—2b+3c) (a+2b~3c)={a~ (2b-3c)}f a+ (20~30c)}
= %= (20— 8¢)? = 0 - (4b% — 12bc 4+ 9¢*) = a*~4b*+ 12bc - 9c2,

Bx. 4. (a+2b+3¢c-d) (a~2b+3c+d)

= {(a+3c) +2b-d) } { (a+3¢c) = (20~d) } = (a+3c)® — (2b~d)*

= a4+ 6ac +9¢% - (4b% =~ 4bd +d?) = a? + Gac+ 9c?— 4b2+ 4bd — d2

Exgrose XVIIL.-
Find the value of :—
1. (e~ b+c)(a ~b-¢);(a~b+c)(at+b~-c); (a+b+r)(a b-rc).

2. (Ba-2+4) (4-3a+2¢); (2a¢-2+3m¥) (2a+x =3m%);
(20 -3y +2zy) (3y - 24 + 2zy).
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3. (2a -3¢+ 2z - 3y) 3y ~ 2z-3c + 2a); (a+ 2¢+ 4m + 3d)
(a+3d - 2c-4m). -

4. 3z <m?~2 +zy) (2-m:+ Ba-xy); (1+2a° - 3x%+y?)
(2a% =1 -y% - 32%).

Simplify the following expressions, i. e. perform the opera-
tions indicated and reduce the result to its simplest form :(—

5. (3a-2b) (2a-:3b) ~ (2a - 4b)* - 4(3 - a) (a+ 3) —4(2a=-b)>

6. (4a- 3zy) (3zy ~ 4a) + 3 (2a+zy)? - 7 (3a+2y) (zy~3a) +
4(2a-3zy)2.

7. (1~z) (1+z) (1+2%) (1 +2%) (1 +2%) (1 +216)....8 terms.

8. (a-zy) (e+zy) (G®+a%?) (et +x%yt)....t0 n terms.*

83. Although we have seen (Theor. x1 and x1) that the sum
of the even powers of any two quantities is not divisible either
by the sum or the difference of the quantities, it sometimes happens
that we can resolve the sum of two even powers into its compo-
nent factors. This occurs whenever the exponent n contains
an 0dd factor, as for example when it is 6, or 10, or 12, or 14, &c.

Ex. 1.—Resolve a® — z%y3 into its elementary factors.
Theer. X. a® -z%y% = a3 - (zy)3 = (a-zy) (o® + azy + 2%2),
Ex. 2.—Resolve a® —m® into its elementary factors.
ab —mS5 ig- divisible by a-<m, and therefore its factors are
(a~m) (a*+adm+ a®m?+am? +m*).
Ex. 3.—~What are the factors of z7 +y14?
a:"+y1 4= :c"'+(y2)7=(x+y2)(x6—:c5y2+x4y4—x3y6 +a%yBeog yl04y12),

*
Observe here the eéxponents of z in the second factor decrease by the

subtraction of that of 2 i the firat factor, while the exponents of y in the

second factor increase by the addition of that of & in the first factor.

Bx. 4.—~What are the factors of a6~ m16¢1679

By Theor. VIIL. a8 —(mc)16={a® + (mc)® }{a® - (nc)8} and
a® ~ (mc)® = {a* + (me)t} {a* = (mc)*}; and 50 on. Therefore
al®-mlSci = (a¥ +mPct) (at+mict) (a4 mic?) (@+me)(a—mc).

* Asoertain by inspection what power of 2 expresges the expone‘ht of
each term of the product of the first two of these factors, then of three,
and hence of » factors,
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Ex. 5.—What are the factors of 3246 + 243y ?
320 + 243y° = (22)° + (3y)® = (2% + 3y) {(2r)* - (22)%(3y) +
" (2x)*(3y)2~ (3x)(BY)? + (3Y)3} = (2x+3y) (162* ~ 24xdy + 36222~
54xy? + 81y4). ‘
Ex. 6.—Resolve a2 +m!?2 into its two.elementary factors.
a®® +m1? = (a4)3 + (m4)3, and since the sum of the cubes of

two quantities is divisible by the sum of the quantities, -
(a*)% +(m*)3 = (a* +m1) (a® -a*mt +m?),

Ex. 7.—Resolve u2® - %29 into six elementary factors,

a20_x20 = (alo +110) (aﬁ +I5) (alS - zE)

al®+z10= (@) + (2%)° = (P4 27) (a® - alz?+atzt - aza:b *ab),
and resolving (a® +°) and a®~z%into their factors, we find that
a?0 —z20 = (g3+ 2?) (2 ~abx?+ at2t — d¥2 + 28) (2 + z) (0t -0z
+a%a?— azd 4 %) (@ =-x) (@ + a3zt a®+ axd + x),

. Ex. 8.—Resolve m& 4~ 254 into eight elementary factors.

M4 =254 = (27 +227) (M2 =227), '

M7+ 227 = (mf)d + (2°)% = (m?4 29) (m” - m9z9 +278) and
m® +29 = (m3)3 +(22)3 = (M3 +23) (mb ~m3z% +25) and

m? + 2% = (m+2) (%= mz+27),

Therefore m?7 +227 = (m1® ~m92° + 212) (m® = m?2% +26) (m? =
mz+ 2% (m+z). ' :

And aimilarly m27 - 227 = (m 18 +m929 + 218)(mO +m323 + 26)
(M +mz + 2%) (m-2). '

Therefore m®% ~ 2%4 = the above eight factors.-

.. EXERCISE XIX

Resolve mto elementary factors —_
1.,05“ s 2.8 +c®; 3. at+at; 4. af - b6}
5. ag‘—mg; 6, a1, 7. a*=mfxt; 8. 32af+al;
9. 81-16¢ct; 10. 243m°~ 3265 1. aR+a%; 13, a?%m20;
18, 4%, 14, 220+ m30; 15, e*® -c““sls. a®btmo6;
17, al08.c108, 18, mlth 124, 19, alt + mit; 20, (am)® 1=p®?,
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‘ExerciseE XX.

MISCELLANEOUS EXAMPLES.

1. Simplify @ ~z - {~(-a)-z} - {-(~{-a~(-{-(-2-0)
~a}~z)-al-a)}
2. Simplify 3(a=- z) (a+2)-2(a-2x)* - (3a~-2%) (22~3a) -
43z —a) (2+3z). .
3.-Add together 4/3 + 24/6 + 34/5 ~ 4/x ; 24/3 —34/5 - 4aa®~4/x,
24/5 = 3y/z +@%x% - 4/2; and 44/6 ~ 30%x = By/z,
4, Multiply @» +-2** ¢ by @ — 2™ "7,
5, Divide a” ~ z™ by a + x to § terms.
6. What are the factors of 22 ~ 14z - 512
7. Divide 1 by 1 - 1, and express the value of the quotient.
8. Resolve al® —x18 into its six elementary factors.
9. Divide atz*m? — 4a’m?z®p 4 4p*n®z? into its factors.
10. Ifa=2, b=3, ¢c=4,d=1, and m =0, nd the value of
Yed(ab + bd) & Yawdn - g a(b+c)- d2+ab) ~ { be(b+ €)+1}
Tbe-m cdm+e(be +d) = b - (a+d +4d)
11. Multiply by detached coefficients z* + 2% + 32% + 2x + 1 by
- 2z + 1, and also a? - 2ab - 3b? by & + 2a% + 3ab? + 4b3
12 D1v1de synthetically x*~ a%? + bz®~ cx? + abx + acz = be by
ax + 2~ c.
13. Resolve a4 ~ mS54 into its elementary factors
14. Find by inspection the value of (a®+ ¢®)(a+ c) (a=c)
(azo_alscz + 0,1664 — a14CG + alzcs__ a10010+ a8612_a6614 +a4L.16
~a%® 4+ c20)(a'® + e+ abc® +a’c® + alet + afct + @t + gt
4 a%c® +ac® +c10) (220 = adc + B ~ aTc® + abct ~ abeS + atcS
- %7 + ac® - acY + ).
15. Ifa- 3 anda+b+c-a+b 0, find the value of
=B {b*+ et~ b(a—c)}
16. Simplify @® - b® — 3ab(a - b) + 3ab(e + b) + a® + B,
17. Simplify a? - m* + 3(a - m)® - 2(%a - 3m)(3m + 2a) ~
2m(bm + 3a) + e(az—mz) + 2m(5a = 2m). .
18. if m = a + b + ¢, prove that
m(m —~ 2a)(m — 2b) + m{m = 2b)(m - 2¢) + m(in - 20)(m - 2a)
= 8abe + (m - Za)(m 2b)(m = 2¢).
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SECTION 1IV.

GREATEST COMMON MEASURE AND LEAST COMMON
MULTIPLE.

GREATEST COMMON MEASURE.

84. The greatest common measure of two or more
algebraic quantities is the letter or quantity of highest
dimensions that will go mto each of them without a
remainder. -

Thus, the greatest common measure (G. C. M.) of 4a2xy and 6a2zz? is
2a2z; the G. C. M. of 3x3y -21x2y and 2abx - 14ab is -7 or 7T-x.

85, — The words greater and less are not generall§' applicable to
algebraic' expressions, unless when specific numerical values have been
assigned to all the lettors which occur in them. Thus, z -7 is greater or
less than 7- 2, according as we assign different values to z. On this
account’ the torm’ Greatest Common Measure 'is” incorrect as employed in
Algebra, and, as we merely use the expression to indicate the common
divisor of highest dimensions; 1t would be more accurate to. call it the
highest common measure,

86. TaeoreM 1.—If a quadntity measure another quantity it will
also measure any multiple of that quantity.

DEMONSTRATION.—We are to show that if m measure « then it will also
measure io, any multipl'e of @,

Let m be contained » times in @. Then ¢ =mm, and fe = tnm. Now
 evidently measures inm, therefore it also measures its equal fa.

87 THEOREM II -zIf one quamtzty measure two other quamtztzes
then it will also measure the sum or difference of any multiples of
those two quantities.

DEMONSTRATION.—We aré to show that if » measure o and also d, it
“will likewise measure na T pb.

Since m measures o and b by hypothems, it also (Theor. T) measures ne
and pb Let m be contpined ¢ times-in’na and s times in pb; then na
— th and pb = gm. 'Therefors %z 1 pb = tmt sm= (¢} spn. That is,
m ig.gontained (¢ L 5) times inna * b and is therefore a measure of na T ph
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88. The G. C. M. of two or more gquantities can often
be found by inspection or by the following :—

Rune.—Resolve cach of the quantities into its component factors :
then the product of those fuctors common to all the given gquantities
will be their G, C. M.

Ex. 1. What is the G. C. M. of 49a®%c* and 63a5b% ?
49a?b%ct = Ta?b*® x Tc and 63a%6%® = Ta’b%?® x 94%b, whence it
is evident that the G. C. M. required is 7a?b?c®,

Ex. 2. The G. C. M. of m*(a®-m?)? and (a%m +am?)?;

that is, of m?(a*~m?*) (¢* -m?) and {am(a+m)}.

that is, of m*(a+m)(a—m)(a+m)(a-m)and &*m® (¢ +m)(a+m)
(e+m); '

that is, of m%@+m)* (a = m)* and m*(e + m)* (a +m) a*m is
mi(a+m)

Ex. 3.—The G. C. M. of 15(a*- 2ax — 3a%) and 35(a® + ¢%),

that is, of 5 x 3 (z+a) (x-3a¢)and 5x 7T (= +a) (z*-azx+a?);

that is, of 5(z+a) x 3(x ~3a) and 5(x+a) x T (¢~ ax + o?) is
5(x+al. T
Exercise XXI.

Find by factoring the G. C. M. of

1. 18ab®m and 240%%n®.
-2. 21a*m? 18a°m® and 15a®m*, )

3. 8a’z%y + 1Tamzy - 3a?m*s?y and 5xy + Suxy — 14alsty,

4. 2%+ 2x —~ma®— 2mx and %+ 42+ 4 +ax + 2a.
3a? (¢® -a?) and 4a%2? (a-x)%
. 3m¥(a® - m’) (e+m), dm(a®m ~m?)? and 4m*(a®~m?) (a-m).
. 22— 42 -21, 2~ 12z + 35 and 2%+ 52~ 84.
. (az - a)? and a*(z? -3z +2). '
. x+3z~4, 2% ~2z+1 and 22-~1.

<t
h

© W.ia3 O
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89. To find the G. C. M. of two polynomials:—

Rure.

1. Strike out the greatest monomial fuctor (if there be any) which
s common to all the terms of both polynomials, and reserve
it. :

II. Reject from cach of the polynomials ‘tmy remaining monomial '
factor that may be common to all ils terms.

TIL. .Arrange the resulting polynomials as for division, i.2., according

" to the powers of the same letter of reference, und make that
one the divisor whose first term is of lower, or of not higher
dimensions, as to the letier of reference, than the first term
of the other.

IV. Multiply (if necessary) the dividend by the least monomial
that will render- its first term exactly divisible by the first
term of the divisor.

V. Divide the dividend by the divisor and continue the division
until the highest exponent of the letter of reference in the
remainder is less than the exponent of the letter of reference
in the first term of the divisor, observing that if the coef. of
the first term of any particl rem. should happen not {o be
divisible by the coef. of the first term of the divisor, in order
1o avoid fractions, the rem. is to be mulliplied by such «
niumber as will render the coef. ‘of ils first term exactly
divisible by the coef. of the first term of the divisor. -

VI. Reject from the remainder its greatest monomial facto}‘, and if
its first term is negative, change all its signs: consider the
result us constziutmg a new divisor and the former divisor
a new dwuiend proceed as. befm e, and conlinue lhe opera-
tion untzl there is no remwinder,

VII. Multiply the last divisor by the reserved monomial, if dny ’
and the product will be the G. C M. of the given polynomzals

PROOF.OF RULE. —The G.C. M. of two quantxtles is ev1dent]y the product
of all the factors common to both. Hence if we reject any menomial faotor
common to both (a.s ‘we may do for the sake of convenience) we must still
regard this factor ‘a8 éntering mto'%he G‘r. C, M and therefore We reserve
it
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II.—Since the G. C. M. of two quantities-is the product of all the factors
which are common fo both quantities, it is evident that a factor which
belongs only to one of the two cannot form a part of their G. C. M., and
therefore we may, for the sake of abbreviating the work, reject as directed
in XI.

IV.—Having by II struck out every monomial that is a factor of either

. of the quantities, it is evident that if we multiply the dividend by any
monomial in order to make its first exactly divisible by the firet term of the

. divisor, this monomial not being a factor of each of the terms of the divisor
(though it is of the first term) cannot he & factor common to both dividend
and divisor, and therefore cannot form part of their G. C. M.

1L, V, VII.—Let the given polynomials whose G.C. M. is required be
m2aue and m2fb, where m2, n and f are monomials, After

bla(p striking out and reserving the common factor m2, and
bp rejecting from the remainders na and fb, the factors n
';5‘ b(q and / which are not common to both; then the reduced

polynomials whose G.C.M. is sought are @ and b. Suppose
2 these being properly arranged, the leading letter of b is of
d)e (r lower or not higher dimensions than that of @¢. Then
dr divide and suppose @ =+ b gives a quotient » with rem. c;
— also b+~ ¢ gives quotient ¢ and rem. d; also ¢ -+ d gives
quotiont  and no rem. Then dis the G. C. M. of & and b,
‘We shall first show that ¢ is 2 common measure of @ and 5.
Because d measures c, since it goes into it without a remainder, therefore
(Theor. I) it measures g¢ a multiple of ¢.
Because d measures d and also ge, therefore (Theor, II) it measures
their sum, which is &,
Because d measures b it also measures pb, a multiple of b.
Because d measures pb and algo ¢ it measures their sum which is o.
Therefore 4 measures both b and «, and is a common measure of them,

Next we shall show that ¢ being a common measure is the greatest
common measure of @ and .

For if d be not the G. C. M. of & and & let there be a greater ag d',

Then because d’ measures b it measures pb, a multiple of .

Because d' measures @ and also pb, it measures (Theor, II) their differ:
ence, which is ¢.”

Because d' measures ¢ it also measures gt, & multiple of ¢.

Because d' measures b and also ge it measures their difference, which is d:

Therefore d' measuresd, thatis; a greater quantity meastires a less; which
is absurd. -

Therefore d' is not & common meastrs of ¢ and b ;5 and in like manner

it may be shown that no quantity greater than d is a common measure of
@ and b, Therefore & is the G, Q. M, of ¢ and b,

!
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V.—We may multiply any remainder by any number in order to make
its first coef. exactly divisible by the first coef. of the divisor, because the
G. C.M. of @ and b is the same as the G. C. M. of any divisor b and rem. c.
If now we multiply this rem. ¢ by any monomial asf, the divisor b having
no monomial factor, can have no factor in common with £, nor therefore
any in common with /¢ biit what it may have in common with ¢. That is,
the G. C. M. of b and fe will be the same as the G. C. M, of b and ¢, and
therefore the same as the G. C. M. of @ and b.

VI.—We reject the monomial factor of the remainder before making it
a divisor, because the former divisor, which has now become a dividends
contains no monomial factor, and therefore can contain no factor in com-
mon with the monemial rejected from what now becomes the divisor, and
therefore the G. C. M. of the dividend (last divisor) and the unreduced
divigor (1. e. last rem,) is the same a3 the G. C. M. of the dividend and
divisor reduced as directed.

‘We can change all 'the signs of the divisor because this is equivalent
merely to dividing it by - 1.

Ex. 1. What is the G. C. M. of - 10z +21 and x*~-22-35?
OPERATION,

2?2 =10z +21 ) 22— 2x-35(1
z% = 10z + 21

8z - 56 = 8(x - 1)

z2=-T)22~10x+21 (-3
A z% - Yz .
~ 3z +21
-3z +21

S CM=z-1,

EXPLANATION.—There is no monomial factor common to both, nor is
there any monomial factor common to all the terms of either. Therefore
we at once proceed to divide, 2 being taken ag letter of reference; the first
terms of the given quantities are of the same dimensions, and consequently
it makes no difference which is taken as divisor.

Aftor the first step of the division we obtain a remainder 8x - 56, and

* before using this for divisor we strike out its monomial faetor 8. This

gives us z ~ 7 for 2nd divisor. We make the last divisor the new divi-

dend, and finding that we now obtain no rem., we conclude that the
G.C, M.isz-7. 7



62 GREATEST COMMON MEASURE. [SEor. IV.

Ex. 2.—Find the G. C. M. of 2at + 3¢z — 9a%2? and ‘6atz
- 17a%?% + 14a%c® ~ 3axt,
' ’ OPERATION.

6atr ~ 17a%z? + 140%2% - 3axt a x x(6a® - 170% + 14ax?® - 3x%)

20% + 3a%z — 9aZc? B a x a(2a® + 3ux - 9x2)

202 + 3ax - 92% ) 6a% - 17a’x + 14ax? - 32° ( 3a - 13x
6ad + 9a’x ~ 27ax?

.~ 260%z + 4lax? - 3x°
- 26a%x — 39ax® + 117z*

80az? ~ 120x3 = 402%(2a — 3x)

2a¢ - 3z ) 2a* + 3ax - 92% (¢ + 3z
2a® ~ 3ax

8ax — 9x?
6ar — 922

G. C. M. of the reduced polynomials = 2a - 3x and reserved
common factor =a.
Therefore G. C. M. of given quantities = «(2¢ — 3zx).

ExrrLanNaTioN.—Here we strike out and reserve the monomial factor ,
which is common to both quantities, and strike out and reject the monomial
factor 2 of the second quantity and remaining monomial factor @ of the
first. ¢

‘We select the divisor as shown in the margin, because a2, its first term,
is of lower dimensions than a3, the first term of the other. OQur first rem.
is 80az2 - 12023 from which we reject its greatest monomial factor 40z2
and this gives us 2¢ - 8 for a new divisor, the last divisor becoming the
pew dividend.
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Ex. 3.—Find the G. C. M. of 6z - % - 3222 + 3z — y* and
9zt - 32%y ~ 2272 + Sry® — 94,
OPERATION.

6% ~ 2% - 3z%* + Bay® - y* ) 9z% - 303y ~ 22 4+ Bxyd -yt ( 3
9

18xz*% ~ 6a’y — 4a%® + 8y’ - 2yt
18z* - 3x."*y ~ 9x%y® + 9zy® ~ 3yt
~ 323 + 5%y — 3z + y*
°= = y(32® - By + 3xy% ~ o)
3% - bx’y + 3wyt - y° ) 62t - Yy ~ BxHyP 4 3;cy3 -yt ( 2z +3y
6x% - 102% + 62%% ~ 2zy°

9xy - 9:82_312 + 5z -yt
9x% — 152%% 4 9xy® ~ 3yt

6x%y? — 4y’ + 2yt
= 243(3x% ~ 2xy + %)

3x2-2xy+y2)3a:3-5x2y+3ac_y2-y3(x-y
32® ~ 2x%y + zy?

- 3:1:2;!—-;;3/2 -y
- 3% + 2zy% - o*

Therefore G. C. M. = 32% - 2zy + 32

ExpLaNATION.—Here, after seeing that the terms are properly arranged
and that there is no monomial factor to reject, we multiply the dividend
by 2 in order to make its first term exactly divisible by the first term of the
divisor.

Before making the rem. a div. we cast out itse monomial factor y and
change all its signs, or, what amounts to the same thing, we cast out the
monomial factor - y.

Before making the next rem. a new divisor we cast out its monominl
factor 2y2. .

Exercise XXII.

Find the G. C. M. of—
1. 2% - 6z~ 14 and 2% = z 6.
2. z* 7 8%+ 21x% - 20z + 4 and 22° - 1222 4 212 - 10
3. ¢¢ - ax - Ta + T and o® - 3a + 32 - d’x,
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. 2% 4+ 2% = 12z and z° + 422 + Bx + 20.
— 3ab + 2b2 and a? - ab ~ 2b%
o — a?b + 30b? - 3b* and a? — Bab + 402
7. 30x% — 182% + 942® — 422 + 56 gnd 60x6 —~ 362% + 48z%
- 45x° + 422?% ~ 45 + 12, '
8. 6a% — 6atby ~ 2by°® + 2aby? and 12a% + 3by® - 15aby.
9. a4 94?4 27a ~ 98 and a? + 12¢ - 28.
10. 8a3b? ~ 24a%b% + 24ab* ~ 8b° and 120? — 24a% + 12472,
11. 6a® + 20at — 12a° ~ 48a% + 22a + 12 and b + 4a’ - 3a¢
~16a% + 1162 + 122 - 9.
12. 26° - 2a% - 16ad? + 126° and 3atc - 9a’be - 24a%h%c + 54abic
- 24b%c,

o oo

90. To find the G. C. M. of three quantities :—Find
the G. C. M. of two of them, and then of this G. C. M.
and the third quantity. To find the G. C. M. of four
quantities :—Find the G. C. M. of any two of them, and
then the G. C. M. of the other two, and lastly the G.C.M.
-of the two greatest common measures thus found.

LEAST COMMON MULTIPLE,

91. The Least Common Multiple (1. e¢. m.) of two
or more algebraic quantities is the quantity of lowest dimen-
sions, as to the letter or letters of reference, which exactly
containg each of the given quantities.

Norz.—Of course there is the same objection to the use of the word

¢ least”’ here as to the word ‘“ greatest’” in regard to common measures.
1t would be more correct to use the term lowest common multiple,

92. To find the 1. e. m. of two or more algebraic
quantltles —_

RuLe.—Divide their product by their G. C. M, ’

Or, Divide one of the given quantities by their G. C. M., and

multiply the quotient and remaining quantity or quantztzes together
for their 1, c.m,
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Proor oF RurLe~—Let it be required to find the 1. ¢. m. of any two
quantities @ and b, and let m be the G. C, M. of these quantities.
Let a == pm-and b = gm, and m being the G. C. M. of aand b,.it fellows
of course that p and ¢ have no common factor. Then pg = legst quantity
- that contains both p and ¢, and mpg = the least quantity that contains p,
¢, and m, and therefore — the l. 6, m. of ¢ and . Then ], 0. m, = pgm
__ pmXxgm aXb a b

m = Py or—ﬁxbor:axa.

Ex. 1. Find the 1. ¢. m. of 18a%z% and 15ax’y%.
OPERATION.

G. C. M. of 184%% and 15az%% = Baz¥y.
18a%2%

) _ a2 = = 9 2, 3 = « o .

Then 3a = ;5awy 6a x 15ax% = 90a%%? = l.c.m

Ex. 2. Find the 1. ¢. m. of 4*+ 3a* +5a¢ + 3-and @® +d*+a-3.

OPERATION.

G. C. M. of a®+3¢® + 52 +3 and a®+a®+a -3 = a? + 22 + 8.

a®+3a% + 5a +3
a? + 2a + 3

+2¢%~2a-3 = L. c. m,

= a+land (®+e?+a~3) x (a+l) = a*+2a°

93. Very frequently the 1. c. m. can be most easily obfained
by resolving all the given quantities into their prime factors, and
multiplying together the kighest powers of all the factors that occur
in order to form the l. ¢, m,

Ex. 1. Thel.c.m. of 2°~x, 2°~ 1 and z%+ 1 ; thatis, of z(a?~1),
28—~ 1,and z°+1; that is x(z = I)(z-+ 1), (x - 1)(z*+z +1)and
E+) (@ -z+1) = a(@z~-1) (F2+2+1)(z+1) (P-x+1)
=z@-1)(@*+1) = z@f-1) =2 -2,

Norr.—Of course the same factor is ohly to be taken once in the 1. ¢. m,
although it may occur in each of the given guantities.

Ex. 2.—The L c. m. of 4(a® — zy%), 20(a® + 2%y - zy~9%),
12(zy? + 4¥), 12(x?+zy)? and 8 (2° -2%) ;

that is, of 4z(x?-y?); 20 {(2%+2%) -(xy?+9*)}; 1293(x +9) ;
122%(z +y)? and 8x%(x~y) ; .
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that i3, of 4z(x +¥)(x ~¥); 20 {2%(z +¥) ~¥%(x + y)}; 124%
(E+y); 122%(z + y)?, and 82%(x -y) ;

that is, of 4x(x + y) (z - ¥); 20(z+y) (2%-9%); 12y%(z +v) ;
122%(x + )% and 82%(z - ¥); . )

that is, of 4z(z +¥)(z ~ ¥); 20(@ +¥)° (x~y); 12%(z+y);
122%(z +y)? and 8z%(x~y) is equal to 120x%%(x+¥)% (x-vy) =
'120:czy2(:c3 + 2%y - 2y - %) ’ ’

Exercise XXIII.
Find the 1. ¢. m. of—

. 2a%z, 3zy, 4ab®y, and - 32%2,

. 2a?, 3y, 4y2? - 2a%, and - 22%,

(=-9), 2% -1)% and (z - )%

22—yt a® -y?, and 2% —y*, _

(z—2%)% (2? = 1), and 4(1+ z)z.

4(a—Db)?%, 6(c* —b%), 6(a®+0b%), and 9(ab ~ b6).

. (z2-3%), (2*-10z +21), and 2%~ Tz,

. (6®-2%), and (a®+zx - az - a).

. a®~9a%+ 26a— 24, and a®- 8¢®+ 19a ~ 12,

. 3(a®=b%), 4(a~Db)" 5(at~b%), 6(a-b)? and (a?-b%)3, -

S OB TS G W

.

SECTION V.
FRACTIONS.

94. Algebraic fractions are iy all essential respects simi-
lar to arithmetical fractions, and the rules for operating

upon them are the same as those for common arithmetic,
and are deduced in. the same manner.

95. Since the value of a fraction is the quotient, which
is obtained by dividing the numerator by the denominator,

we infer the following prineiples, npon which the principal
rules are founded ;— '
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1. That multiplying the numerator, or dividing the denominator
of a fraction by any quantity, multiplies the fraction by that quan-
tity.

N 1L That dividing the numerator, or multiplying the denomina-
tor, of any fraction by a quantity, divides the fraction by that
quantity.
~ III. That multiplying or dividing both numerator and denomind-
tor of a fraction by the same quantzty does not change its value.

98. These principles are, however, susceptible of general
proof, as follows :—

1, Let — be any fractlon and m any integer, then —bn- % X m. For

in each of the ﬁ‘acnons —b and = the unit is divided into b equal parts,

and m times as many of these parts are indicated by the latter fraction as

by the fornier Conversely 3 = E”;_ﬁ - m.
Again, let b7_ be any fractlon and m uny integer, then _b "b% X m.
 For in each of the ﬁachons % and IT thé same number of parts

is taken; but each part of the former is lmth of each part of the latter,

therefore each part of the fatter fraction is m times larger than each part
of the former; and since the same number of parts is taken of each, it

follows that the latter fraction Z— is m times greater than the former frac-

tion =
bm
II. The proof of this is simply the converse of the above.

: . am a 3 am

That is, since =5 = 5 X 7, conversely = 5 = m.
« a 2 a
i —_ = — ¢ ly —— = — = .

And since 3 o X m, converscly . 5 m.

II1. Since both multiplying and dividing any quantity by the same

number does not change its value, if we both multiply and divide — by m,

its value will remain unaltered But (I) — X m = b ——; and (II) e
—m o= ZTn = b —,ie., al‘chougg the parts in the former fraction me

each but‘ th of each ot thosg in the latter, m times moro of them are taken,
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am amlm-1 am0 o
—_—= Cor.) — —— = — because m9 =1,
Or, ol 3 (Art, 89, ) 3 3 b
b
And since a +m = A — landb--m=—< m= bm-1, Therefore
m
—_ -1 mm = amo
‘L_"E =lﬂ. :?m_lzz———za—becausemo=l.
b+—m b1 b b b

97. The following facts should be borne in mind by the
student :—
~ 1. Any integer may be expressed as o fraction having 1 for

a
denominator. Thus, ¢ = T
B

11, Any quantity divided by ilself equals unity. Thus, 5= 1.
I, Any integral expresssfon may be expressed as a« fraction
having o given denominator, the numerator being obtained by mul-
tiplying the given expression by the proposed denominator.

Thus, let it be required to express ¢ as a fraction with denominator b,

(Art. 97, I), a = ;1, multiply both numerator and -denominator by &,

wo get a — 2 = a_b
1 b
\IV. The signs of all the terms of both numerator and denomina-
tor may be changed without altering the value of the expression,
this being equivalent to merely multiplying both numerator and
denominator by - 1. :
2¢ — 3b + 4em -2 3b — 20 - dem + x?
3+2m-3*~3c  3c-8 —2m +3°
V. All the rules and formule in fractions hold whether the letiers
employed represent integeral or fractional, positive or negative
quantities.

Thus,

98. To reduce a fraction to its lowest terms :

RuLe.—Divide both nwmerator and denominator by their G.C. M.

Note.—The student should always endeavour to factor the numerator
and denominator so as to find by inspection the G. C. M, when it can
be g0 found. Otherwise he must find the G. C. M. of the two terms by
Art, 89, )
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atmzy  amz xay @y
Ex. L y S

amx? amzxz T
&%+ 307 _ d*(1+37) 1+3x
Bx. 2. 202 - 3a%m + a¥F a2 - 3m+ 9% T I sm+yr
e s T (@R (e=s) (@ +a)(at)
"7 20+ 2t (2 -x)(a-%) a~-zx
a® + a%r + ax? + 2 '
= a-zx. ’
Ex. 4 @ = 6a - 27 - (¢ +3)(e~-9) - -9
"% @18a+15  (a+3)(a+b) a+b
Z-zy+tmz-my z(@-y)+m(x-Yy)
Ex. 5 =

Tattaytmzimy  T(xHy)+m(z+y)
_E-p@E+m) =z-y
T @ty (z+m) x4y
% 2°-~-8T+3
Bx 6 TRt ra s
numerator and denominator is x + 3, and dividing both terms
(x®-8z+3) + (x +3) 22-3z+1
(z6+3.25+:c+3‘)-.‘-(a:+3): 2641

Here (Art. 89) the G. C. M. of the-

by x + 3 we get.

Exercise XXIV.

Reduce the following fractions to their lowest terms :—

a% - ab 2am + m*z ~m? c+ac -
L. ax 4oy’ ' 3aPm+m? - ntaen
a%b + 0%+ a’bm abc? ax?y?
S Tarrbzia T D @bd O dametasy F ol
21x%?~352%2% . a-~m, A+ b a?-2ab+b?
7. — T 8-'Aa?;-m2"' T
a® 4+ b® af —~m8 at — mt
11, =35 Add, ——————, 13. 5%
af b ST (e+mY(a—m) a’ = o m
Yo% =21z + 35 22=11z + 28 42 4+ 122 4+ 9
14. 112° - 33 + 58 . a2%— 4r=-231' t22%= Bx ~12

CaB 22ty 4 3utd - A aP e 207 4 2ab%= B7
" 2at 330y - 57yt O atatht e bt
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at — ot . ac+ bd + ad + be
19. & — d'm — am® + m* 20. am + 2bp + 2ap + bm °
a1 @?+ (o + b)a+ ab ” 225 + 2% =8z + 5
a2t (b + o)+ be o Mzt-12z 45
(@+m) (a+m+x)(a+m-x) ) al? § 12
2. 202m? + 2alxt + 2mna? - ¢t~ mé - 2t Tty g2

99. To reduce a mixed quantity to a fractional form :—

RuLe.—Maudtiply the entire part of the quantity by the denomina-
tor of the fraction, and to the product connect the numerator of the
JSractional part by its proper sign. Bencath the whole expression
thus formed, wrile the denominator. :

r+y C@Pm-abmt(@ty)- atm ~ abm + x + Y

Ex.l.a-b+
am am am
3x~2am  4a%® - 8ay® - (3x ~ 2am)
2 —- = h i
Ex, 2. a® = 2ay yw P .

4a%y® - 8ay® - 3x + 2am
= e .

Exer¢ise XXV,

Reduce the following mixed quantities to then eqmva,lent
fractions :—

. 3-2a . 2 3aZ - 30
1. 2az-—y+—. 2. *+a+l+-—— 3, 3a~-y-
ax a-—1 x4+ 3
a+x 3aa? + xy?
4. 3a+y- y 5. 3ax = y*+m = —- y
° at+x
zyz—zzm—2m2z (@~ b)?
6. 2y + mz + ———————, .=, 2L
v z+ dm - (a+) at+b’
8 1 a? - m? 1 a® - 20x + x?
eEre Yl Tare

100. To reduce a fraction to a mixed quantity :—

Rure.—Divide the numerator by the denominator, and place the
remainder, if any, over the denominator for the fractional part.

Connect the frastion thus obiained to the entire part of the quotient
by the sign plus.
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3a% = 12ab + y ~ 9a

Ex. 1 — —(l-—4b-3+_:.
o 34
62% — ax - 2% - ax 22 + ax
Ex. 2, — =2+ ———— =20~ .
3a +1 3r+1 3z +1

Exgrcise XXVIL
Reduce the following fractions to mixed quantities :—

20m? - 20m + 1 , @t 3 i—i—_za:y +_y"+a£“‘_—-_y‘1‘
5m ’ Toa-a” ’ T+y ’
Smé-5pf+3 s l—a=—ab+a®d | A m+ ab +5am
Tum-p ' ab~b ' ’ m+b

101. To reduce fractions to a common denominator :-—

Rove.—Find the I. c.m. of all the denominators ; then taking each
Sfraction in succession, divide this L. c. m. 8y the denominator, and
multiply both terms by the quotient thus obtained.

B .
Ex. 1. Reduce —, —, and —— to a com. denom.
a m mx .

The 1. ¢..m. of a, m, and mx = ama.
amz + ¢ =mx = multiplier for hoth terms of 1st fraction,
amz + m = gx = multiplier for both terms of 2nd fraetion,
amz + mz = a = multiplier for both terms of 3rd fraction,

1 x mx mnx b x ax abx cxa ac

axmer  amx mxar  amr =~ mMLxXa  ams’
A ma abx

Hence the required fractions are , , and .

amx amx amx

i+e 1l+a® 1+a® ) )

Ex. 2. Reduce ——, ——;, and —— toequivalentfractions
1-a" 1-2a° l1-¢

having a common denominator.
OPERATION.

Thel.c.m.of l-¢,1-0%and 1 -a®= (1+a) (1-a®)=(1+a)
(1-a) (1 +a+a?),

1st multiplier= l.c.m. + (1-a)=(1+a) (1 +a+d?);

Z2nd ¢ “  +(1-d)=1+a+ad*; and

3rd € « + (1=a¥) = (L+a).

Using these multipliers the three given fractions become
(1+a) (1+a) (1+a+d®) (1+@)(I+at+dd) QA+ a)(1+a)
(1-a) Q+a)QA+a+d®)! (Q-H1A+a+a?)’ Q-1 +a)

~ (1+a)i(l+at+a?) (1+a?) (1+a+a?) (1448 (1-a%)
ST ita-a—a* 0 lta-dd-at ) Tta—a'~a*"
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Exurgise XXVII.

Reduce the following fractions to others: having a commbon
denominator i~

a b ¢ x 1 a b 2 a
1. rL and pot 2, w —-'E/, and’”Tx'. 3. ?a,’—ﬂ)’andiﬁ‘
1+m 1-m x2 = 42 z+y
1-7 2 Tem Tty and 28+ xy?
3z 4dx+ty 2z ~ 3y 3a 4-=2z 1
aoy wop iy o w2 o
4x 2%+ 1 2
8. a, (T)’ <-ET_—1-), and <x+é—).
1 1
9

* a(atb)’ 3aP(a’~ bz) y and 62’(a+b)’

102. To add or subtract algebraic fractions =

Runs.—Reduce them to a common demominator, then add or
subtract the numerators, and beneath the sum or difference place the
comaon denominator. ’

1-a 1 a2 (l=a)® l+a a?
N W

B L ot it T ioe ti-a T 1-e

1-2+a+1+a+a? 2-a+2d°

= =

1-ad* 1~a® '
Bx. 2 1+a2* 1=2 (1+2%)* (1= 1+2°+at
T P R o S R~ g
1-22%+2%  1+2z+zt~-1+2x-2t 4z
1-at 1-zt T =g
a? a? a(l-a)® (1~
Bx 3 - o kA ek
1-a (1-a* (1-a® (l-a)® (1-a)
N & a(l-agf«d(l~a)+a® a(l-2a4a®)~(F~a)+a?
aQ-ap (1=-ea) - i (1=a)?

-2 +aP~a?+a¥tad  aw=3a*+3ad

(1 ~a) - (Twa)
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@y oy x
Bx 4 ——— — g =
zy(x~y)* = Y
2oy(z-y)*  aP(z-y)*
zy(z=-y)*  wy(z-y)*
_ 22y byt -0 (2f - 2oyt ~2oy(at - Say + ) -a¥(at-2ayi?)
zy(z—y)*
%+ 2242 + yt =22 + 2oyt — y* — 2ady + 42yt - Qxyt - 2t + 20y
: ' zy(x - y)*

2t 22% Yo~ y)?
EGTaTe

Yy

A%yt 4ay

zy(@E-y)?  (z-y)

. Exgrerse XXVIIILL
Find the value of :—

2¢ 3 ¢ z 2 (a-b) a-b a+o
Lo o e~ 2, g e B
b 26 0m ¥y y(x+3) a+db a-b
22 bz a? xy
x 2% b e Y
T 9, @+y) -ty (x+y)?
a=t b-c a-c m
— At — . .
ab be ac m+p m-p
3 4(1~ 5az) e z(lﬁ-x)+ 2z+3 2-3z
142 ~ "42-1 ~ 2a-1 ' P-4 2-z =z+2°
1 1 T+y X~y
10. — ot - (22 .
oy (x+?/)+b =ty ( p B )
m+p N Ptz N mtz
(p=2)(@-m)  (z~m)(m-p) (m-p)(p-=)
a-b b-c ’ 2ab - 2ac
axb T bic b(ate) +e(at+b)—bc—b)"
1. 1 3 . 3
1-z " 1+z " 1-2z 1+2a

1}

11.

12.

13,

‘ m m "
aa-b)a-c)  bl-ayb-c) | ee—ay@e=5)"

108. To multiﬁly fractions together :—

Rure.—Multiply all the numerators together-for a new numeras
tor, and.all the denominators together for a new denominator,

by



74 MULTIPLICATION OF FRACTIONS.  [Sgor. V.
Notz 1.—If any of the given quantities are mixed fractions, they must
be reduced to the fractional form before multiplying.

Nore 2.—Before multiplying the student must, by attention to the prin-
ciples given in (Arts. 70, 80,) strikc out all the factors common to a nume-
rator and a denominator.

@ ;
Proor oF RuLe.—Let it be required to multiply 5 by fT

[ (4] a [ -
Let — = —_— = g — — = ay. = k jmend .
et > @ and a y, then 3 X 7 ay. Also ¢ =bx and c = dy
Hence ac = bday, and dividing each of these by bd we get % = 2y.
But “ % L 2y. Therefore @ % £ _ ac_ product of numerators.
b " a [ bd " product of denominators
l-a @ 1-a)u ¢ —a?
Bx, 1 ool L (oo and
x4y b (®+y)0 bz + by
Ex. 2 x5 =b%d 2%+ bxr  a¥-bx+ bt
X, 2, — X x -
28+ b3 z-b %
L a8 =) x x(x +b) x (2 - bx + b%)
- (23 + 0*)(x - b)a?

L P@=D) (@ 40) X a(z4b) x (o= bz + b9
- (x+0) (x%=-dx +b%) x (x - d) x x?
x%(z +b)

=T = 3 + ba?,

1 1\?% g¢= —1\*% 2 _
Ex. 3. (——)x 1-— :a__lx a__l =a__1
[ a a a a

N a_-_-i N a_-i _ (L—l)z(az—l) at~ 20+ 2a -1
a a @

o "

Exenciss XXIX.
Find the value of :— :

2% 3 2 2
LB W E k) ne-b

_x — hal

5 2e" oy T omy Tz * Ty BT
z+l x~1 a? -~ 2 2. b2
4. 3@ X —— x ——, .__x_xa__bx__a_
2a atb a+b a+zx z(a-z)’
aZ-m? @t 4m2? w22 Aux?

— X . X —,
my m-u 3ax a+x
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8 22-13c+42 x%-9x+20 a b, ¢

-4 a?-1 a-2

75

d m
Pl T woer . by fw A

s S PR Y
z% - a? z:2+bx+ca:v+bc
1. Trbroaz—ab |\ Piczidzted
2 - . 2 -
14. Zf——-‘—l—:leZ_O x Eii—_i; 13-‘(1“""’“2)"(1““1—"’;12)'
‘4&2— 16m? 5a a+2m
14, ——

X X
T a=2m 20a? + 80am + 80m? a

104. To divide one algebraic fraction by another :—

Ruse.—Invert the divisor and prbceed as in multiplication.

Nore 1.—If either of the given quantities be a mixed fraction it must be

reduced to & fractional form before applying the rule.

Nore 2.—After having invefted the terms of the divisor, be careful to

cancel as far as possible before multiplying.

ProoF OF RULE FOR DivisioN.—Let it be required to dividp e by di

]

Put ? - ac— = z; multiplying each of these by we gete— =

o

ad 7 c c ad

. C. o 2L _ M _a
_a:_—b—c-. Buta:_—b—-.fi, therefore PR Pl
= dividend X divisor with terms inverted.
N it A s ot~ at - bt
x.‘ T@EEB T ghobE gy b? " af-2ab+b
(a b) (a+8) x (@ +b%) (a-b) (a+d) b2
@5 @=by (a-b) - @b
Ex. 2 a"‘+y;L ? - ay + Y __413+y“><_(u—y)Z
TTa-y T (-9 d-y T df-ayty

(a+y) (@-ay+y) (@-9) @-y)
e @Ery (@E-ag+yy T %

Z’XE

fl—m. Again multiplying each of these by d we get % = cz, therefore

@
X —
(4
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Exgrcise XXX.
Tind the value of :—

T e+ T a+b
 — %(1—;). 3. —

PR

at - 2% 4 a? + 2% -8 27—
4. e =+ . 5, —— *
2+y - z> 3a z-9

‘jsnor, V.

c_zz:'+ 2ab + b*

a? = 2ab + b?
15x + 56
a? -1z + 12

. a b D
6 u-l—b RV TY YA
( ab—~z6 1 > <a2+a1'+:c"
1. X —— ) X
. a? —2a:c+a:“ a+x a—-zx
" 3¢°-3  a'-1 0. (1 Y
T 20a+b) T 2df42ab’ *z +y
@+ bt aF =07 a+b a=>
-0 " v vr) T \aZt ” a+b

a? - ax + a?
= .
1

+—)+ (2+————>.
Y Yy Ty

105. To reduce complex algehraic fractions to simple

fractions :—

Rure.—Reduce both numerator and denominator to simple frac-
tions, if they be not simple already ; then having thus reduced the

Sraction

whole expression to the form of W—
raction

, mult{ply the extremes

together for a numerator, and the means together for a denomina‘lor‘

3-z
Ex. 1. 1-1z - 3 - 43 - z) - 12-—4:::‘.
ly~a  Yy-4a 3(y - 4a) 3y - 12a
4
1
Bx. 2. .1+a - 1+a T l-a ‘:_1:,1__
1e 2= (L+a)(2-a) =~ =gt
1-a I1-a
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a
a 1
1 T e -1
1+ _
; . a-1 a-1- 1
Ex. 3 ) = =
b 14— 14
a? ! 2 i a*—a
plariy @~
-2 x
a a
a~1
.1 _(e-1* -2+
= - = m = -~ .
a-q
Exzroise XXXI.
Simplify the following complefifractions :—
Y(a-b) a-fr z 2k -4 (x+2)
TN 3 ’ 2 Tl +4(x-3)
14—
a
1+2a 1~2a 1 1
5 M-B(z-a) 1-2¢ ~ 1+2a 1+a 1-a
" @ta) -1 ‘- T-%a L I+ i 1
1+2a 1-2a l-ca 1+4+a
a2+ b? 1+xzélz
. BT @ a-’i_l'_bd . Ty - _‘_'cy/
A 1 B b2 . 1
b.. - a 1 — _-_1_
1= o —
1
. 1-—
a zy
- "é“ ) .
b+ — (1-2m)%+(2m+1)?
e AT TAATRT N
A — I  (1—4m®) ~ (1-2m)*%
10 A S (1 +2m)*— (1= 4m¥)

bdf +be+ef

T adf —ae

(1<2m)? - (2m+1)2
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106. Tarorex.—If any two fractions are equal to one mwtiier,
we may combine, in any manner whatever, by addition and subtrac-
tion, the numerator and denominator of the one, provided we at the
same time similarly combine the numerator and denominator of the
other, and the resulting fractions will be equal.

a

c
That is, ifb = then
at+d c+d a-b c¢-d b d
\T_: y] O —b—z—d—(n); (—;:F(m);
a b a+b c+d a=-b c¢-d
A
a+b _c+d . a ¢ a c
a—b_c—d(vu)’ a+b  cid (v _—_b:c-d(lx);
« atb «+d a-=b
G Tsd @i Tya T oog O &, e
m me ma + nb me + nd
1 - - ¢ e = 2T .
Also, > e (x11) ; v o (xm) ;
ma + nb_mciﬂi (s1v) ; mae + nb_mcind
3 2 P et d poiqd (xv), &c.

Or, The above propositions hold with any multiples whatever of
the two numerators, and olso any multiples whatever of the two

denominators. ‘
T

C‘ﬂ
Also, T (xvi). That is, the above theorem is true of any

similar combinations of the same powers of the numerator and
denominator.

DEMONSTRATION.
. Sincez—zz—.'.:—+1 =:l—'+ 1 or “—“;_b;c;d
(11). Since ZL = (cl_ . Z— -1 =;—“— l.or a;—b = c—dd
(11). Since%—:%.'. 1 +l‘:—= 1 +C—§ or 1 xgv = 1'x f—

b d
that is, - = —,
e ¢
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- [ a b ¢ - b a b
(IY).S1nce-I,——E..b—xc—_d—xc— orc——E'
Since atb c+d a b d  a+d
(v). Since (1) 5 4 an. (1) PR i el
b c+d d ‘a+bd c+d
— = —— X — Of —— = .
11 d ¢ a: c
i a-b c¢~-d d b 4
(vr). Since (1) y C g (1) palel
b c-d d a-b c—-d
X — = X — or = .
[ d [ a ¢
- a-b c-d i tine b b
(vin). Since (1) —5— = —; - inverting by () —
_ d 4 al a+b_c+d a+b b ¢ +d
=sogo also (1) T R e
d a+b  c+d
*eod T asE Teca
s a+b c+d a ¢
(vir). Since (v) T (ur) o Sl
a-b c¢~d ‘a ¢

(1x). Since (v1) 7 pelt (i) Pl

X a ¢

(i). S:znfeb (vix) and (;x) Zth > crd alternately by
™ =aa

. Si atb _« aal a~-b @ A

(zD). 1nce(x)m—can asoc_d_é—..(x.zn)
a+b a-b : .
37 Cild or x1 = vir taken alternately.

¢ ¢ m ¢ m me M

==

X —=——X — 0r — =

(x1r). Since — = T X 7 %, S

me M
(xur, &c.) Since = — .-, all the above changes may be

nb- nd
‘made on these fractions. X
g a ¢ ¢ . a ¢ ¢ a? _
(XVI). mnee b_"E—"b—_xb_-d—x(TOlﬁfﬁ'
@B 3 ar
Similarly il and e And all the above changes

a'n cn .
may be made on the equal fractions = g
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107. TaroreM.—If there be any number of equal fractions, then

we may combine in any manner whatever by addition or subtraction

the numerators, or any multiples of the numerators, provided we

" similarly combine the denominalors, or the same muliiples of the

dcnominators, and the resulting fractions will be equal to any one
of the given fractions and to one another, ‘ '

. T
That is, 1fb~ =7= 7
6 atcte matnctpe

Then 5= bidif: mbindipf'

a ¢ e
DemonsTrATION. Let . 7 =z coe=bzc=dz,
ande=fr, s.atcte=bridetfr=(btdtf)x.

Dividing each of these equals by (b '+ d + f) we get

utcte but o a atcHte
r o= = = .=
Thrdrs U T 0 b Thidey

Again, since a = bz, ¢ = dr, and ¢ = fx,

. ma = mbx, nc = ndx, and pe = pfir.

And ma & ne ¥ pe = mbz + ndx + pfz = (mb + nd 1 pf)
_maincipe a a ma + nc + pe

_mbind—;;{fbu TER b_=1nbindT_pf'
a ¢ e a* v
It follows that l.fb— =7= 7 then g e and therefore
(A L L & - ma® 4 nc® & pet

ﬁ = WdTiF, and therefore also b_"' = m_—bmm.
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SECTION VI.

SIMPLE EQUATIONS.

108, An cqucmon congists of two algebraic explessmnb
connected by the sign of equality.

Thus, 8a + 2 = b —m?2 ; a.3—.z.2+3 +\/ab——7n;u:v—b:0.are
equations.

Nore.—The part that precedes the sign of equality is called the first
member or left hand side of the equation; the part that follows the sign of
equality is called the second member, or right hand side of the equation.

109. An identical equation, or an tdentity as it is
termed, is an equation such that any values whatever may
be substituted forthe letters it involves without destroying
the equality of the two members.

2 z; — are identitics, because no

Thus, & z? =(a—z)(e+2) + matterwhat numerical value
4(a + b) (¢ + b) = 4a? + 8ab 4 402 } may be assigned to'a and x

! or to « and b, the members
Het2) - Ho—a)=a J are cqual to one another.

110. All other equations are called equations of conds-
tion, and the equality existing between the members holds
only when particular values are assigned to some particular
letter or letters involved. ’

111. The letter or letters for which such particular
values must be found, are called the unknown guantities,
and are generally represented by the last letters of the
alphabet, 2, y, 2, w, &e.

112. An equation is said to be satisfied by any value
which may be substituted for the unknown quantity with-
out destroying the equahty of the two members of the
equation,
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113. The solution of the equation is the process of
finding such values for the unknown quantity or guantities
as shall satisfy the equation.

114. A root of an equation is any value of the unknown
quantity by which the equation is satisfied.

Thug, 4 is the oot of the equation z — 3 =1. .
1),;* and — ¥ arc the roots of the cquation 252 — 20x — 12 =10.
2, 5, and — 7, are the roots of the equation %3 — 832 = —70.

115. An equation which involves only one unknown
quantity is said to be of as many dimensions as is indicated
by the exponent of the highest power of the unknown

quantity that occurs in it.
Thus, 4z — 8 =11 equations, or equations of the firs?

2a{x — m) + x =02 —m ) degree.

622 —2z 4+ 80= 0} are equations of two dimensions, or quadratic

cx? +2ax=1> equations, or equations of the second degree.

48 — 11222 41092 — 27 = 0} are equations of three dimensions,

‘%are equations of one dimension or simple

or cubic equations, or equations of
23 — 152 + T4r—120—=0) the third degree.

24 —T4x24 1225 =0 are equations of four dimensions, or
biquadratic equations, or equations
2t —du3 - 622 — 4w —5=0) of the fourth degree.
116. It will be shown hereafter that an equation involy-
ing only one unknown, has as many roots as it has dimen-
sions, and onfy as many.

Thus, a simple oquation has only one réot.
a quadratic equation has only two roots.
a cubic equation has only three roots, &c.

117. The solution of simple equations involves the
following principles :—

1. Any term may be carried from one side of the equation to the
other, or TRANSPOSED, as it s fermed, by changing its sign. -

Thus, if 42 — @ =7 4 m, then 4 = 7 + m'+ a, this being equivalent to
adding + @ to each side of the equation (Ax. 11).

So_ if2z — @ = 4b + z, then 2z -~ £ = 4b 4 a, this being equivalent to
adding + @ and —  to each side (Ax, 11).
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II. The signs of all the terms of both members may be changed
without altering the equality of the two members.

Thus, if8¢ — 4z +b=—m + av —¢,
Then also,—3a + 4x —b=m —ax 4 .

Nors.—This is equivalent to transposing every term, or to multiplying
both sides of the equation by ~-1, which of course does not affoct the
equality, '

III. An equation, any of whose terms involve fractions, may be
cleared of these fractions, i. e., converted into another equation not
involying fractions, by multiplying each member by the L. c. m. of
all the denominators of the fractions.

Thus, if g- + g- + :— + :— = 20, and we multiply each side

by 80, which is the 1, ¢. m. of the denominators, we get 1562 4 10x + 6z
+ 52 = 600.

Note.—This is merely multiplying both members of the equation by the
same quontity, and, of course (Ax, 1v), does not destroy the equality,

1V. Both’ members of an equotion may be divided by the same
quantity without destroying the equality. Hence, having reduced an

© equation by the foregoing principles, should the unknown gquantity

have a coefficient, we may divide each member by that coefficient,

Thus, if 112 — 44, then dividing each member by 11 we get x = 4.

118. TugorEM.—A simple equdtion, or equation of the first
degree, involving only one unknown, can have only one root,

DEMONSTRATION.—BYy transposing all the known quantities to the right
hand member, and the unknown quantities to the left hand member, every
simple equation c¢an be reduced to the form ax = b.

If it be poseible let gz = b, have two dissimilar roots ﬁ and ¥-

Then a,[j — b and also ay= b, and by subtraction aﬁ —ay=b—0=0,

- that is, o — y) =0, which is absurd, because, by supposition, 3 —y does
not =0, nor does ¢ =0,

Therofore ax == b cannot have two roots.

~ '119. From Art.117 wé get the following rule for solving
a simple equation involving only one unknown quantity.
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1. Cleur the equalion of fractions, and, if necessary, of brackets
also. .

1. Transpose all the lerms involving the unknown gquantity to the
left hand member of the equation, and the remaining terms
to the right hand member.

II1. Collect, by addition and subtraction, as far as possible, the
several terms of euch member into one ferm, i. e., reduce each
member to its simplest form.

IV. Diuide each member by the coefficient of the unknown quantity,

EX. 1. Given 8z + 7= 2z + 43, to find the value of z.

SOLUTION.
8z + 17 =2x+43 )
8r—2x=43-1 () | = (1) tronsposed.
6x = 36 (1) | = (ar) collected.
z=6 v) | = (u1) + 6.
. x x x :
Ex. 2. Given 7 + 77 + 14 to find the value.of z.
SOLTUTION.
x x Z
2 + 3" T + 14 ()
6x + 4x = 3z 4- 168 () | = (1) x 12, the L.e.m. of 2, 3, 4,
6x + 4z — 3x = 168 (mr) | = (1) transposed.
Tx =168 (1v) | = (1) collected.
T =24 (V)| = Q@vys1.

2+ 6 . 11z -37
=5 + T to find the value

‘Ex. 3. Given 3z +

of x.
SOLUTION.

2z 46 5 11z - 37

—5 ®

3z +

30x + 42 + 12 = 50 + 55z ~ 185 (1) | = (1)) %10 (l.c.m. of 2 and 5)
30x + 42 — 552 = 50 — 185 — 12 (ur) | = (1) transposed. -
= 21x = — 147 (v) | = (1) collected,
w= ™ = @) 511,
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279-9x  Br+ 2 r' 22 + 5 29+4x

Bx. 4. G1venx+——4— ——é__ 5y ~ "1

to find the value of x.
SOLUTION.

27-9z B5x+2 2z+5  29+4%
e A I
122481 -2z - 102 = 4 = 61-8z ~ 20-29—4a |(1)*| = (1) x 12.
120272 -~ 10z + 82+4x = 61 —~20—29+4 - 81 |(ur) | = () transposed.
-13z=~65 (V) | = (1mr) collected.
=5 (M=0v) +~13.
* NoTe.~The stndent must remember fhat the separating line of a frac-
_tion acts as a vinculum to the numerator, and that in clearing of fractions

a minus sign before the fraction has the eﬂ‘ect of changing all the signs of’
the numerator. .

®:

6x+1 2x -1 22 -4
5 6  Tx-16

Ex. 5. Given

SOLUTION.

6x+1 2z-1 2z -4

5 "5 "o @

30z — 60

Tz - 16

30 — 60

* e o1e | W

28 — 64 = 30z - 60 | (1v)

282 — 30x = -60+64 | (v) (1v) transposed.

~2x=4 (v1) [= (v) collected."

r==2 (viD |= (v1) + - 2.

i

6x+1-6x+3= (*[= (1) x 15,

(1) collected.

n

"

() x (Tx ~ 16)°

I

% NOTE.—When one of the denominators is 4 binomial or trinomial, itis
commonly best to first multiply ench member by the 1, ¢. m. of the other
denominators, and reduce the resulting equation as much as possible before
multiplying by this compound denominator. This is especially the case
when one of the remaining denominators containg the others, as in this
example.

Ex. 6. Given % (x-7) = %.(a"." w2 f(z-Pto ﬁnd the value
of =,
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SOLUTION.

We-D=bE-=iE-9 | O
3(r-H=4Fx-P-6(x-3 (1) | = @) x12.
3x—% =4z —n— 62+ 20 (ur) | = () cleared of brackets.
3x~Ax+ 6z = ~nt+2n+¥ @v) | = (u) transposed.

br=n+¥ ™) |= @) collected.
262 = 5n + 3n (v |= () x5,
25z = 8n (vi) | = (VD) collected.
z=Hn (vin)| = (vi) + 25
von =+ 2 & L2 to find the valuo of
Ex. 1. leen—b—x+g+d—x+fz—t,,o nd the value of z.
SOLUTION.

. b [ a
e Tttt e O
acdf + b2f + b2+ bed® = bedfgz | () | = (1) x bedfx
acdf + b%df+ be?f + bed?

z = bedfe (In) = (1) + bedfg
. (a+bd)z x z+1
Ex. 8. Given “t TEEC G s to find the value of x.
SOLUTION. -
(z+b)x z x+1

a-b TalpT a+b ®
(e+bd)x+zx = (a=b) (z+1)| ()| = (1) x (e-b%)
afz 4+ 20bx +b¥r+x = ax = bx +a-b| ()| = (u) expanded.
a’z + 2abx + b +x — ax +dx =a-b| (1v) | = (1ur) transposed,
(@P+2b+P?+1~a+d)z=a-b) (v) | = (1v) factored.
a-b
@b+ b l-a b ™

= (v) 5 coef. of z.
Exercise XXXII.
Solve the*following equations :—

Lato =71
cT =T
T3 4
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z
2.21:—E~/=.7;+4.
3. 9 x x 3z - 11 : 9
. 1—3 +7 = 4—+CL+ .
3z -1 x + 8
4.9z -~ T+ ——— = _om,
5 2 T -5 3 r -7
. - 7 = - 4—.
6. 4 2x 3z +1 6
L 4r - — = ———— 4 T + 6.
3 5 ‘ot
7. 2z - 164 =3 + Jx.
8 z+3 zx+4 1 z +1
cTa T s T T T e
22+ 19 Tz +11
9. 4x —~ = 15 - .
5 4
10 Tz N Z. 31z -
,—9‘+33 = 21 - 12——. v
1 8z - 17 14z + 17 3l -z
T T
12 4z 4+ 4 _'2+14-—3x
A8 T3 - = 3
13 3 dr -5 n 2~-6x 3z+1-
DBt fm = Wk
z 3z -5 28x-9. Mz -z +2 9 - 53z
14, - +—— - —“—— =1~ - .
S12 00T 5 ' 8 6
- z oz 3z-1 ) 92
.l+2 + 4—-—5 = 44X = ay. .
5@x-1) 97—z
16. 21 = ————2 sz s (Bz=11)-9
8 2 ’
17 z z * T = .
Lo = — 4 == = — +
z Ty trte e T g
.
18. 21——F+lq=§m
19 36 + 20z - siie 52520
T A L P T
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20.
21.

22.

23. 6z

24. b

25.

26.
21.
28.

29.

31.

32.

33.

34,

35, ~—

36

37,

38.
39,

" 40,

41,

SIMPLE EQUATIONS. {Smop. V1.

431 3 12+7x+9+5a:_3x—13 11z — 17
TR o " 16 "~ 8
9x+20 4r~12 =z
36 b4 4
jr+ Mz +3)-}(x ~4) =t(x +5) +31%
T(x +2) 22z +1) 17-3z
=5+ g .
3 3 5
2(5z% - 9) 6x +9
3+2z  3+4x
2(z + 2) Tr-13  6x+1
3 3(1+22) 9
ax + b = ¢.
3ax — b? = be - fazx.
4bx - 3x = {(a — b* + 3ax).
2a2r—3a_x:x-—(a_b)m_
b 2¢

2z+¢ 4u-3x qgz-0b

2L~

1la ~ 3z 6a—-5x a+b 2z

a+b  a-b Sa—b +a“—b";
a+zx)?
(' )_—(l,bI:%zz‘

abe bx a?h? Yz 2 +d
3cx

Ci@ry T e T ey T T T iy

34 1722 — 2:21x = *203x,

ér+w(6 a) =3¢ - 2313
7‘(’“‘%)4'%{1—($+%)}-—1{x~(1+1x)}:z+%x.
8ax ~ b Te.

5 "_3—:4"‘1’"3'
(az_x)(b2+m)s3ab(1—:c)=(x..a)(c_x)l
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PROBLEMS
PRODUCING SIMPLE EQUATIONS INVOLVING ONLY ONE UNKNOWN
| QUANTITY.

120. A Problem is a written statement of the relations
existing between certain quantities whose values are given,
and another quantity or other quantities whose values are
to be found. The sclution of problems consists of two
distinet parts :

I. The .Algebraic Statement, or briefly the statement. This
congists in the translation of the problem into algebraic language,
i. e., in expressing the conditions of the- problem, the relations
between the given and the unknown quantities, by means of
signs and symbols, so as ‘to indicate the operations described in
the problem.’

* II. The solution of the resulting equation.

121. Tt is with the former of these parts, i. e., “ the
statement,” that the student experiences the chief difficulty,
the nature of problems being such that they admit of no
general rule for their statement. The student must, there-:
fore, be left very much to his own ingenuity, and he can
expect to acquive facility in the operation only by long
continued practice. He will, however, be very much
assisted in his efforts by attention to the following general
ingtruetions for making :—

THE STATEMENT OF PROBLEMS.

1. Read over the problem carefully, until its condztwns are clearly
apprehended and it is distinetl by understoad what is given
and what is required.

II. Represent the unknown quantity by x, and-set down in alge-
braic longuage the 'relatzons existing between il and the
given quantities, as described in the problem, or in other

" words, indicate upon x, by means of signs, the same opera-
¥ion that would be necesfhiry to verifyits value in the equation

if that value were already determined.
G
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Nore.—Before commencing the exercise the beginner is particullarly
directed to study carefully the solution of the preliminary problems, in
order to observe the modes of proceeding to make the statement. -

Ex. 1. What number is that from the double of which if 10
be subtracted the remainder is 44 ?

SOLUTION.
Here we have given that a certain number is such that when
itg double is diminished by 10 the remainder is 44.
Let x = the number.
Then 2z = its double, and 2z - 10 = its double diminished by 10.
Then, by the problem, 2z — 10 = 44, which is the requu'ed

statement.
2z = 54, by tra,nspomtlon.

x = 27, by division.
Therefore 27 is the number required.
Verification., (27 x 2) —10 = 44
54~ 10 =44
44 = 44
Exz. 2. Find a number such that one-half, one-third, and one-
fourth of it added together shall exceed the number itself by 43.
SOLUTION.
Here we have given that § + 1 + } of a certain number > the
number itself by 41, or what amounts to the same thing, that
3 + 1 + } of a certain number = the number itself + 43,

Let z = the number ; then 5 =3 of it; >~ =% of it; and
% of it.

L
J|

T T x
And 7zt 3 + s 41, which is the statement required.

6r + 4z 4 32 = 12z + 54 () = (1) x12.
6z + 4z ¢ 3% « 12z = 54 (ur) = (11) transposed.
x =54 (1v) = (1) collected.
Therefore 54 is the required number.
Verification % o+ 5—-4 + i% = 54 + 4}
: 2 3 4
27+ 18"+ 134 = 58}
58} = 58
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Ex. 3. Divide the nnmber 112 into two such parts that if 21
be added to the less the sum shall be less than one-third of the
greater by the third part of unity.

SOLUTION,

Here 112 is to be divided into two parts such that the less
+ 21 shall be equal to (3 of the greater) ~ &.

Let x = the greater part ; then since 112 is the sum of the two
parts, 112 — = = the less. ‘

x
(112 = z) + 21 is 21.added to the less, and 3~ 4 is & of unity
less than % of greater.
z
- Then (112 —-z)+ 21 £ 3" 1, which is the statement.
336 -3z +63=x~1 (m) = (1) x3
-3r~-x=-1~63~336 (m)= (1) transposed.
- 4x=-~400 (1v) = (1) collected.
z = 100 = greater.
112 = x = 112 = 100 = 12 = less.

n

Verification. (112 —100)+21 = 192 - 1
112 - 100+ 21 = 192 _
133 ~ 100 = 83} - }

33 =233

Bx. 4. What sum of money is that from which if $46:20 be
subtracted, one-half the remainder shall exceed one-third of

the remainder by $50.
SOLUTION.

Here the sum of money is such that
3(Sum - $46°20) is > by $50 than } (Sum - $46°20).
Let z = the sum of money.
Then = — $46:20 is $46-20 subtracted from the sum.
z - $46°20 z — $46°20

is half the rem., and 3 isone-third ofrem.
z - $46°20 z ~ $46°20
Then —$2—— - $50 = § — .

3z — $138:60 — $300 = 2z — $92-40 () = (1) x 6.
8z =2z = — $92'40 + 13860 + $300.
z = $346°20 = sum required.
Nore,~—The student should verify the result in every ¢ase, as is done in
the three preceding problems,
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Ex. 5. A certain number consists of two digits, such that the
right hand digit exceeds the left hand digit by 2; and if the
sum of the digits be increased by $ of the number, the digits will
be inverted. Required the number.

. SOLUTION.
Let z = the left hand digit.
Then z + 2 = the right hand digit.
10z + (x + 2) = the number.*
z + x + 2 = the sum of the digits.
2z + 2 + 4 (10z + = + 2) = the sum of the digits increased
by % of the number.
10(z + 2) + = = number with its digits inverted.
Then 2z + 2+ 2 (10x + x + 2) = 10(x + 2) + z.
14z + 14 + 9(11lx + 2) = T0(z + 2) + Tz.
14z + 14 + 99z + 18 = 70z + 140 + Tz,

99z + 14z ~ T0x - Tz = 140 - 14 - 18.
36x = 108.
x = 3 = left hand digit.

z + 2 = 5 = right hand digit.
Therefore the number is 35.

Ex. 6. /4 can do a piece of work in 10 days, which .4 and B *
can together finish in 6 days. In what time can B working
alone do the work?

SOLUTION.

Let z = number of days B would require to do the work.

Since A does whole work in 10 days, in 1 day he would do
5 of it. ) )

Since B does whole work in' z days, in 1 day he would do
1 of it.

*Nore.—If we take any number, as 6542, and represent its digits respec-
tively by the letters d, ¢, b, and @, then d + ¢ + b - a will express, not
the number, but merely the sum of its digits. In order to express the
number wo must take into account the local as well as the absolute values
of the digits, i.e., we must remember that the first digit being-so many units,
the second is so many tens, the third so many hundreds, &c.

Henced-ﬁ-c+b+a:6+5+4+2:17=sumofdigits. .

And 10002 - 100¢ - 106 4 o = 6000 -+ 500 - 40 -2 = 6542 — the number

And of course 1000e -+ 1005 +- 10¢ 4 & = 2000 -} 400 + 60 + 6 == 2456 =
number with ite digits inverted. B
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Since .4 and B do the work in 6 days in 1 day they would do

& of it.
Then A's work for 1 day + B's work for 1 day = work of both

A and B for 1 day.

. 1
That is, Y5+ 7 = % (1).
3z + 30 = 5z (1) = (1) x 30z to clear of fractions.
S8z -5z = —30 (ur)= (i) transposed.
-2z = -30 (1) = (u) collected..
z = 15 = days B would require.

Ex. 7. A person being asked how many ducks and geese he
had, replied that if he had 8 more of each he would have 7 geese
for 8 ducks, but that if he had 8 less of each he would only bave
6 geese for 7 ducks. How many had he of each ?

SOLUTION.

Let = = the number of ducks he had.

Then z + 8 = number of ducks increased by 8.
r+38
8 T

z+

8
x T = number of geese he had when mcreﬂ,seclby 8.

number of times he had 7 geese.

8
r+8
Hence number of geese = 8 less than 5 X T=7(x+8)~8.

Algo z — 8 = number of ducks diminished by 8.
1(z +8) — 16 = number of geese diminished by 8; and by
z-8  §(z+8)-16
the question, — T e
6(z-8) ="T{I(x+8)-16}.
6z — 48 = % (z +8) — 112

49z +392
6z + 64 —3

48z + 512 = 49z + 392.

) z = 120 = number of ducks.

3(120+8) ~8=(} of 128) =8 = (Y x 16) =8 = 112 -8
= 104 = number of geese.
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Ex. 8. A merchant has tea worth 4s. 3d, and 5s. 9d. per 1b.
How many lbs. of each must there be in a chest of 126 lbs.,
which shall be worth £30 ?

SOLUTION.

Let = number of lbs. at 4s. 3d. or 17 threepences per lb.
Then 120 ~ 2 = number of 1bs. at 5s. 9d. or 23 threepences per 1b.
17z = worth in threepences of = lbs. at 4s. 3d. per 1b.
23(120 - z) = worth in threepences of 120 — z Ibs. at 5s. 9d.
per 1b.
2400 = number of threepences in £30.
Then 17x + 23(120 = z) = 2400.-
172z + 2760 ~ 23z = 2400.
17z — 23z = 2400 - 21760.
-6z = - 360.
z = 60 = lbs. at 48. 3d. per 1b.
120 — 60 = 60 = lbs. at 5s. 9d. per lb.

n

Ex. 9. Divide the number 90 into four parts such that the
first increased by 2, the second diminished by 2, the third
divided by 2, and the fourth multiplied by 2, shall all be equal
to the same quantity.

SOLUTION.

Let z = the quantity to which the 1st part is equal when
increased by 2.
Then -2 = 1st part; «+2 = 2nd part;
xx 2 =3rd part; x +2 = 4th part..
Then (x—2) + (z+2) + 22 +% = 90.
T-24+Z+2+2x+5 = 90
4z +3 =90.
8z +x = 180.
9z = 180.
. x =20, -
2-2=20-2=18=Ist part; 2+2=20+2=22 = 2pnd port.
2z = 20x2 = 40 = 3rd part; § = 38 = 10 = 4¢h part.
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I'd
Ex. 10. A workman ig engaged for n days, at p cents per day,
upon condition that for every day that he is idle instead of
receiving anything he shall forfeit ¢ cents. At the end. of the
time agreed upon he received c¢ cents. Required the number of
days he worked, and the number of days he was idle.

BOLUTION.

Let z = the number of days he worked.
Then 7 - x = the number of days on which he was idle.
pz = number of cents he received for = days work.
g(n—x) = number of cents he forfeited for (n—x) days
idleness.
Then pz — g(n —2z) =c.
Pr—qn+qgr=c.
T+ gr =+ qn.
(p+@Qzr=c+qn.

cran ber of working d
r = = .
Prq number of working days
ctgn nmping-c-ng MNp-—-C 3
e FEre -p+q-numberof1dle_days

Exzgrcise XXXIII.

1. Required two numbers whose sum is 47 and difference 13.

2. There are two numbers, one of which is greater than the
other by 21, and -the quotient of their sum-by the less is 3 ;
what are the numbers?

3. After paying away % and # of my money, I had $2-50
remaining ; how much had I at first?

4. Find a number such that if 21 be taken from it, and the
remainder divided by 8%, the quotient will be 5.

5. Divide 54 into three such parts that the ﬁrst divided by
2, the second by 3, and the third by 4, shall all give the same
quouent

. 6. Paid 2 H of my debts, and then paid 2 of the remainder, and

afterwards owe $192; how much did I owe at firgt ?
1A erve of cattle is disposed of as follows: ¥ to A, } to
B, Lto O, and the remafnder, which was 9, to D ; how many
cattle was there in the drove?
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8. A farmer has two floeks of sheep, each containing the
same number ; but when he had sold 19 sheep from one flock
and 91 from the other, the former now contained twice as many
a8 the latter. Required the number originally in each fiock.

9. Find a number whose fourth part exceeds itg seventh part
by 6.

10. What number is that the double of which exceeds 2 of its
half by 25.

- 11. Find a number such that increased by one-half of itself
the sum shall be 39.

12. What number is that which exceeds the sum of its half
and its third parts by 177

13. Find a number such that when 15 is taken from its double,
and to half the remainder 7 is added, the sum ig greater by 3
than $ of the original number.

14. What number is that to which if 11 be added, two and
a-half times the sum shall be 85.

15. Find & number such that one-half, two-thirds, and three-
fourths of it added, together, shall exceed 1} times the original
number by 21, ' -

16. A farmer sold a load contammg a-certain number of
barrels of apples for $36, and he afterwards sold a second load
at the same rate, but as it contained 5 barrels less than the
former, he only received $21. What was the price per barrel,
and what was the number of barrels in each load? -

17. A person starts to walk from Toronto fo Brampton at the
rate of 3} miles per-hour; precisely 28} minutes afterwards
another person starts from Brampton to walk to Toronto at the
rate of 4 miles per holr, and they meet one another exactly half-
way between the two places. Required the distance from Toronto
to Brampton.

18. In a certain grist-mill there are three runs of gtones ; the
first of which can empty the granary in 72 hours, the second’ in
84 hours, and the third in 90 hours. Two teams aré"engaged
drawing wheat and storing it in the granary, and of these the
firat can fill it in 60 hours, and the second in 78 hours. Now if
the granary be full, and both teams and all three runs of stones
be set in opération, in what time will it be emptied ?
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19. If from the number of the year in which all the slaves in
Canada received their freedom, the number 1780 be taken, three
times the remainder increased by 1620, will give the year of the
celebrated Indian massacre of Lachine, and if the two dates be
added together, one-half their sum increased by 116 will give the
year 1862. - Required the date of the abolition of slavery in
Canada, and algo that of the massacre of Lachine ?

20. Divide $7400 among A, B, and C, so that A shall have
. $120 more than B; and C $106 less than A.

21. A pupil receives 24 music lessons and 32 drawing lessons
in the quarter, and the former cost her $3 more than the latter;
if, however, she had received 32 music lessons and only 24
drawing lessons, the latter would have cost her, at the same
rate, $10 Tess than the former. Required the price per lesson
for music and drawing ?

22. A libmfy containg twice as many volumes on General
Literature as on History, 14 times as many volumes on-History
as on Biography, as many volumes on Biography as on Travels,
and three times as many volumes on Travels as on the Scidnees,
and the number ‘of volumes on the Sciences is 70, Required the
number of volumes in the library ? .

23. The Rideau Canal is six miles less than four times as long
as the Niggara River, and their combined length doubled and
decreased by 100 miles, exceeds the length of the Great Western
Railway by one mile. The G. W. R. being 229 miles long,
requu'ed the length of the R1deau Canal, and also that of the
Niagara River? -

24. A can dowa piece of work in 12 days, which B can finish
in 15 days, and O in 18 days. Now A and B work together at
it for 1 day ;B and C work together at it for two days: in what
time will all three finish the work remaining to be done ?

28, Dividle s number 7 into two parts, such that one may
exceed ‘the ether by (a - c).

26. Whatis theifirst hour after 12 o’clock at which the two
hands. of a watch are (I) together, (II) dircetly opposite, and
(D) atright angles to one snother ?

. 27. A manowns two fields and a horse, the latter being worth
$9’0. He oﬂ‘grs to gell the first field with the horge in it for $25
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more. than he asks for the second ficld alone, but for the second
field with the hopse in it he asks double as muel as for-the ﬁrst
field ulne. Reqmred the price of each field 7." -

28. A, B, uud C can do a piece of work in 20: days, which A
can do alone in 50, and B alone in 65 days. © works at it for
11 days, then B and C fogether for 5 days. In what time can
A and C finish the remainder?

29. Divide $7189 among A, B, C, and D, so as to give to A
as much as the other three, to B $40 more than_two -fifths of the
shares of C and D; and to D $25'40'1ess than three-sevenths of
O's share.

30. A piece of work can be finished. by 4 men in' 9 days, or
by 10 women in 7 days, or by 15 children in 8 days. In what
time can 1 man, 3 women, and 4 children finish the work? -

31. There is a number consisting of two digits, whose sum is
14 (theright hand digit being the greater), and three-seventeenths
of the number is equal to three halves of the right hand digit.
Required the number?

32. A farmer sold his farm for $8600,.and consxdered that he
had cleared a certain amount by the transaction, A note, how-
ever, for $640, which he had accepted in part payment, turned
out to be worthless, and he found that, in consequence, he lost
upon the whole transaction two-fifths as much as he would have
gained had the note been good. What was the value of the
property” ? -

33. There is a fish whose tail weighs 9 Ibs., hlS head weighs
ag much ag his tail and half his body, and hls body weighs ag
much as his head and tail together. What is the weight of the
fish ?

34. A merchant yearly increases his cap1ta1 by one-third of
itself, but takes away $1000 for current expenses. - At the end
of the third year after taking away the $1000 he finds that the
original capital was doubled. What was his capitalma;t sta.ftmg ?

35. The fore-wheel of a waggon is a feet; and the hind-wheel
b feet in' circumference ; through what dlstance must the waggon
pass in order’ that the fore-wheel shall have maden reveluuons
more than the hmd-wheel?

36 The hour and minute-hands of & watch are together at
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noon. When and how often will they be together during the
next twelve hours ?

3%7. Divide the number 96 into two'such parts that when the
greater is divided by 7 and the less multiplied by 3, tlie sum of
the quotient and product shall be 30.

38. Divide $2560 among A, B, and C, so that A ghall have
half as much agair as B; and that C shall have half as much
again ag A.

39. A steamer makes the down t11p from the hea,d of Lake
Ontario to Montreal in 28 hours, the current being in its favor.
‘When returning it is found that in ascending the St. Lawrence
(three-sevenths of the entire trip) the rate of sailing is 5 miles
per hour less than the average rate in its downward journey,
but upon entering the lake it iz enabled to increase its speed
2 miles per hour, and again reaches Hamilton, at the head of
the Lake, in 4§ of the time it would have required had the rate
been uniformly the same as when ascending the river. Required
the distance between Montreal and Hamilton, and the rates of
sailing ?

40. A gentleman bequeaths his property as follows :—To his
eldest child he leaves $1800 and % of the rest of his property ;
to the second twice $1800 and § of the part now remaining; to
the third three times $1800 and 4 of the part now remaining,
and so on. By this arrangement his property is divided equally,
among his children. How many children were-there, and what
was the fortune of each ?

41. A certain number consists of two d1g1ts, whose difference
is T—the right hand one being the greater. When the number
is divided by the sum-of its digits it gives a quotient 2, with a
remainder 7. Find the number. _

42, Divide $2100 among A, B; and C, so ‘that-A-shall have
$80 more than % of B and C’s.shares together, and that C shall
have $20 less than B. .

43. A nurserymcn has an orchard to plant with a given
numb_er of trees, and he ﬁn‘ds that when he has as many rows
‘a3 trees in a.row there are 75 trees remaining, but if he puts 5
trees legs in a row, and increases the number of rows by 6, he
then has only 5 trees remaining. What was the number of trees?
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44, Divide the number « into two such parts that the one
n
shall be Eths of the other?

45. What are the two parts of 60 such that their product is
equal to three times the square of the less ?

46. Twelve oxen are turned jnto a fleld of grass containing
3% acres, and by the end of 4 weeks have not only eaten all the
grags on it when they were turned in, but also all that grew
during the 4 weeks. Similarly in 9 weeks 21 oxen eat all the
grass that grows on 10 acres during that time, together with
what was on the field when they were turned in. Now assuming
in all cases that the original quantity and quality per acre, and
the gfowth per acre, is the same, how many oxen can in this
way graze for 18 weeks on 24 acres ?

47. Divide the number a into three parts such that the second
may be n times-and the third m times as great as the first.

48. Divide the number @ into three parts such that the second
shall be m times the nth part of the first, and that the third shall
be the gth part of p times the first.

49. From the first of two mortars in a battery 36 shells are
thrown before the second is ready for firing. Shells are then
thrown from both.in the proportion of 8 from the first to 7 from
the second ; the second mortar requiring as much powder for 3
charges as.the first does for 4. How many balls must the second
mortar throw in order that both may have consumed the game
quantity of powder? 7

SIMULTANEOUS EQUATIONS OF THE FIRST DEGREE,
INVOLVING ONLY TWO UNKNOWN QUANTITIES.

122. For the solution of equations involving two or
more unknown quantities, as many independent equations
are required as there are unknown quantities involved.

Thus, the equation x + y =8 is called an indeferminate equation, because
an unlimited number of values may be assigned to z and y, so as to satisfy
the equation. For example, we may take z =}, 4, 1, 2,3,4,5,6,7, 8,0, &e.,
andy =7374,7,6,6,4,3,21, 0, 8, &c., and the equation will be satisfied

.- by any pir.of these values,
But if we-take the equation z 4 y =8, and limit it by another corres—
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‘ponding but independent equation, as for example, 2z ~ 3y = 1, wo shall
find that the two equations arc only satisfied by the value 2 =25 and y—=38.
An equation of this kind is called a determinate equation,

123. A set of two or more equations thus mutually
limiting the values of the unknown quantities involved,

form what is called a stmultaneous equation.

124. As stated in Art. 122, in order that the equation
may be determinate, there must be as many independent
equations as there are unknown quantities involved. Now
equations are said to be independent when they express
different relations between the unknown gquantities.

Note.—That is, the two or three equations given must not be derived
from one another by mere multiplication, or division, or subtraction, or
addition. Thus, if # + y = 8 be one of the equations, it would be useless
to associate with it 22 4 2y =16, or Lz Ly =1L, or 2+ 2y =8 4y,
y — 3z = 8 — 4=, &c., because these equations, though true in themselves,
express no new relation between the unknown gquantities, and are all
reducible to the form of z 4- ¥y — 8, having obviously been derived from
it by mere addition, subtraction, multiplication, or division.

125, Simultaneous equations are solved by elimination,
as it is termed, 1. e., by so combining the given equations
as to get rid of one of the unknown quantities, and thus
to obtain from them a new equation involving only one
unknown.

"126. There are three methods of eliminating one of the
unknown quantities, and thus of solving s1multaneous equa—

tions.
ELIMINATION BY ADDITION OR SUBTRACTION.
Rure.

127. 1. If the coefficients of the quantity we desire to eliminate
are not already the same in both equations, mulliply
jone or both equations by such multipliers as shall

. - make the coefficients of that quantity similar,

II. Havmg Thus prepared the two equations, add them,
member to member, if the signs of the qume
eliminated_are u uﬂlzke ; syblract one equation from
the other if tf e szg'ns tn question are like.
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Ex. 1. Given4z—3y=6 2 to find the values of z and ¥.

4 + Ty =26
. SOLUTION.
4x —-3y= 6 (1) ( Here as the coef.of z is the same
in both equations there is no
4z + Ty = 26 (1) | necessity of multiplying, and we
———— accordingly subtract at once.
10y = 20 Gy | = @) - (@©.
y= 2 @av) |= () + 10,
Then 4x—-3y=4x—-6=6| (v) | = (1) by substituting 2 for y.
4z = 12 )
r= 3

Therefore values are z = 3 and ¥ = 2.
Ex. 2. Given 4x + 3y = 43
3z -2y =11

SOLUTION.

% to find the values of = and ¥.

4x + 3y =43 @)
3z -2y=11 (1)
Sr+6y=86 | (u) | = (1) X 2.
9x - 6y = 33 @av) () x 3.

1]

17z =11 (v)

@) + (v). We add because
the signs are unlike.
x= T (VI) (V) + 17. .

443y = 28+3y = 43| (vu) | = (1) with 7 substituted for =.

; . 3y=15

S y= 5
Therefore values are x = 7 and y = 5.

NoTe.—We can always prepare the equations for addition or subtraction
by multiplying each by that coef. of the unknown to be eliminated, which
is given in the other equations. Sometimes, however, it is not necessary
t.o multiply both [equations, but we can find by inspection a multiplier
for one only, which will at once prepare the equation for elimination

Thus, if 42 — 3y =8 . . ’

92 1 9y — 46 } be the equation as given and we wish to elini-
nate x, we may multiply the lower equation by 4 and the u
pper by 2, and
t]'Jen subtract, {)ut we may obviously attain the same end, in the zlil;.\jna-
tion ?f x, l?y .51mpl.y multiplying the lower equation by 2, and thexn sub-
tracting. Snfmla.rlylf we wish to eliminate the y, instead of multiplying the
upper e'quahon b_y 9, and the lower by 8, we may prepare the two equations
for addition by simply multiplying the upper by 3.
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Ex. 3. Given az + y =m

} to find the values of x and v.

bx ~ay=n
SOLUTION.
ar+y=m )
bx—ay =n (11)

o' +ay = am

a%z+bx = am+n

(at+d)x =am+n
am+n

= —5—

a?+b
. am+n
: az+y=-a—zﬁ-xa+y=m
a?m +an
y=m-

@) | = () xa.
@av) | = () + ().
(¥) | = (2v) factored.

() | = )+ a +b.

(vi) | = (1) with value of x substi-
tuted for x.

&m+bdbm—-afm—-an  bm-—an

a?+b

a+b’

ELIMIN ATION‘ BY SUBSTITUTION.

RuLe.

128. 1. Find from one of the given equations the value of the
unknown to be eliminated in te'rms of the other
unknown guantity.

II. Substitute this value in the remaining equation for the
same unknown gquantity, and there will result an
equation containing only one unknown quantity.

Ex. 4. Given 2z - y= 1 2 to find the values of x and y.

. Tz + 9y = 16
" SOLUTION.
2z=-y= 1 (i)
T +9y=16| (u)
Ty=2r- 1| (m) |= () transposed.

Tx+9(2z-1) = 16
Nz +18z—9 = 16

@1v) | = (1) with 2z~ 1 substituted for y.
(v) | = (1v) expanded.

26 = 25 | (vi) |= (v) transposed and collected.

’ z= 1| (vm) |=(v1) +25.
y=2=-1=2=-1= 1/} (vim) | = (1) with value of z substituted.
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4y Tx
Ex, 5. Given 5x — rE
4y o2y } to find the values
- = =3y~8 of x and ¥.
Tz T + 8 y
SOLUTION.
4y + Tz
5 — Y = O]
4y lx -2y .
Tz — 1'{ G—y =3y-8 (1)
237 — 4y T 48 (ur) | = (1) reduced.
539z ~ 244y = - 528 (1v) | = (1) reduced.
48 + 4
T =— i4 (V) | = () transp. and + 23.
48 + 4 48 + 4y
539 Yl - 244y =-528| (v1) | = (1v) with 21y sub. forx.
23 23
5872 4+ 21561
2 J—Z44y:— 528{(vir) | = (vI) expanded.
3456y = 38016 (vun)| = (vir) reduced.
y=11 - (1x)| = (vir) +-3456.
48+4y 48+44
=53 Y Sharrests 4 (x) | = (¥) with 11 substitut. for y.

Therefore the required values are = = 4 and y = 11.

ELIMINATION BY COMPARISON.
RuLe.

129. 1. Find from the first equation the value of the quantity to
be eliminated, in terms of the other unknown quaniity ;
and szmzlarly Jfind another value for the same quantity
Jrom the second equation.

11. Place these values equal to one another, i e. form an
equation by placing the sign of equalzty between them.

Fx 6. Given z + 64/ = 1552

to find t
G4z + y = 1048 2 o find the valups of z and ¥.
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SOLUTION.
T + 64y = 1562 ()
64z + +y=1048 . (1)
x = 1552 - 64y (1) |= (1) transposed.
s 1048 ~y
= e (iv) |= (1) transp. and + 64.
1048y
N = 1552 - 64y (v) |- first members of (111)
64 and (1v) are = ... also
the second members are
= (Ax. xI).
1048~y = 99328 - 4096y | (v1) |=(m) x 64 to clear of
fractions.
4095y = 98280 (vir) |=(v1) transposed and
collected.
y =24 (vim) |= (vi) + 4095.
a‘ 1552 ~64y=1562~1536=16{ (1X) |=(ur) with 24 substitut-
. ed fory. -

Note.—Although either of these three methods may be employed,
the student is recommended, as a rule, to use the first, that being
upon the whole the most convenient.

Exgrcise XXXIV.

Find the values of z and y in the following equations :—
1. Tx—-3y=5; and 4z +y = 11.

2. z+3y=23; and 6z -y = 24,

3. 3z~ 11y = 1; and 5z~ Ty = 64.

4. 5z + 6y = 80; and 9z - 5y = ~ 14.

5, 3z 4+y=4; and 4z - 4y = 27.

6. fx - %y =-11; and %z ++%y = 37.

2y+ 9z 3z Tz + 13y
7 llx+y+11=59-- 7t ; and 11—_—3— =
y - x—§x43y-(1‘+y+§).

8. i(z +3y) ~i(x -='2'y) =2; and §(x -y) + $(z + 5y) = 10,
9. 192 + 18y = 147; and 17(z + ¥) - 16(x ~ y) = 168.
10. 2x + 3y =a; and 5z - 2y = b,

- 11, 3x - ay =m; and 4z + by = n,

K
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12. us = 2ay = b; and 2bx =by = c.
13. x —y = «;and z¢ - y*= 0.

X Y z+y T~y
g ol o - =a.
14. Y =M and p e
moon b q
15.L+I——=a;and——-~:ly
x oy x oy
16. x +y = 11; and 2* - y* = 55. e
(452 +4y) 3+ 2y y~f
K _ + 7 =3): and Y
117. 5t 2=yl -ty =) and 2
iz +152 3y+1
Y 2
z oy ¢ a
8, — = —=p; — ~ 0
18. p . p; and —= o
2 -6 4x+T  Nilx-y) 19+y F(llzx+18) :
19 + - = = — - ; and
C Ty 24 6 42 56y
122 - 15y+128 93 -9z
oy -85 + 5 Gz -4t
(8a — 2b)ab

ab?c
sand @t = —— + (a + b + )by

20. 32 + 5y = "

= b + (a + 2b)abd,

(AR

-

SIMULTANEQUS EQUATIONS OF THE FIRST DEGREE,
Invonvine MoRE THAN Two UNENOWN QUANTITIES.

130. If we have three equations involving three un-

known quantities, we may obtain their values by the
following :— '

Rure.—Combine by Arts. 127, 128, 129, the first and second of
the given equubions, so as to eliminale one of the unknown quantis
ties. Also combine the flrst and third, or the second and third, so
as to eliminate the same unlnown quantity. There will result from
this process lwo equalions tnvolving but two unknown gquantities
the values of which may be oblained by the previous rules.

Ex. Given 2x + 4y - 32=22; and 4z - 2y 4+ 52 = 18, and
6z + Ty ~ = = 63, to find the values of x, y, and z,
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SOLUTION.
2z + 4y ~ 32 = 22 (¢3)
4z - 2y +52=18 \ (1)
6z + Ty~ 2=63) (1)
4z + 8y ~ 65 = 44 av) [=@®x2
10y - 11== 26 - (v) | = (av) - (m).
6z + 12y — 92 = 66 (vi) |= () x 3.
5y-82z= 3 (vir) | = (v1) = ().
10y - 11z = 26 ™
5y - 8z = 3} (vir)
10y-162= 6 (vur) | = (vi) X 2.
5z =20 (x) |=(v) - (vur).
2= 4 (x) [=(@x)+5
by—-8x=6y-32=3 (x1) | = (vir) with 4 for =,
5y =35 (xar) | = (xr) transposed.
y=1 (xm) | = (x11) + 5
22+4y-32=2x+28-12=22 | (x1v) | = (xmu1) with 4 substituted
for = and 7 for v.
22 =6 (xv) |= (x1v) transposed.
=3 (xXv1) | = (xV) + 2.

131. When there are more than three unknown quanti-
ties, and consequently more than three equations, we pro-
ceed in a similar manner, so that for solving a.set of n
equations involving n unknown quantities, we use the
following :—

Ruwe.

1. Combine one of the given n equalions with ecuch of the others
separalely, eliminating the same unknown gquantity; there
will result n ~ 1 equations, m'volvmg n - 1 unknown gquan-
tities.

11. Combine one Qf these equalions wzth each of the others sepa-
rately, elzmmutmg a. second unlcnown quantzty, there will
result n = 2 équations involving only n — 2 unknown’ quan-
dities.

IIZ. Continue thus combining and eliminating until an equatwn is
obtwined involving only one unknown quantity,
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IV.. Having solved this equation and thus found the value of one
unknown guantity, substitute this value in one of two pre-
ceding equutions, and thus obtain the value of a second
unknown quantity ; then substitute the values of these two
unknown quantities in one of the three eguations which
involve only three unknowns, and thus determine the value
of another, and so on, until all the values are found,

Ex, Givenv+ z+ y+ z=14

Bv-2r+dy~32= 5\ 4, 6nd the values of v,
20-06z + 2y -+ 4z =24 z,y, and z.

dv+3r~3y-2z= 3

) SOLUTION.
vihx + y+ z=14 O
3v-2r+4y-~32= 5 (1)
20 -5 + 2y + 42 =24 (1)
4p+3x—-3y-2z= 3 (Iv)
3v +3x + 3y + 3z =42 (v) |[=@)yx3.
20+ 2x + 2y + 2z = 28 (v1) (=Q@)x2.
4v + 4z + 4y + 42 = 56 (vin) | = (1) x 4,
5t - Y+ 6z =37 (vu) | =(v) - (@n.
Ta ~-2z= 4 (x) 1= (vi) = ().
xz+ Ty + 62 =53 (x) |=(vm) - (V).
35z = Ty + 422 = 259 (x1) 1= (vm) x 7.
36x + 48z = 312 (xm) | =(x)+ (x1).
3x + 4z =26 (xm) = (xm) + 12,
14z - 42= 8 (xv) |[=(x)x2.
17x = 34 (xv) |=(zm) + (x1v).
x= 2 (xvi) |=(=V)=+2.
Brx+42=6+42=26 (xvi) | = (xu1) with 2 for x.
‘ = 5 _ | (xvmm) |=(xvi) transp.and : 4,
52~y +62=10-y+30=37| (xx) |=(vin) with 2 substit-
. ' uted for z.and 5 for z
- y=3 (xx) | = (x1x) transposed.
virty+t2 =v+243+5=14) (zx1) | = (1) with valuesofx, v,
v=4 » and z substituted.

Theref’ora the required values ave v = H2=2y=38 and 2= 5,
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. Exsross XXXV,

| Find the values of the unknown quantities in the followmg
equations ;—

1. 22 -3y+42=28 2. z+ y+ z=

Sz + 4y - 5z = 26
4z = 5y - 62 =16

3. z+ y+ z=0
2z + 3y+4z=~4

26~ y=3z==5
x+2y=- 2=<1

L 3x =2y~ 2z=12

4z -3y -22=11

3z +6y+Tz=-6 5z - by - 3z= 21

5. z+ y+ 2+ v= 0 6-%"'%:%
22 =3y~ z=20=11 $+z=%
+2y=32 + 5v = ~1Y ytE=vs
3 +2y~42~ p=~ 5
7. zty = zy 8. z+3y+2z=d
T+z = 2x2 3r+by—-2z=m
2(y+2) = 3yz dxr~ Y+ z=n
9. az+by=c 10. v+ +y=13
bz +ez=a v zdz=1Y
cytaz=b T v+ytz=18
z+y+z=21
1. z+y+z=a+tb+ec
bz+cy+az=cw+ay+bz:a,£+b‘+czg

12. x+a(y+z)=m
Cy+ra(@+a)=n
zda(z+y) =p

PROBLEMS

Propuoive Sivprraneovs Equarions or THE FirsT Drenrp.

Bx. 1. What#rdction is that whose numerator being doubled
and denominator decreased. by,unity, the value becomes %, but
the denominator bemg doub]ed and nomerator inereased by 5,
the value heqomes EX]
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SOLUTION.

Let 2 _the fraction ; then = numerator and = denominator.
¥

2z @
—_— =% D).
y-1 g
z+ 5
B 1).
=t || @
6r —2y=-2 (un) | = (1) reduced.
2x — 2y = — 10} ()| = (1) reduced.
4x =8
=12
12 -2y =-2
-2y=-14
y=1

Therefore the fraction is 2.

Ex. 2. A certain field is rectangular in form, and its dimen-
sions are such that if it were 4 chains longer and 3 chains wider
its area would be 103 chains greater than at present, but if it
were 2 chaing shorter and 7 chaing wider, its area would be 119
chaing greater'than at pregsent. Required its area.

SOLUTION.

.

Let x = its length and y = its breadth ; hence xy = its present
area.

‘Then x + 4 = its length when increased by 4 chains.

y + 3 = its breadth when increased by 3 chains.

(x + 4)(y + 3) = its area, which is greater than zy by
103 chains.

Also z — 2 = length when decreased by 2 chains.
¥+ 7 = breadth when increased by 7 chains.

Then (z ~ 2)(y + 7) = its area, which is greater than ay by
119 chains. Hence the two 1equ1red equations are
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(x+4)(y +3) = zy + 103 @)
(x—z)(y+7)=xy+119§ ()
wy+3x+4y+12 =2y + 103 () | = (1) expanded.
Zy+Te-2y=14= 2y + 119 (1v) {= (1) expanded.
3z +4y =91 (v) | = (1) transposed and col-
lected.
Tx -2y =133 (v1) | = (1v) transposed and col-
lected.
14z ~ 4y = 2686 (vir) | = (v1) x 2.
« 1Tz = 357 (vimn) | = (v) + (vi).
x =21 (1x) |=(vm) = 17.
8% +4y =63 + 4y =91 (x) [=(¥) with 21 substituted
4y = 28 for x. V
y+ 7

Hence the area = ay = 21 x 7 = 147 chains.

Ex. 3. Two plugs are opened in the bottom of a cistern con-
taining 664 gallons of water; after 6 hours one of them becomes
stopped, and the cistern is emptied by the other in 20 hours ;
but had 8 hours elapsed before the stoppage oceurred, it would
only have required 15h. 36m. more to empty it. Assnming the
discharge fo be uniform, how many gallons did each plug hole
discharge per honr ?

. SOLUTION.
Let z and y = rates of discharge per hour of the two plug holes,
Then 6z + 6y = No. of gals. discharged in 6 hours.
Angd 20y = No. of gals. discharged by second in 20 hours.
Then 6x + 26y = 664 ().
Also 8z + 8y = No. of gals. discharged in 8 hours by both,

. 78y
And 153y = —7){ = No. of gals. discharged by 2rd in 15h. 36m,

8y
Then 8z + 8y-+ e 664 | (u)

40z + 118y'= 3320 | (1) |= (1) reduced.
120z + 520y = 13280 |» (1v) |= (1) x 20,
320x + 354y = 9960 | (v) [= () x3.
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166y = 3320 | (VD) [ = (1¥) = (¥).

y= 20| (vm)|= (vi) + 166.
6z + 26y = 6x + 520 = 664 [(vI)| = (1) with-20 substituted
6x = 144 . for y.
xz= 24

Therefore rates of discharge are 24 and 20 gals. per hour,

Exmrcise XXXVI,

1. Find two numbers such that seven. times their sum in-
creased by four times the less is equal to‘BQ;,a;_nd twice their
difference increased by three times the greater is‘équal to 16.

2. Find two numbers whese sum is equal to ¢, and such that
b times the greater is equal to ¢ times the smsaller.

3. Two tons of hay and 35 bushels of oats cost $44, but if
oats were to fall in price 20 per cent. and hay were to rise in
price 33L per cent.. they would cost $51:20. Required the
price of hay and oats. .

4, A rectangular garden is of such dlmensmns that were it
20 yards longer and 24 yards wider it would contain 4180 squate
yards more than its present area, but if it were 24 yards longer
and 20 yards wider, its present area would be increased by only
2860 square yards‘ Required its present area.

5. Pind two numbers such that the sum of one-half of the
first and one-third of the second shall be 11; and oné-third of
the first shall be greater by unity than one-fifth of thé second.

6. Divide the number 144 into two parts such that # of the
greater shall exceed § of the less by 134.

v 7. Divide the number 48 into two parts such that the gleater
shall contain 4 as divisor four times.as often as it contams the
less as divisor.

8. Find three numbers such that the first is equa.l to & of the
other two, the second exceeds half the sum of the. other two by
6, while the third is less by 3 than 4 of the sum of the firat and
second.

9. In 4000 lbs. of gunpowder there are 3240 1bs. less of sul-
phur than of echarcoal and saltpetre, and 276015, less of chareoal
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than of sulphur and saltpetre. How many lbs, are thpre of
each ?

10, Divide the number 72 into three such parts that i of .the
first, ¥ of the second, and } of ‘the third shall all be equal to
each other?

11. A purse holds 16 shillings and 27 ten cent pieces. Now
11-shillings and 13 ten cent pieces only ﬁll % of it. How many
will it hold of each ?

12. A work is printed gp that each pag’e cronta.ins a, certain
number of lines, and each line & certain number of letters. If
the page had contained 3 lines more, and each line 4 letters
more, then the page would have contained 224 letters more than
it now contains, but if there had been 2 lines less on a page and
3 letters less in each line, the page would have contained fewer
letters by 145, How many lines. are there in & page and how
many letters in a line ? .

13. A certain number of two diglts is such tha.t when divided
by 4 less than twice the sum of its digits the quotient is 3, but
when divided by 5 more than the difference of iis digits the
guotient is 13. Reguired the number, the right hand digit being
the greater. ’ i

14. A sum of $81'60 is to bé paid in ten'cent and twenty-five
cent pieces, and 23 times the number of twenty-five cent pieces
exceeds 6 times the number of ten cent pieces by 4. ;Required
the number of each coin,

15. A railway train running from Toronto to Kingston meets
with an accident which diminishes. its speed by Lth of what it
was hefore, and in consequence of this the train is b hoursbehind
time. If, however, the accident had happened ¢ miles n’ea'-g:ef to
Kingston, the train would only have been ¢ hours behind time.
Required the rate of the train before the accldent

16. A st.age set out from Collingwood to Godeuch with a
certain number of passengers, 4 more being outside than inside,
The fare f seven outside passengers is half-a-dollar less than
that of 4inside passengers, and thé whole fare received amounted
to $45. At the end of half the 4‘]ourney it took up- three more
outside.and one more 1ns1de passenger, in consequence of which
the whole fire received was 1% times what it was bpfore. What
was the pumber of passengers and the fare of each ?
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17. What number of two digits is that which is equal to twice
the product of its digits, or to four times their sum ?

18. There is a number of three digits such that the middle
digit is the arithmetical mean hetween the others. If the num-
ber be divided by the sum of its digits, the quotient is 48, and if
198 be taken from it, the digits are inverted. Required the
number. ) '

19. A given piece of metal which weighs p oz., loses ¢ 0z, in
water. Tt is, however, composed of two other metals, .4 and B,
and we know that p oz. of 4 lose b oz. in water, and p oz. of B
lose ¢ oz. in water. How many o0z. of each metal are there in
the piece ? ! .

20. Five gamblers, 4, B, C, D, E, throw dice upon condition
that he who has the lowest throw shall give all the others the

_sum which they already have. Each loses in turn, commencing
with .4, and at the end of the fifth game each has the same sum,
%$32. How much had each at first ?

SECTION VILI.
INVOLUTION AND EVOLUTION.
132. Involution is the procéss of finding any proposed
power of a quantity.

133, If the quantity to be involved have a negative
sign, then the signs of all the even powers will be positive,
and the signs of all the .odd powers, negative.

Thus, (~a)=-ax-a=+d.

(—a)”:‘-(-a)”x—a:%a”x—a:—a‘-*,
(ma)t=(-a)x(~a)!=+®x+a®=+at,
(=~a)’=(-a)tx-a=+atx—a=-a’ &ec.

134. If the quantity to be involved have a positive sign,
then all its powers, both even and odd, will have the positive
sign, ' ' ' ‘
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NotE 1.—It follows that no even power of any quantity can be negative,
and that all odd powers will have the same sign as the quantlty from which
they are derived.

Note 2.—Since (@ — b)2 = a2 — 2ab + b‘2 is a positive quantity, it fol-
lows that a2 <+ b2 > 2ab, as otherwise a2 -+ b2 — 2ab would be negative.
Hence the sum of the squares of any two quantities is greater than twioe
their produet.- .

185. Since (a™)* = a™ x @ x o.........t0 = factors, it
follows (Art, 53) that (¢")* = &, and hence we find a
required power of the given power of a quantity by multi-
plying the exponent of the given power by that of the
required power.

1388. The Involution of algebraic quantities may be
divided into three cases—the involution of monomials, of
binomials, and of polynommls

Case L
INVOLUTION OF MONOMIALS,

137. RuLe.~Raise the coefficient to the required power by actual
multiplication ;. also raise the different letters to the. required power
by multiplying the exponents they already have by the exponent of
the required power, and connect the two purts thus obtained so as to
Jorm one quantity.

Note.—A fraction is raiged to any.power by involving both numerator
and denominator separately to that power,—a mixed number by mvolvmg
the equivalent improper fraction. -

Bx. 1. (20fzy®)% = 2t x (Pzy?)® = 16 x alxty’? = 16}11‘*334.3112

Ex. 2. (- 341,2:‘)3 = (= 3)"’ x (az?)® = - 27 x ¢¥b.= ~27axS,
Exereise’ XXXVIT.

Write down the values of— |

1. (265 (3ab%)?; (4m?y; (3ab2c3)1 5 (2a%)° ; (3atzif)

2. (-a¥t; (- Za,zbcz)", -4 abcs)a, (- };zy3)2 (—2mz?y®)5.

3, ()05 (-aa?yPz4)® 5 (3ay®); (-3ay’)®; (Bay)t; (=3aydt,
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Cass II
INVOLUTION OF BINOMIALS,

1388. By sctual multiplication we find that—
(a+¢)7 = a” + Tabc + 21abc? + 35atc®+ 36a%c? + 21a%S + Tacb +e”.
(a ~ ¢)® = a® = 8a"c + 28ab¢? - 56a°¢® + T0a%ct - 56a%° + 28a%ct
= 8ac? + cB, .

‘We here observe the following facts :—

I, The first term of the expansion 4s found by raising the first -
term of the binomial to the required power. .

11. The literal part of the second term of the expansion is obtained
by prefixing the first term of the expansion with exponent
decreased by unity to the simple power of the second term
‘of the binomial.

IIL. In the succeeding terms of the expansion the exponent of the
first term of the binominl constantly decreases, while that
of the second term of the binomial constantly increases by
unity.

IV. If we take the coefficient of any term and multiply it by the
exponent of the first letter of the same term and divide by
the number of the term, the quotient is the coefficient of
the next succeeding term.

V, When the sign of the binomial is + all the signs of the expans
sion are +, but when the sign of the binomial is ~ the signs
of the expansion are + and ~ alternately.

Bx. 1. (z~-7)8 = 28 - Baty + 102%? ~ 10x%y® + Bayt — 5.

1
Here %
§°_:_§ — 10 = coef. of 4th term, &e.

Nore.—It will be remarked by the studont that in these expansions—

1. The number of terms = .one more than the exponent of the required
power.

II. The sum of the exponents of- each term = the exponent of the
required power. -

III. When the power is even there is only one middle term, but when
the power is odd there are tWo terms in the middle of the expansion ha.vmg
the same coefficient.

IV, The terms following the mlddle term have the same coefficients-as
those pregeding it but are reversed in order.

5 = § = ¢oef. of 2nd term; §>2<—4 =10 = coef. of 3rd term}
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Ex. 2. (22 -3b)% = (22) ~ 6(22)5(3D) + 15(2a)*(3b)? ~
20(2a)%(3b)® + 15(2a)%(3b)* - 6(2a)(3b)° + (3b)6

= 64a8 — 6(32a°) (8b) + 15(16a*) (9b%) ~ 20(8a%) (270%) +
15(44%)(81b%) ~ 6(2a) (243b°) + 729b6

= 64a% — 576a8b + 2160a%h* — 43200%° + 48604%% ~ 2916ab°
+ 72956, .

Trinomials may be involved by writing them as binomials and
Pproceeding after o manner similar to the abo/ve.,

Ex. 3. (a-0-2)t={(a=D)~2c}t=(a-b)*~4(a-b)°(2c)
+ 6(a-b)? (2c)% - 4(a-b) (2¢)° + (20)*

= (a*—40% +6a?b? — 4ab® + b* — 4(2c)(a®~3a%b + 3ab? - b%) +
6(4c®)(a® - 2ab + b?) ~ 4(8c%) (a~b) + 16c%

= a* - 40% + 6077 — 4ab®+ b%~ (8a’c — 24a%bc + 24ab?c ~ 8b%)
+ (24022 = 48abc? + 24b%2) ~ (32a¢° ~ 32bcS) + 16¢c%

= a* =40 + 60*b? - 4ab® + bt = 8a’c + 24a%bc — 24ub?c + 8b%c + 2443
~ 48abc? + 24b%? - 32ac? + 32bc® + 16¢t.

Exsrerss XXXVIIL

Write down the expansions of
1L (@=b)°. 2. (c+z)% 8. (-9 4. (a+m)H,
5. (2=a)% 6. (x-3)°. 1. (2a+ 3‘)6. 8. (8~2m)°,
9. (3a-2y)°. 10, (2b-5¢). 11. (3z—4y)*. 12. (ab+3c)5.

13. (2ac~ zyz)®. ‘14, (a+b-c). 15. (2a-b-¢)*,
16, e +20=3¢c)°. 17 (L+x~z5)* 18. (a~b+2¢)%.
Casg III.

INVOLUTION OF POLYNOMIALS.

139. No general method can be given for involving
polynomials to a given poweg exeept by actual multiplica-
tion. The second power of polynomials, however, may be
expeditiously obtained by the following :—
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RuLe.— Write down the square of the first term and twice the
product of the first term by each succeeding term of thé polynomial.

Under this set down the square of the second term and twice the
product of the second term by each succeeding term.

Similarly set down the square of the third term and ilwice the
product of the third term by each succeeding term. And proceed
thus through all the terms of the polynomial.

Lastly, add the several resulls together for the complete square,

Ex. 1. (¢—c—d—f+g-h)?= a’=2uc-2ad-2af+2ag —2ah
+ct+ 2ed + 2¢f - 2cg + 2ch

+ d* + 2df - 2dg + 2dh

+fi=2fg+2fh

+g%-2gh

+h*

Here we cannot add the quantities togethei' since they are all
unlike. :

Ex. 2. (1-xz+x? - $ad 4 2zt - §ab)*

~1=2x422%~ 284 42t~ b
+ af- 228+ zt-4xf 4+ x6
+ xt~ x% 4+ 4a8 -~ 27
4+ 3wl - 227 - lx8
+ 4x8 - 229
+al?

= 1 - 22+ 32% ~ 3a% + 62 - 635 + Hab - 327 + Fx® ~ 29 + 110

Exircise XXXIX,

1. '(Z+§:c-3x2)2. 2. (z+a?=2%% 3. (2z -3at-iz¥)?,
4, (1-}a+202=a®)’. 5. (1+x~3xi-1 2% +at)?,

6. (2a-oaz+2ax?)?. 1. (1+bx-ca?),

8. (a—-bz-ca?+da?)% 0. (1-a+d%E-~ 2% +d4xt)2,

10. (a+b)5, 11. (a-¢)% 12, (az - 2)%

13, (2 =8z +4a? ~ fa% + fwh)s i4, (1-2v~a%+ 228 - 4)?
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EVOLUTION.

140. Evolution is the process of finding any vequired
root of a quantity.

141, Since (+a)? = +a* and (-a)? also = +a?, the
square root of &* may be either +  or — @, and hence we
always attach the double sign + to the even.roots of a
quantity. .

Thus, Nt = oy MatyR =t %P &

142. Since all even powers are positive, Whether the
root he negative or positive, it follows that a negative
quantity can have no even root. ‘

Note,—Expressions indicating an even root of a negative quantlty, such

a3/ a2, v/ TT6me, 4/TT6a%, Y- atmi2413, &e., are called imaginary
or impossible quantities,

-

14.8. The root of a complete odd pow'er has the same
sign as the power,

Thus,  ~ a® = —a; §/-32410625 = —202h5 5 ¥/27a5m? = 3a2m,
Case 1.
EVOLUTION OF MONOMIALS.

144, To extract any root of a mononiial :—

Rure.—Eztract the required root of the numerical coefficient, and
then extract the robt of the literal part by dividing the exponent of
each letter by the index of the root fo be extracted.

Note 1.—We extract a required root of a fraction by taking the root of

the numerator and denominator separately—of a mixed number by taking
the root of the equivalent improper-fraction,

Ex. 4/16a30% = /16 x a?b% = 24%% ; §/64a%D° = {/64 x ab? = 4ab?.

Nore 2.—When the exponent of the litéral pait is not exactly divisible
by the index of the root to be taken,-we cannot obtain the root, and
consequently we merely indieate -its extraction by using the radical sign
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and proper index, or by using 2 fractional exponent. Thus, we cannot find
the cube root of a4 because 4, the exponent of a, is not exactly divisible by
8, the index of the cube root; we therefore represent the root required hy .
the expression \/ a% or a%. Such gquantities are called surds or trratumal
quantities,

Exgroise XL.

[

. Pind the square roots of at; x%?; 4a’n%; 64a%; 121abyt.

. Find the cube roots of - 274%; 64a6y9; 12543215 ; ~8aby12s%,

1647 16a?  144a%yl® 64at

25b% ' amt | 8latt? ' Gaomit
64a!2y5 BaMzlsylz 343¢3b9

. Find the cube roots of g i Jlebics 0 T Samig

Find llGa B2al%z%° [129m12z1% !a“m“
- O i 243y° 5 gaaiz c/m'

w N

. Find the square rootsof ——

.

(=]

Case 11,
EVOLUTION OF POLYNOMIALS.

SQUARE ROOT.

145. In order to investigate a method for extracting the square root of

a polynomial, we take the quantity a-}-b and square it; this gives us
at - 2ab 4- b2, Next we seek to find or to devise some process by which
we can evolve from this latter quantity its square root, & 4- b. Arranging
the square according to the powers of the

a? 4 2ab 4 b2%(a -+ b letter of reference, we readily see that we

a2 can get a, the first term of the root, by taking

e —— the square root of the first term of the

.2 a+0) gzz :ll-_ Z: arranged square, Subtracting a2 we have a
— remajnder 2ad + 52. Now we endeavour to

find some progess by which we may use a,

the first term of the root, as a divisor for finding the second term, and
knowing that this second term is b, we see at once that we must use 2a for
a trial divisor, because 2ab < 2a gives b, the second term. Finally, as the
divisor multiplied by the last term put in the root, must cancel the remain-
ing part of the dividend, i.e., 2ab 4 52, we observe that we must add & to

the trial divisor in order to complete it.

146. The several steps of the above process give us the
following :—



ARTS, 145-147.) BVOLUTION. 121

RULE.

1. Having pi'aperly arranged the given square, we talke the square
root of its first term for the first term of the root, and sub-
tract its square from the given square.

11. We double the part of the root elready found for a trial

- divisor,

II1. We ask how often this triul divisor is conlained in the first
term of the remuinder, This gives us the second term of the
roof. ’ -

IV. We place the second term both in the root and also in the

- trial divisor to complete it.
V. We multiply the complete divisor thus obtained by the second
" term of the root, and subfract,

VI. If there be a remainder we again double the purt of the root
already found, for a new triul divisor ; again ask how often
the first term of the trial divisor is contained in the first
term of the remainder ; place the quantity answering this
both in the root and in the divisor ; multiply the divisor thus
completed by the last term put in the root ; and so on,

147. We are led to infer that the above rule will answer
_in all cases, from observing carefully the law by which any
polynomial is raised to the second power, and that .the
_given method for extracting the square root is just the
reversal of this process.

Thus, (@ + b)? = ¢ + 2ab + V.
(@+b+c)=a?+ 2ab + b2+ 2(a + b)c + ¢4
(@+b+c+d)?=a’+2ab+ 0%+ 2(a+b)c+e +

2(e+b +¢)d + d3) .
@+btecrd+e)=a?+20b+b+2(atb)c+c? +
2(e+b+e)d+di+2(at+btctd)et e
That is to say :—

v .

The square of any polynomial is equal 1o lhe square of Lhe first

term,plus twice the product of the first term by the second, plus the
I
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square of the second, plus twice the sum of the first two terms into
the third, plus the square of the third term ; plus fuice the sum of
the first three terms into the fourth, plus the square of the fourth
term,—and so on.

148. Then also, finding upon trial that the rule holl:
in every case in which it is tested, we conclude that it is a
general rule, and use it as such; and moreover, we derive
the arithmetical rule from it.*

Ex. 1. What is the square root of 25a% = 30ab + 9527
OPERATION,
25a% = 30ab + 9% ( ba — 3b = aq. root,

106~3b) - 30ab+ 9b%
- 30ab + 9b*

Ex. 2. What is the square root of z% ~ 425+ 8z + 47
OPERATION.

2t - 423+ 8 + 4 (a® - 2z - 2 = 8q. TOOL,
z

228 -2z ) ~42°+8x+ 4
— 42% + 4a2

27t~ 4x ~-2) -4zf+82+4
~4z% + 8z + 4

Ex. 3. What is the square root of 426 + 1205 + 5% — 249 4 a2
~2z+17

* See Author's National Arithmetic for tﬁe investigation of tﬁe quare
100t 88 applied to numbere,
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OPERATION.
48 + 1228 + Bat=22% + T2%= 22+ 1 (22%4 322 -z 4+ 1
4x6
4z° + 327 )‘ 1225 + 5t
1225 + 9zt
4Pt 6al-z)  -4xt-32%+ o
~4xt—-6x%+ x?
428 + 622~ 2% + 1)_—4a:a+ 6x2=2zx 41
4x8+ 622 - 25+ 1

Note 1.~If the given quantity is not an exact square, it is an ih-ational
quantity, and of course its exact square root cannot be extracted.

Nore 2.—In the above oxamples, and in all others where an even root
is extrdcted, all the terms of the root may have their signs changed, and
the resulting expression will still be the root required, (See Art. 141).

Bxercisg XLI.

Ezxtract the square roots of :—

. 40% + 12ab + 9% ; @ - dax + 42?%; 4aPx® - 28acx + 49¢
. 9a?m? + 30amzy + 252%y% ; 16a%xt - Badb?cPx? + bécS,

5a? 4+ 1 - 6z + 12z° + 424,

zt = 2z%yt - 228+ yt 4+ 2y 1,

. @*+ 2ab — 2ac + b% - 2bc + 2

12a% + 9a1 + 344? + 200 + 25.

. a® 4+ 2ab + b% + 2ac + 2bc + ¢ + 2ad + 2bd + 2¢d + d3,

. 26 - 6x0y + 15242 - 202%° + 152%* - 6xy® + yb,

. at ~ 8a% + 24a%? ~ 32ac® + 16¢%.

. 1= 2y 4 Tyt — 29° + Byt + 1295 + 4y5,

. 4u* + 12¢% + 13¢%2% + 6azx® + xt. :

(@ =)= 2@y (S )P 2(at + yt).

L@t b+ et 4 df - 203002 + dF) — 20%(c? ~ d¥) ~ AcH(d - o?).,
o 14 2a® = Jab o fex® —do - Taf 4 Tat,

x\ % 28 y2
. (—y—) —yz+§x‘——2+y—+l-3,

© WD o e

et d e e
W RO

—
o
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149. TaeoreM.—In the arithmetical extraction of the square
ro0t, after n + 1 figures of the root have been obtained by the rule,
n more, may be obtained by dividing the last remainder by the last
trial dwisor. .

DEMONSTRATION.—Let N represent the number whose square root ie
to be extracted ; let « represent the part of the root already found, and let
@ represent the part of the root yet to be found.

Then'\/N:a-{-x oo N=a? + 2ax -+ x2.
. N — a2 = the remainder after n -+ 1 figures have been found, and 2a is
the trial divisor.

N— a2 2uax + 22

a2
Then e = 50 = z <4 2% If now we can show

2
that %— is a proper fraction, we shall show that the integral part of

the quotient of the remainder - the trial divisor, under the given con-
ditions, constitutes the remaining part of the root. By supposition z
contains only = digits, therefore x2 cannot contain more than 2n digits,
but ¢ by hiypothesis consists of the » - 1 left hand digits of the root, and
must therefore, affixing the n ciphers which are understood, contain 2n -1

2
digits. Hence in the fraction ga— the denominator contains 2n 41 digits,

while the numerator cannot consist of more than 2 digits, and therefore
‘w2 RS e N — a2
2 is a proper fraction, and rejecting it, we get o = 2 — the re«

maining digits of the root.
Ex. Find the square root of 12 to 11 places of decimals.

Here we must obtain the first 6 digits by the ordinary rule; this gives us
3-46410 and a rem. 111900, the last trial divisor being 692820. Then 111900
- 692820 = 16151 — the remaining five digits of the required root, which
is therefore — 3-4641016151,

Nore.—If the given quantity be not « complete square, then the approxi-
mate square root thus found may possibly differ by a unit of the lowest
denomination, from the square root carried out to same number of places

by the ordinary rule.
CUBE ROOT. _
150. In investigating a method for extracting the cube
root of a polynomial, we proceed as follows :(— .

Taking @ -- b and cubing it, we get a3 4 8a?b - 3ud? 4 b3, and we
endeavour to devise some process by which we can evolve from this latter
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quantiti its known cube root, @ + b. Having arranged the given cube
- according to the powers of its
a3 43020 4-3ab2 4 b3 (¢ +-b letter of reference, we see that

a3 we can obtain @, the first term of
_— the root, by taking the cube root

302 — 3wb +02)3a2b 4 3ab? 4 b3 of @3, the first term of the cube.
3a2b +3ab2 + b3 ‘We subtract the cube of a from

_— the whole expression, and bring

down the remainder 3220 + 8ab2
-+ 03, Next we observe that if we divide the 18t term of this rem. by three
times the square of o (the part of root already found), the quotient is b,
the required 2nd term of the root. Finally, as all the remainder roust be
cancelled by the product of the divisor by &, the last term put in the root,
we see that we must increase 3a2, the trial divigor, by 3ab (i.e., three times
the product of what was in the root by the term last put in), and 62%i. e,
the square of the term last put in the root). Upon multiplying the complete
divigor 8a? - 3ub 4 b2 by b, and subtracting, we find that there is no
remainder.

151, The above process enables us to extract the cube
root in this particular case, and as it holds good in every
case in which it is tested, we conclude that it holds univer-
sally. Thus for the extractlon of the cube root we get the

following :— .
RuLE.
. Arrange the given cube according to some letter of reference,
11, Take the cube root of the 1st term of the arranged cube,
and place it as the. 1st Lerm of the root.
TT1. Subtract the cube of the 1st term of the root ﬁ om the given
cube.
1V. Tuke three times- the square of the part.of the root already
JSound as a trial divisor. )
V. Divide the 1st term of the remainder by the 1st term of the
trial divisor, and place the quotient as the 2nd term of the
700t,
V1. Complete the trial divisor by adding to it,
1st, Three times the product of what was wn the root Iﬂ/
the term last put in the root; and
2nd, The square of fhe term last put in the root.
. Muitiply the divisor thus completed by the last term put in
the root, and subtract the pmduct Srom the part of the
given cube remaining.

—

=

\2!
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VIIL. Jgain find a trial divisor, us in (1v) ; divide the 1st term of
last remainder by the 1st term of this trial divisor, and
place the quotient as 3rd term of the root. Again complete
the trial divisor as in vi, by making the two additions there
described ; multiply the complete divisor by the last term
put in the root, subtract,—and so on. )

162. We may be led to infer this rule for extracting
the cube root of a polynomial by reversing the process by
which a polynomial is raised to the third power, as may be
seen by an attentive examination of the following:—

(@+b)=d* + 30% + 3ab? + b,

(a+b+c) =6+ 3a% + 3ab? + b* + 3(a + b))% + 3(a+b)ci+c’,

(@+b+e+d)3=ad+ 362 +3ab%+ b + 3(a + b)% + 3(a+b)ct+ct

+3(a+b+c)d +3(a+d+c)d? + 5
‘Whence it appears that :— ‘

The cube of any polynomicl is equal to the cube of the first term,
plus three times the square of the first term multiplied by the second, ~
plus three times the first term multiplied by the square of the
second, plus the cube of the sacond termn,plus three times the square
of the sum of the first two terms multiplied by the third, plus three
times the sum of the first two terms multiplied by the square of the
third, plus the cube of the third term, plus three times the square of
the sum of the first three terms multiplied by the fourth, plus
three times the sum of the first three terms mulfiplied by the squure
of the fourth, plus the cube of the fourth term ; and so on.

Ex. 1. Find the cube root of 8! - 84u?x + 294ux? - 34325,

OPERATION.
8¢ ~ 844z + 204ax? - 3432%(2a ~ Tz
8a? '
3(2a)* = 12a* - 840%x + 294ax? - 34312
3(2a)(-"1x) = =42ax
(-Tx)2= +49x% | - 84a%x + 294ax? - 34322

12a% - 420 + 4927 |

Ex. 2. What is the cube root of 27a6 = 54a% + 83a% — 44a®
+ 212 -6a4+17



OPERATION.
27a® ~540° + 63a* ~ 44a% + 21a* - 6a + 1 (3a%~ 22+ 1 = root.
' » ' 27ab
1st trial Divigor = 3(3a%)? = 2%at ~ 544’ + 63a*~ 444° = 1st Dividend.
1st Increment = 3(3a%) x(-2a)= —18q? -
_3nd Increment = (- 2¢)* = +4a?

—_— | :
27a* - 18a®+ 4a® | - 54a® + 36a* - 8a® = Product of 1st comp. Div. by ~2a.

a

“18t complete Divisor

9nd trial Div, =3¢30% - 20)? = 27at— 360°+ 1242 ] 27a% - 36a° +21a%- 6a+ 1 = 2nd Dividend.
1st Incfement =3(3a%-28)x1= 9a% - 6a
2nd Increment =12 = +1

]
27a%-360%+ 21a%*-6a+1 | 27at-36¢*+21a%~6a + 1= 2d comp. Div.x+1
SAME QUESTION SOLVED BY HORNER’S METHOD, ’

2nd complete Divisor

i

First Cohwmn. Second Column. 27a8 = 54a% + 63a% - 44a5 +21a2-6a+ 1 (3at~2a+1
3¢? 9a* 2746
302 ©.18a% -
6a? 21at . - 54ab + 63a* - 44a°
3a? - 18a® + 4a?
9a% - 2a 27at = 180° + da? ~ 5446 + 360% - 847
-2z - 1803 + 8a?
9a% - da 27at - 36a° + 1242 27a% - 36a% + 21a% - 6 +1
= 2a 90 -6a + 1 .
9% <~ 6a+1 2Ta* - 36a° + 21a’ - 62 + 1 270t ~ 364* + 21a% - 6a + 1

*NOILATOAHR 'zt "vuy

131
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ExpranaTioN.—The foregoing is a second method of extracting the
cube root, known as Horner's methed. Upon careful examination it will
be seen that the same trial divisors and complete divisors are used as in
the other method, but that they are obtained somewhat differently. The
several steps are as follows:—

1st, Take the cube root of the first term and place it as first term of the
root, also place it to the left of the arranged cube, under the head+
First Column.

2nd, Multiply the first term of the first column by the first term of the

.root, and place the product as first term of the second column;

also multiply the first term of the gecond column by the first term
of the root, and place it in the third column, i.e., under the given
cube, and subtract.

3rd, To the first term of the first column add the first term of the root,

multiply the sum by the first term of the root, and place the pro”
duct ag the second term of the second column,

4th, Again add to the first column the first term of the root.

&th, Add the first and second terms of the second column together for a
trinl divisor. Ascertain how often this goes in the first terin of the
dividend, and place the quotient (-2«) in the root, and also attach
it to the 9a2 in the first column.

, Multiply the 902 ~ 2 in the first column by - 2a, the last term put
in the root, and place the product - 1843 -}-4a2 under the 27a4 in
the gecond column and add; this gives 27a¢ - 18¢3 + 4a? for com-
plete divisor.

7th, Multiply the complete divisor by -2z, the term last put in the root,

“and place the product in the third column,
Bth, Subtract and go again through the whole process as before,

ot

=

Bxercise XLII.

Extract the cube root of each of the following quantities :—

8z% + 36x% + 54x + 27.
- 404® + 6a° + 96a - 64,

1 - 6a + 124 ~ 843,

6 — 6ad + 15a% - 200® + 1502 - 6a + 1.

8a%x? ~ 84a%bxt + 294ab%c5 — 343b%S,

Bxﬁ ~ 36ax® + 102a%c% - 171a%2% + 204a%x? = 14445z + 644a5.
~ 320 4 6% = T2 + 62% ~ 3 + 1,

u3 + 307 + 3ab%+ 3+ 3(a+b)%c +3(a )+ B+ 3(a+b+ )i

3(a+b+c)clz—l-d“-3(a+b+c+d)28+3(a+b+c-‘-d)e2+e‘

Note.—In Ex. 8 endeavour to keep the quantities in brackets, and the
- labor of extracting the cube root will be materially lightened,
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153. TugorEM.—In the extraction of the cube root of u number
when n + 2 figures have been found by the ordinary rule, n figures
more may be found by dividing the remainder by the last trial
divisor.

DEMONSBRATION.—Let N represent the number whose cube root is

required; let « represent the n + 2 figures already found, and let x repre-
sent the » remaining figures.

Then /N = a+z, .. N=a? 4+ 3a%z + Saoz + 23,
N — a3 = the remainder after n+2 figures of the root have been found,
and 3a2 = the trial divisor.

N—a? __ 8aZzx 4 3azx? i 23 =+ a2 z3
3az 3a? - o 3a?’
3 r? - 23
Now if we can show that - + P is a preper fraction, we shall

have proved that, neglecting the remainder arising from the division, we
may obtain the next # figures of the root by dividing by the trial divisor.
By hypothesisx contains only n digits, while it is manifest that 10" contains
n 4 1 digits; hence z < 10" and .-, #2 < 10", And since @ contains the
left hand n + 2 digits'of the root, taking into account the position ot these
with reference to the decimal point, @ must contain 2n +2% figures. And

. 2 g
therefore ¢ it not less than 10" *1.  Hemce *- « - 07 that is, *o
mrl u
23 16™ 1
L. Similarly —— —— , that is —_—
< 1o Y gt g xpo¥rre’ < Txir e
z2 a3

1
— - L5 Tz ity.
Hence -~ 4 5o < ¢ + 3 ><1().,H.&.and < unity

Ex. Required the cube root of 10973936866941015122085048,

Here gince there are 26 figures in the cube there are 9 in the root. and
we proceed to-obtain the first 5 of these by the ordinary rule. The five
digita thus cobtained are 22222, with a remainder 3291818930156122085048,
and & trial divisor 148145185200, Then 329181893015122085048 - 148145185200
= 2222 4 == remaining four digits of the root, which is therefore =
222222222,

EXTRACTION OF ROOTS IN GENERAL,

154. -By observing the mode of writing the square, cube,
&e., of polynomials, we can deduce the following general,
rule for the extraction of any root of a polynomial:



130 ' THEORY OF INDICES. [Szor. VIII

RULE.

I. Arrange the given polynomial according to a letter of reference.
II. Extract the required root of the first term, this will be the
Sirst term of the root.
1IL. Subtract the power of this ﬁ.rst term of the root from the
given palynomwl
IV. Divide the first term of the remainder by-twice the first term
of the root for the square root, three times its square for the
cube root, four times its cube for the fourth.'root, five times
its fourth power for the fifth roof, and so on; the quotient
will be the second, term of the roof.
V. Involve the whote of the root now found to the specified power,
and subtract it from the given polynomial,
VI. Divide the 1st termn of the remainder by the same divisor as
) before, and the quotient will be the third term of the root.
Again involve the whole of the root now found to the speci-
Jied power ; subtract, and so on.

NoTEe,—It is manifest that the rule verifies itself.

Ex. What is the fourth root of 16x® — 32x7 + 88z6 — 104x°
+ 1452% = 10423 + 8822 ~ 32x + 16 ?

OPERATION.
(root = 2x%=x + 2)
1628- 3227488261045 +145x%— 1042488z 32:::4—16

(2x%)* = 16x®

32z6)  ~32x7 = 1st term. of rem.
(22— x)%* = 162% ~ 3227 + 2426 - 820 + 24,

32x6) 64«5 = Lst term. of rem.
(2&7:2—.'l:+2)4 =162%-322"+ 88251042 5+145x4-1042+88x7-322+16
Rera. = 0. Hence 2z%Z — z + 2 is the fourtk root required.

SECTION VIII.
THEORY OF INDICES.

156. It has been stated (Art. 17) that when a frac-
tional index is employed, the numerator of the fraction
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denotes the power to be taken, and the denominator indi-
cates the root to be extracted. We have now to add that
a negative eponent is sometimes employed for the purpose
‘of denoting the reciprocal of o quantity with the same
exponent taken positively.

Thus, a ~™ iz used to denote l—m whether m be fractional or integral.
a

156. TreoreM I. If of and n be any positive integral qaantities,
then am x g = gm +1,

DEMONSTRATION. a™=ax axa .... to m factors, and a" =4
xaxa.... ton factors.

Therefore a” x e =axaxa ....tom factorsxexaex a....
to n factors,

=axa....tom+n factors = a”*", which was to be proved.

157. Tarorsy 1I. If m and n be any positive infegral quantities,
then (am)n = gon = (gu)m,

DBEMONSTRATION. (a™)" = a™x a™x g™ ...... to n factors =
aAMFMAM o oies to 7 terms = g,

(@)™ =@a"xa®xa%.... tom factors = ¢**"¥" + ... to M terms
= g"m,

But mn = nm . o™ = g™ and since (a™)™ and (a")™ are each
= @™ ., (@™ = o™ = (4™)™ which was to be proved.

158. Trrorem III. If m and n be any positive integers, then the
mtk root of the nth power of s is equal to the nth power of the mth
root of a. That is, V(a") K a)™

DemonsrraTion. Let §f(a™) = =™ ; raising both to the mth power
we get a™ = (z")™ = (z™)" by the preceding theorem.

Extracfing the nth root of each of these we get e =x™; and
extracting the mth root of gach of these we get ¥a = z; and
finally raising each of these to the nth power we have (ffa)™=a™.
But §(a™) = 2" -, {f(a®) = ({a)", which was to be proved.
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159 Taeorem 1V. Both numerator and denominator of a frace
tional exponent may be multiplied by the same quantity without
altering the value of the whole expression, of whick it forms part.

m wmr

That is,'a" = a™.

:n

* =z, Thena™=2"; also a™ =",
mr ™

Therefore extracting the nrth root of each, a” = z; but an
=T,

DEmMoONSTRATION, Let a

n nr

Therefore «* = a;, which was to be proved.

160, Tugorem V. If = and — are any positive fractional quan-

w T m s r
tilies, then a* x a* = a® I
ms r nr
DemonsTRATION. By last theorem a" = ¢™ and ¢’ = a.
m - ms ar
Therefore a” x a* = a” x a*
ms 1 ar 1
a* = (a™)™ and also @™ = (a"’)z
m r ma ar H 1 1

Therefore a” x ¢ * = a™ x ™ = (a™ )" x (@ )™= (a™xa™)"
1 ms + nr ms ar n + T
= (@rrryes = g M = g™ ™= g™ S which was to be proved.
mor om

Corollary. Similarly it may be proved that a" o = d"

&

mr

161. Treorex VI. (ai )5 = o™,

m T m o\ 7 ’
DrmonsTraTION. Let (a" )3 = z, then (a77> = 25 that is
(Art. 157), @® = x5, Therefore ¢™ = =™, and therefore extract-

ing the asth oot of each, & = x, but (aﬁ ); =z . (a’T )3- =

mr

a.’E, which was to be proved.

162. Turorex VII. @™ x &® = a™*™ when m or n, or both m
and n are negative quantities.
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DrmonsTrATION. First, let either one of the exponents, as for
instance #, be a negative quantity.

1 am
Then a® x a® =g xa " =a"x — = — =g"-" = gn¥+(-"),
a® "
Next let both m and n be negative quantities.
’ 1 1 1
m N g =M - = — g -Mm-n
Then e xa®=a-"x a P

=a~"™*("%), which was to be proved.

183. TerorEM VIII. (¢*)* = a™® when m or n or both m and -
n-are negative quantities.

DEMONSTRATION. First, let n be negative, then (4™ = (@™) - "
1 1

- = =Mz gmx (-0
(ant)n anv a” =a

Second, let m be negative.

Th MYN — MAN — 1 " _ 1 = ~MmMn - Wk
en (a™) (a Ye={— = set=a M
Third, let both m and n be negative.
1 1
Then (™))"= (a~™) "= ——— = (by second part of

a- m)n a- mn
demonstration) = ¢™ = g-™* (-7 which was to be proved.

164. Taporem IX. o™ x b™ = (ab)™

1
DrmonsTeATION. Let a® x b% = x, then (o x b%)" =", -
fhatis,axb:z%‘ or ab =z -, (ab)" =z.
- But @® x b® = xz. Therefore also " x b® = (ab)™.
Corollary, (ab)" =a"x b*, Similarly ¥e x #b = ¥(ud), and

L2
_ conversely (a,b)n =a x b,

185. Tueorem X. JAny factor may be transferred from one term
of a fraction to the other by changing the sign of its exponent.

D am am [ amxb-" amp- "
EMONSTRATION bT = b—,',r X B—_—n = BFX_I)T% = F_,"'
amh-%  gmp-n
= e T
a’n a‘”b a m a"b X ¢ " am - a('
Again, TN g T piwg-m o phg™ C big- ™

1
=Yg which was to be proved.
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166. By these Theorems it Las been proved that whether m
and n are positive or negative, integral or fractional,

am 1
a™ x = ™™ a,m+a”'=a—n:amx F:a’"’xa'”:d’"’“”

i . P
(@™™ = a™ = (@)™ ; o = a5 & X b = (ab)"; o x b"= (ab)"
I T S
(ab)”:a"xb";(ab) =a xb ;F’L—ZF@=;’T“—=ab

That is :—
(I) Powers of the same quantity are multiplied together by adding
their indices.

(II) One power of a quantity is divided by another power of the
same by subtracting the index of the divisor from that of
the dividend.

(I11) A4 power of a given power, or a root of a root, is oblained by
multiplying together the two indices. .

(IV) Powers having unlike fractional indices may be reduced to
equivalent expressions having fractional indices with a
common denominator.

(V) A factor may be removed from one term of a fraction to the
other by changing the sign of its exponent.

(VI) The product of the same root or power of two or more dis-

v similar quantities is equivalent to the same root or power
of their product, and vice versd.

ILLURTRATIVE EXAMPLES.

4m _ 4m

4m 4
Ex. 1. —— = —— = ‘ma‘% Of —— &= ——e———,
Bya g S ? 5da  s5m-tafa
e g, W) _aarent st oL
e I T 5 = Ba¥bicim T Ea Y
- Sy/(mn’) 5(171’/5"')%2 ﬁm%n‘
3

sa-3p- Yo tab, ¥
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wtp-t bt (et e

Ex. 8. —

—‘L’C 1 agbg h (axbs)i’ - t/(asb5)'

Ex. 4. a'zxa"‘:a‘ﬁ; aixat=a; 0" "xad¥=a"%;adxa"*
= at,
Ex. 5. ad xdle ab o ofr s HF, B, - R A4 (D)
as %-als 1155'_‘1‘1*5'

Bx. 6. 0%+ a 2= gt-(-2) = g8+2=¢6; g-8: -7 = g-3-(-7)
=q-8+7 = gt,

Ex. 7. a¥ s a¥= ¥~ o0 % = a%; of + om0t D

i

3 3
SrE_
Ex. 8 (a/.)s_azxa_as (a %2 =a-*%=gq- 4. i (@ a)-z_a-ax H]

~ 1 - -
=ab; a3) —a ER 1, (e *) 7=

Bx. 9. ((aH ¥ = (@3 X oo 0 ‘3‘)‘6 S ARl
= a2,

Ex. 10, 3§/(a%* Y{abet 4/ (G} = 1W/(ab* fabet (a1 b3 - ) H¥yua
= [a"‘b,’ { abcta” ‘Lb" 3.~ 43“}{{] is‘:(aabza%b’}c':}a" '122‘1,‘ ‘szic = '132')%
=(a3a%a.— Ilbebe—'lzfc P ‘1"i)H=(a“+Ja‘ -1z b'f'*‘:'i - T cé"&)‘}%
-_-(ai{%b?gc‘}%)lm = (u3 gbzscla)ﬁ%: ab?c. »

Ex. 11, Divide a*~a% +2a¥ -3 ~a =31 4-¢ byag N Pt
—_—a
_ OPERATION.
PO Nl 3)a5— adradog-u 3‘:'i-a,‘"(a.g—tlﬂa'%—a""‘
o’ + a163 - ajﬁ -1
—alg -q.ig+a%+ 208 =1-0" 143
—alﬁa—a§+a§'+a-% :

— T —
a%—a'ﬂ+a3—l-a §+a“
- -1
a%+a.%-a, %—ﬂ, [
o~ ¥ 14" W iges
[P S §
~1-a~tig ‘L+a'3.
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Exgreise XLiIIL-

1. Bxpress fa ; {a¥; 4a®; (@) ; Y(abeyts Y(abeio)?
and ¥ (a™c*)" with fractional indices.

. 3 N
2. Bxpress a:}" ; bz" ok ; bk 5 (ubc)% . adb ; (@b )gy

(a’b*c‘sm"’)g and (a b o )m with the radical sign.

1
2¢ 2. 3a mf  Sabm Za%m”
3. Express it g m o ar ' amEd !} boym
111
Sa%bV(cm“) 1 a?pict e
T H -, and ) with negative -indices,
3/ (ab*cm*) m2bct ’
so ag to remove all the literal factors into the numerators
b? 3am 2a 1 Baxy? dac
PR - 2,3 . - —
4. Express 2a; o VC H 327y ab®c ; 2a31/7n S 3 and

5Y/ (mn*z*) (mnixt)
3%/ (abz 27 (@)’ with negative indices so a3 to remove all the literal

factors into the denominators. )
3a§b“3 bz s 2—‘1a"b'3

- m-“

1
u.‘lb'Jz‘c'gim‘%, ( ) ( ) (
@\ -ny-m
{(b—‘—§> } with positive indices.
-1

6. Simplify (a BT 3‘)_3 and (aJi " ¥ x u%) 8 and
(e~ x Afa x Ya x ?\/a)ff, '
. , 1

7. Simplify (¥ {4/ (a3 x %)ac })¥ and V(S Va} )Xa.'“-vz-

8. Sim_plify the following expression :

Y (S D) s 1
;% % a1 Heb) 24/ (e 1N ed

(atot " gty d T VOTHED }}

o, WEE @™ { w> :
RO R A &

5. Express a~1; 2a%-%; ——
3 l¢c 3 m-2

-3
) “; and
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10, Multiply ¥ - 3063+ 3055 = 0¥ by ab - 83, .

11. Multiply 9‘31 - a%z%f + ot by a% + a%x% + a:%.

12. Mul-tiply 4x - 2:1:%3/'"gz + 2::1'2'z%—y “lpy” L by 21:%+y'+—z§.

13. Divide 9x‘9y 4::‘ Ty-1lby - 3z -4y -2z -3,

14. Divide a+ a¥b~ Foabp=dp-1pyabs oy~ 0854
+a4b"%+a8b‘*+b‘%. %

15. Divide .7c“‘+ac_L 1izf iz by Pl e FSY

16. Squarea%— s+at+1-a" o a14078,

17, Extract the square root of o + Za-’ ~1-20"%40 3.

18. Extract the square root of 13 -4z + 101% - l6z¥ + 19 -
t62 34102~ s 14278,

19, Extra.ct the cube root of z-1y¥ ~ 3z~ ny +3x%y‘1—:cy“3

20. Extract the cube root of x%-— 63:J 3 + 213:%1/% - 44xy%
+ 63z%y% - 54::&3/% + 27y.

SURDS.

187. A surd or an irrational guantity, is a quantity
which cannot be represented without the aid of a fractional
exponent or the radical sign,

]
Thus, 4/3, /g, ¥2, e or a%, Y(a+b) or (a+b)¥, &c., are
surds or irrational quantities.

168. A rational quantity is one which does not neces-
sarily involve the use of a radical sign or a fractional
exponent.

Thus, a, a®, 3am, (a‘)”, (8:1‘*)3L (32m.5:v1°)5L, &c.,are rational
quantities.

Norm 1, The last three of the quantities given above are written in the

form of surds, but, the power bajng such that the root indicated in each
case ¢an be extracted, the quantities are really ratlonah Thus, a“)f =aj

(30@3)’} = 20; (32mIw1 0)‘3' = 2ma?. ,
B
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»

Nore 2. The ternts tatioral and irrational are used simply to express
ghe fact that the quantity has or has not some determinable ratio to unity.
Thus, «/2 is Irrational, because, sinee it is equal to 1 - a deoimal which
neither repeats ror terminates, we cannot compare it with unity so as to
seay that it contalns unity, or that unity contains it any definite number of
times.

169. Surds are either entire or mized. An entire surd
is one in which the whole expression is affected by the
radical sign or fractional index. A mixzed surd is one
composed of two or more factors, one of which is not -

affected by the radical sign or fractional index.
Thus, ¥/ab; ¢/T; (@+b~ 7c)i'; (ab’ca)%1 are entire surda.
) gbd s W5 3(@)*; 4837 ; z’zb(aczxa)* are mixed surds;

170. In mixed surds the part not affected by the
radical sign or fractional index is called the coefficient of
the surd, and the part affected by the radical sigi or
fractional index is called the surd factor.

171. Surds are either similar or dissimilar. Similar
surds are such as have, or may be made to have, the same
wurd factor : all others are dissimilar surds.

Thus, 42, T2, (¢ + b)y/2, /8, which is equal to 24/2, &c., ard
similar surds. So also ¥ab; mifab; (a+ m)(ad)¥, 17z (ab)¥;
and paldbt are similar surds,

172. A surd is said to be reduced to its simplest form
when the surd factor is made as small as possible without
putting it in the form of a fraction;

NoTe.—A quadratic surd is one in which the fractional index ? is om-
ployed; a oubic surd is one in which the index tis employed, &e.

178. To express a rational quantity in the form of a
surd :—

Roun.—Raise it to the power whose voot the surd expresses) und
place it beneath the radical sign.
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" Bx. 1. 2¢= (Za)g = {(Za)z}% = (4a2)% = 4/(40%):

Ex. 2. ¢m = (6*m)? = (aﬁm’)’} =Y (amdy,

174. To reduce a mixed surd to an entire stird 1

RuLe.—Raise the coefficient to the power indicuted by the denom-
inator of the surd-index, and place beneath the radical sign the
product of this power and the given surd factor,

Ex. 3. 44/2 = 4/ 16x4/2 = /16x 2 = J32; ayfm = yfa¥ym = |Jd%m,

Ex. 4. 2Y7=¥8 x /T =4 (8x 1) = ¥56; cPa’m? = Yes x¥/(am)
= §/(acbm). .

Ex. 5. 6a{/(%> = §/(216a*) x V<3ﬁa>: {/(lea8 X gg-) =

Y (12a%m).
175. To reduce an entire surd to a mixed surd :—

s/

#

RuULE.—Resolve the quantity under the radical sign into two

JSactors, one of whick is the greatest possible perfect power of the

root indicated, Extract the root of this factor, and place it as
coefficient of the remaining surd factor,

Ex. 6. /T2 = /36 x 2 = 4/36 x /2 = 64/2; 4/20&® =. /2 X b =
2a4/5a,
Ex. 1. Y138 = Y27 x B = Y27 = ¥b = 3Y5; Yo — aba® =

P (x% -0 = axlfz¥ ~ &,

178. To reduce surds to their slmplest form :—

RuLe.—Reduce the entire surd to a mized surd by last rule, and
if the remaining surd fuctor be fractional, multiply both its numer-
rator and denominator by such a quantity as will enable us to
‘emove the latter from under the radical sign.

Ex 8. 3433 = Y216 x 2 = 216 x 2 -64/25

Ex. 9. v = sts'*/*? Vs % 16= «/n%wi /15
5 TI8%25 5 Fx150

Bx. 10. §457 = §4/%"= J TR R AR TR £ 4 AR
a§4The w4180 = § x & x 150 = 4150.
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177. To compare dissimilar surds so as to determine
which is the greater ;—

RuLE.~Jf mized surds, reduce them to entire surds, then reduce
their indices to @ common denominator, and raise each surd to the
power indicated by the numerator of its surd-index when thus
reduced. '

Ex. 11. Compare 3%3, 44/5, and %/325 with one another,

that ig, 281 ; 4/80 and /325 ; that is, (81)3 (80)%and (325)%

that is, (81)%, (80)% and (325)¢; that is (812)F, (80%)F and
(325)%, :

that is, (6561)°, (512000)% and (325)%, whence it is evident

that 44/5 is the greatest and {/325 is the least.

178. To add or subtract surds:—

Rore.—Reduce them to the same surd factor, when similar, and
then add or subtract their coefficients, Dissimilar surds are unlike
guantities, and we can only indicate their addition or subtraction by
connecting them by their proper signs.

Bx. 12, 44/24 + 24/54 — 4/6 + 3 /96 — 5¢/150

= 84/6 + 64/6 — 4/6 + 124/6 = 254/6

= (84 6+ 12)4/6 = (1 + 25)4/6 = 264/6 — 264/6 = 04/6 = 0,
EX. 13. 3‘\/% Ll 2’\/ +'\/E- '\/ 2'«-1 6+VJ‘EQ

= 24/10 - 3410 + 34/10 = 24/10 + £ 4/10 = & 4/T0.

179. To multiply two or more simple surds :—

RurLe.—Reduce them to the same surd index, then multiply the
coefficients together for a new coefficient and the surd factors together
for a new surd factor.

Ex. 14. 41/7x34/1_4—3x4x'\/7x14:-‘12»\/49x§= B44/2.

Ex. 15. 245 x 342 = 2(5)} x 3(2)¥ = 2(5)% x 32)% = 24125
x 3%/4 = 6§/500,
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180. To divide one simple surd by another :—

Rone.—Reduce both to the same surd index. Then divide coeffi-
cient by coefficient and surd factor by surd factor.

Ex. 16. 4411 + 245 = $ /0= ay/5F = 34/56.

oYz Y3 s

CERVE RS A ENL = BV - IR ARV = (B x 1W/B2) -
(B x3412) + (Fx 1 §/40) = 1 §/32 - 3412 + 73 5/40.

181. To find a multiplier which shall rationalize a v
binomial quadratic surd, and hence to rationalize the
denominator of a fraction when it consists of a bmomml
quadratm surd.

RULE —Change the connecting sign of the given binomial quad-*
ratic surd, and the resulting ezpressum will be the multiplier re-
quired.

Bx. 18. What multiplier will ratlbnahze 24/2 - 34/3 7"
Ans. 24/2 + 34/3.

Pnoop (22 - 3y3) x (W2 + 343) = 8-646 + 66 — 27 =

~-27T==19.
54/224/7
Bx. 19. Rationalize the denominator of the fraction 5T VG

Bx. 17. (2¥/2 - 343 + T§/5) + By/2 =

h 1tipl 345 -
Here the muliiplioris 8¢5 yﬂ)(s«/s 46

Then 2757076 = (3Y5+46)(3Y5 ~ 46)
154/10 - 34/35 — 10y/3 + 4/42
’ = 46 -6

182. To find a multiplier which shall rationalize a
trinomial quadratic surd:—

RoLe.—First use as multiplier‘ the given trinomial quadratic
surd with one of its connecting signs changed, the result will be g
binomial surd which can be rationalized by the last rule.

1
Ex, 20, Ratiopalize the denominator of mm’
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Here the first multiplier = 4/5 ~ /2 - 34/3 or 4/5 +4/2 + 34/3,
Use either, say the former.

1 _ W5 - 42 -3y3 v
Then TEVitsE T (- 4D) + 33 | [(Wo-¥D) - Y3}
_ 4/B-42-343 _ 4/b-42-343 45 -42-343
D (WB-42)=aT(  (5-2410+2)~21T  —20-2410
W2 ~-4/5+343 ‘ :
T T 20+2410

Next multiply both terms of this by 20 - 24/10.

42 = /B4 34/8 (4/2 = 4/5 +34/3) (20 - 24/10)
Then =

20 +2y10 (20 + 2/10) (20 - 24/10).
L BOV2-245 4 60y3-6y30 _ 5y2 - 45 + 10y3 ~ 430
- 400 ~ 40 N 60 '

ExgrOoISE }'KLIV.

2 .3 .t 2 ° —%. o2 g
1. Express 2%; 7%; 2%; (13)%; (3%) *%; 3%; (Wab) "%, a8
equivalent surds with indices whose numerator is in each case
+ 1.
2. Reduce a; 3; 41; 2a; 3a%; 4z%° to equivalent surds
havidg indices }, ~ §, and 1. . '
3. Reduce a?; 4/3; 2a%°%; ac®; 43 ; 3-%; (1}) “%and
(z-1y~2%2%)"1 to equivalent surds w1th indices - } and 3.

—_— ‘ 1 i - ‘
4. Reduce 4y3; 5y5; 2y31; 4a; 4(H; and 5(%) T
entire surds.

5, Reduce 3<3>}', Z (3)"%; 330} 1, and

o
$a(3b) * %o their simplest form,
6. Reduce 8{/4; 2{/a; 3(3)3 a(c)‘* 2a(3a?)” ,Z(%m)" and

+
{am + pq) (am ;Z) % fo entire surds,
1/ lla \-4
7. Reduce ¥/135; \/162 450, TWEIL; 1k — . (W;s' q

ond (a'm® - am® + aﬁmﬁ) Yo their simplest form,
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ab® a g [cwm?

8, Redunce \/(6(_a+—a:))’ — \/ (_Ez—>; § (@) and
(az ~ 2)M(b + )+ 2)

c etz
9. Compare ag to their magnitude 34/2 B.nd 3y3; 342%, 2411

and 3%/17.

10. Simplify 44\/18 + 31\/32 42 = MB + 54\/98 also 84/3 +V60

- 3 T+ 4. ‘ »
11. Simplify y78 + Y81 + 2483 - 2074 ; also 8b2(a%c)E 4

2 et - (b’y .

12. Simplify 2P ¥IFMEFT . f3REH-TATERATS . $TFGE I,
13. Multiply 5¢/6 by 34/7; 34/40 by 24/5; W6 by 5¢10; and
34/6 by 44/60. :
14. Multiply #16 by 4/8 ; 4a by 'Iag; 24/3 by #7Z; and
(4 x W/6) by 1.
. ax by - 4d :
15. Multiply together Je Waz, ey by and - f/cz ; also

% = 4fzy + Y by Y= + 4.

'16. Multiply 44/3 + 34/7 by 24/2 — 44/5; and 2¢/3 + 4§ by
342§ - 44/3.

17. Divide 34/2 by 44/3; 54/ by 34/8; 21I§ by +/§; and 2¢/2]
by 3y3}.

18. Divide 64/12 by 38/7; 344 by 24/5; 4/} by 3¥/3 and 4¥az
by 34y/ax.

19. Divide 4/2 + 3} by 1/} ; 4/3 - 54 + 64/1 by 24/3; and

| a®d-1

f/EF""rc’ by,‘{/m—'

20. Rationalize 4/77 + 6; 4/3 — 4/2; 4/3 ~ 64/21 ; [/} + /2and
$E- Wi

21. Rationalize the q inators f ? Y2+y2

¢ denominators o ;e
21/3+1/11 V3+2v5 21/5—3V6

R vy 8T

‘to their simplest forms
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. - 3 awfm - maja
22. Rationalize the defiominators of H
2+ 343 - A3 -4z’ ayfm + myfa
and ——— 25, ‘
Wi-3vi

Witz +1 ~ -z -1
Arirz 4] + 1/52—1'—1

23. Rationalize the denommator“df

i . . . 1 1-3y2
24. Rationalize the denominators of T3=vIiv5 Traya-vya
. 2 4 34/3
1+2¢3-4/2 THEOREMS.

183. TrEEOREM I.-~The productyof two dissimilar quadratic surds
cannot be a rational quantity. )

DamoxsTrATION. Let 4/¢ and /b be any two dissimilar surds,
Then +/a x x/b’c‘éfnnot be equal to r, & rational quantity. For if
it be possible'Tet 4/a x /b = r. Then, squaring, we get ab =

72 rig | 2
b =~ = — = — a. Hence extracting the square root we get

r e
b= ;1/11; that is, 4/b may be made to have the same surd factor

as «/a, and thergfore 4/a and 4/b are similar surds (Art. 171), but
by hypothesis they are digsimilar, therefore they are both similar
and dissimilar, which is impossible. Hence /a x 4/b cannot be
equal to a rational quantity.

184. TrrorEy II.—A quadratic surd cannot be equal to the sum
or difference of a rationul quantity and a quadratic surd.

DruonsTrATION. For if it be possible let 4/a, a quadratic sard,
be equal to the sum or difference of 7, a rational quantity, and 4/,
anotheryquadratic surd, ie., let /o = 7+ 4/b. Then a =172 § 2r4/b

e a-72~b
+b ot 2rfb=a-rP=b ort4/b= —
ratic surd?quals & rationsal quantity, which is impossible from
the definition of a surd. )

185. TumorsM IIL.—A gquadralic surd cannot be equal to the

sum or difference of two dissimilar quadratic surds,

that is, & quad-

DenoxsrraTIoN. For if it be posgible let 4/a = /b | t «/m Whera
ya, 4/b and 4/m are dissimilar quadratic surds,
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Then @ = b £ 24/b x o/m + m .. T2/ x4/m = b-l—m-—a or
b+m-a

Vb X Afm = ._i.__z___

That is, the product of two dissimilar surds equals & rational
quantity, which is impossible by Theor. I.

186. TrroreM IV.—In any equation consisting of vational
quantities and quadratic surds the rational ports on each side are
equal, and so also are the quadratic surds.

DExoNsTRATION. Let @ +4/b = x + 4/y, then ¢ = x and /b = 4/y.

For since a +4/b = z + 4/, then /b = (z — a) + 4y, hence if
z ~ e does not = 0, that is, if z does not = ¢ then we have 4/b =
the sum of & rational quantity and a surd, which (Theor. IT) is”
impossible. Therefore x = ¢ and consequently 4/b = 4/y.

Cor. 1. Hence if @ + 4/b = = + 4/y theun also & — 4/b = = — 4fy.

Cor. 2. Hence also if a +4/b = 0, then a = 0 and also 4/b =
a8 otherwise we should have 4/b = -4, i. e., a surd = a rational
quantity, which is impossible.

187. TarorEM V.—If the square root of a +4/b = x + 4y, then
the square root of 8 - /b = = - 4/y.

DenomsTrATION. Since by hypothesis 4/(a + 4/b) = z + 4fy,
squaring these equals we get & + 4/b = 2% + 22/y + y, and .-,
(Theor. IV) a = 2% + y and 4/b = 2x4/y. Then, subtracting equalg
from equals, w& have & - 4/b = 2% — 2a4/y + 4% Whence 4/ (a — 4/b)
= - '\/"l/. R

Cor. Hence if 4/(4/a + 4/b) = 4/z +4/y, then also /(o - 4/b)
=4z -y

188. Suppose it is required to extraot the square root
of a binomial, one of whose terms is rational and the other
a quadratic surd, we may proceed as follows :—

Let the given binomial whose square root is to be extracted
he 9 + 4/5, and let y/z + 4/y = the required square root,

Then 4/(9 + 4/5) = 4/z +4/y -, 9+ 4/6 == + Wzy + 9,

Hence (Theor. 1v) z +y = 9, and 24/zy = 4/5 or 4ay = 80.

Then (x +9)*= 2"+ 22y + y° = 81, Subtracting the equalg
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4zy and 80 from these equals, we get 2% = 2xy + y? = 1, whence
z-y=1Lbutzx+y=9..2x=10and x=5. Also 2y = 8 and
¥ = 4." Henoe 4/z + 4/y = 4/5 + 4/4 = 4/5 + 2 = square root required,

189, Instead, however, of working out the question
thus in full, we can easily deduce a general rule for ex-
tracting the square root of certajn binomials of the kind
alluded to.

Thug, let a + 4/b repregent the given binomisl, and let 4/x + 4/y
= the required square root. Thus we have

4/ (@ + 4/b) =4z +4/y; then by Cor, Theor. v,

4f(a - 4/b) = 4/z - 4/y; multiplying equals by equals we get

4/(a? - b) =  —y; but by squaring the first equation we get

a+afb=x+ 24/zy + y; therefore by Theor. 1v,

x + 7y =.a, 3nd we have shown that z — y = 4/(a% - }),

Hence by addition 2z = a+4/(a*=b) .z =4 {a+ 4 (&*-b)},

By subtraction 2y = ¢ ~4/(a®=0) .y = {a - 4/(c2 - b)},

And substituting these values for x and y in the first equation
we get the square root required.

Ex. 1. Find the square root of 11 + 64/2,

OPERATION,
Let/IT+6y2 =4z + 4y | (D
Then /1T - 642 =4z =4/y| (u) | Theor. v Cor,
Jl2l-T=a-y | () |= @ x@).
Ji9=z -y (rv) | = (m) reduced,
' S xey=T $2] :
114+642=2+ Hfay+y ("D | = (1) squared.
x4 y=11 (vi) | from (v1) by Theor. 1v
Butz-y= ¥ ™
. 2r =18andz=9 (vu1) | = (vm) + (v).
Also % = 4and y=2 (x) | = (va) = ().

Hen,ce«/lleW"z' = Wz +4fy = ,\/9\+,\/2=3+\/2:
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Exprose XLV,

Find the squdre roots of :—

1. 6+ 420, 2. 12 - 4/140. 3. 32 +4/63.

4, 23 - 2428, 5. 10 - 4/36. 6. 42 + 3\/?1‘4?
1. 2 +4/3. 8. 43-15y8. 9. a-2/a-1.
10, 2a+2¢/@F = 5% 11, 8 +4/38. 12. Z—2+ 3 F =B

190. It appears from Art. 189 that when o® ~ b is not

a perfect square, 4/z and +/y will be .complex surds, and the
expression +/z + 4/y will be more complex than the given
expression +/(a + 4/b). Sometimes, however, the square.
“ root may be similarly found of a binomial consisting of the
sum or difference of two quadratic surds, i.e., a binominal
both of whose terms are quadratic surds, This is evident

from the fact that 4/’ + 4/b may be written +c (a + 1/%),
and then, as above, if a* ~ % be a perfect square, the
square root of a + \/% may be represented by v/ + vy.

Ex. Extract the square root of 4/27 + 24/6.

. OPERATION. .

VT + 6 = /9y + 223 = Y349 + 24/2) = 4/3(3 + 24/2).

Henece 4/ (4/27 + 24/8) = //}4/3(3 + 2¢/2)} = {/3¢/3 T 24/2.

Lot y3F 22 = 4z + 4y, then Y3 IY2 = 4z = /1.

And 4338

But 3+ 24/2 = z+ fxy+y . x+y = B,

Hence 2z=4andx=2;2y=2andy=1.

Therefore /3+ 24/2= 4/2 + 1, and &3 (423 + 1) = /3 (/4 + Y1)
= #1244 43, :

n

-y s xz-y=1,

Exmrosr XLVL
Find the square roots of :— '

L 35 - 73, 2. 35+yH0; 3 36+ TT 4 yT8-4,
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IMAGINARY QUANTITIES.

191. An imaginary quantity is an expression which
represents an even root of a negative quantity. (See Art,
142),

Thus, y =1; ¥/ =a; ¥=1; ¥ =a; /=6, &c., are imaginary
quantities. We can approzimate to the value of surd quantities,
but we cannot even indicate an approximation to the value of
an imaginary quantity, which must therefore be regarded as a
purely symbolical expression. Such expressions, however, often .
ogcur in practice, and so far from being useless have lent their
aid in the solution of questions requiring the most skillful and
delicate analysis.

192, Imaginary quantities may be added, subtracted,
multiplied, divided, &c., like ordinary surds, attention
being paid to the few simple principles given in next para-
graph. '

198. I. Any imaginary quantity may be reduced so as to
involve only the imaginary expression 4/~ 1 ; because 4/ — o
‘= yaix -1 =vya*-1=2ay -1, Soalsoy—a=ya/=1;

IL (Vi_a)z_;a that is Y —a x4/ — a=—a. For
though it is true that V—axy—a=4/—a x-aq= Ja? =+a,
we say here that 4/a? = ~ @ because we know that the a?
has arisen from squaring ~ «. We only use the double
gign + where we wish to indicate that a® might have arisen
from squaring either + @ or —

L (/-1 =15 (4 1>2— - 1; (/=1p= (o1
x =1 ==1x4/=1 =-«/ ; (-1 1)4—{(4 1232 =
(-1)*=+1, and, since every whole number may bg ex-
pressed by one of the four expressions 4n, 4n + 1, 4n + 2,
4n + 3, accordmg as when divided by 4 it leaves a remain-

der ofO 1,2, 003 and (y-1)**"1= 47 1; (/-Iym+s
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=-1; (W=1)"*3=—y-land (W=1)"= + 1, it fol-
lows that the formule -1, -1, —4/ -1, and + 1 express
all the powers of v/ — 1.

IV. y=ax4=b = Jay=1 x ¥by=1 = yab (v =1)*
=+ab x -1 =— yab.

Ex. 1. The sum of /=8 + /=18 = /44/ =32 + /94 = 2= 2/ -2
+3/ -2 =5/ ~2 L L .

Ex. 2. The sum of 3-4/=64—-(2+/=1) = 3-4/64/-1~2
~Af=1=3-8/-1-2-4/-1=1-94/-1.

Ex. 3. (2/=2)(3/-3) = (¥24-1) (334 - 1) = 6y6(y=1)*
= (64/6) x ~ 1 = ~ /6.

Ex. 4. (L+4=1)P=1+2¢=1+(/=1)*= 1+ 24/ 1~1=2 -1,

Ex. 8. 5 +4/ = D(G-y=1 = BF = W=D = 25-(=1) =
25+ 7=32. . L

o _ 24/8 v ~10 24442

Ex. 6: 2¢8 -y =10+ -4/=2 = e et -«/7
LI L B L Y A 2«/

{2 ~y-2 —«/_2 -V-2 - ~2

V- =
S @D v_-vs+4v-1< D=5/ 1.

Ex. 7. Find the square root 2 + 44/ — 42.
Let 4/2 + 44/ — 42 = ofz + 4/y.

VZ-4y-42 = yz-
WE-T8%=42= /2 + 672 = 4676 = 26 = x ~ ¥, ,
Also 2+ 4y — 42 = z+y+2zy . 233 HY

Hence z = 14 and y = - 12 and 4z +4/y = VI4+V—12 =
V14 + 2 = 3. —
Exrrewgs XLVIL

Find the valié of i~
1. (4= 27) = (2/ = 12) and also of (a + 4/ - b) + (a + 4/ =€)
2. The sum of 4/ « b, 4/ = 7 and y/ = 11,
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3. The square root of 7 + 64/ = 2.
4 (W =3+ = x W ~3~T=-2)
5, The square of (V:—Z - 34/ < 3).
6. ! thh denominator rationalized.
42 + 4f
7. (e =~ 1)“3, W=17"%; (f=1)"", and (v - ~1)%s.
8. The square of (a — 4/ - ).
9. The cube of y/2 ~ 4/ - 4.
10. The square root of = 2 = 2/ = 15.
11. The square root of 4/ — 1 and of - 4/ = 1. 1
12. The square root of 31 + 42 / — 2.
13. (4 + J = 2) divided by (2= = ).
14. 14 ~ 416 = (W3 + 25}/ = 1 divided by T =/ = 5:
15. (a +by/<1) multiplied by (a = b4/ =1).*

SECTION IX.
QUADRATIC EQUATIONS.

194, A quadratic equation is one which involves thé
second power of the unknown quantlty, but no higher
power than the second.

NOTE‘——Qnadrahc dquations, like cquations of the first degree, may in<
volve only one unknown quantity, or they may involve two' or more
unknown quantities. In the latter case they are called simultancous quad:
ratic equalions. '

195, Quadratic equations are of two kinds:—
1. Pure Quadratic Equations; and
IL. - Adfected Quadratic Eruations.

198. A Pure Quadratic Equation is one which involves,
{when reduced, only the second power of the unknown
quantlty

* Thig example indicatts a mode of resulvmg a2 + b2 into factors,
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Thus, 22=a; 2% = 9; 2t = (?%)z = 16; e e (an:!"')z =4
uz? + b = cx® - m, &e., are pure quadratics, ]

197. An Adfected Quadratic Bquation is one which
involves the first power as well as the second power of the
unknown quantity.

Thus, z* +.6z = 27; tz? =~ bz =¢, 42% < 3z = 2z = 2% + q; &c.,
are adfected quadratic equations.

198. Any equation may be solved as a quadratic if)
when reduced by transposition, &c., the unknown quantity
appears in but two terms and its exponent in one, is double

that in the other. Thus &® 4 o' = 3, ~ byz = 50;
V% + 3z = 9, ¢* - 22® = 8, &., may be solved as quad-
ratios, but they are not properly speaking quadratic equa-
“tions, )

199. ‘Equations involving surds are generally capable ‘of
being solved only by the methods employed for quadratic ,
equations, but they are frequently reducible to simple
equations by the following :—--

Rurm.—~Arrange the surd termis on one or both sides of the equa-
tion, as appears most convenient ; square both sides of the equation,
transpose and reduce ; aguin square if necessary, and so on.

Ex. 1. Given V7 4 4/6+ 4z = 3 to find the ¥alue of z.

. OPERATION,
’\/7+4./6+-k:\/z =3 Q)
4+ 46 F Nz =9 f633) = (1) squared. _
VB +yz = 2 () | = (u) transposed and reduced.
644z = 4 @* | = (m) squared,
Ne==2| (V) = (1v) transposed and reduced,
#s4 | (W) = (v) squared,
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Ex. 2. Given 4/ {z + 2¢/(ax+a?)} - 4/x = 4Ja to find the value
of x.
OPERATION.

Viz+2(azt+a?)} -4z =4a | (1)
J{z+ 2 (az+dh)} = yfa + 4z | (1) | = (1) transposed.
z 42/ (az +a?) = a+ Waz+x | (1) | = (1) squared.
24/ (az + 0% = a + 2faz (zv) | = (ur) transposed.
daz +40% = @ +4mfaz +4ax | (V) | = (V) squared.

4/az = 3a (v1) | = (v) transp. and then + a.
160z = 9a? (vir)| = (v1) squared. '
x = e (vun)| = (vi) + a and then + 16,

Ex: 3. Given {fa+ = = %4f2% + Sax + b7 to find the value of

OPERATION.

vet+z = HzZ+5ax + 6% | (1)

otz =T b ¥ B | (n)|= (1) raised to the mtt powet.
o + 20z + x® = 2%+ Bax + b% | (1m1) | = (1) squared.

3ar = of ~ b2 () | = (1) transp. and reduced.
a% - bt
z = (V) | = (iv) + 8a:
. 4oz-4 15449z . .
Ex. 4. Given _'\/?'I'_é = m to find the valué of z.
OPERATION.
NIz -4 1B+ 40
Yz +2 -z +40 ®
Bz - 4y + 4049z - 160 o
 Slbyz+3o+30+ 257 % (11) | = (1) cleared offr‘actmns.-
e 4/z2+1204/2-154/ ~ 64/ = 30+160|(111) |= (1) transp. and red.
954z = 190 @) |= () collected.
Wz =132 (v) |=(v) + 95.

=4 (V1) |- (v) squared,



ART, 200,] QUADRATIC EQUATIONS, 163

Exgroiss XLVIIL
Find the value of = in the following equations :—

‘ R T-2 2z
Lyl Fz= : . AL
1/‘ +x =244z 2 7 3
8. 1/1?—,2;::«/.1}—2, 4, \/x-V‘?1=x/m,
e
5. «/«/«/«/«/z'+123+4+5+6+7=2.
6 yfutofo = oz ey Y

AT +28 8844z
4tz Jz 6

9 Wtz E 2= 42+x)

10. o+ + sfa-z = yar. 11. a+x = ot + mJb5 1 oA
1/x+2a 4a+Vx
b+1/:c Wz + 86

14. Vx+vm=2a(1+x)—% 15. 4/z=32 = 16 - 4/z,
b \i 4be \1

o (752) (%) (75)

7. 1/x+Vz - Yz 4\/:4: = (m)

18. YZF @ = c~ 4/ ¥5. 19. 2" +a =4/a %1 da 25 Trgg 4
Jrta+afz—a

Vita-yr-a

12, b+ x4+ 4/(B%+ ax +2%) =a, 13,

20. = M

200. To solve pure quadratics we proceed by the fol- -
lowing :—
Rune.—Having reduced the equatwn to the form of 2= a,

extract the square root of each side, and prefix the double sign 4 to
the right-hand member of the resulting equation.

Ex. 1. Given 2% = ¢ to find the values of z.

[

OPERATION.
z% = a? 6] *
x=4ta = 1 with gquare root extracted

(w
- L
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NotE.~The young student in ‘Algebra is sometimes at a loss to know why
the double sign ¥ is not also prefixed to the left:nand member, since ex-
tracting the square root of each side does really give * x = + a instead of z
=+a. The former of these expressions is, however, eagily reducible to the
latter., Thus, if tz=+a,then+ 2x =4 g, or + 2 = —a, or—z =
+ @, or — 2 = — a, but the last two of these expressions are equivalent to
the first two transposed. Sothat on the whole # = a or & = — a, that is,
%=+ a. It appears from this that when we extract tho square root of

~ the two members of an equation it is sufficient to put the double sign
before the root of one of the members,

Bx. 2. Given 42%+ 11 = 22 + 14, to find the values of z,

OPERATION,
4x? + 11 =24 14| (1)
3z2=3 (1) | = (1) transposed and collected,
z2=1 @m) | = (1) < 3. -
z=+1 (v) | = () with 4/ of each member taken,

a® 4
Ex. 3. Given 327~ 4= 5z0 b0 find the values of z.

OPERATION.
xad= _xl% (x)
80
152%= 20 = 2%+3 | (1) | = (1) x 52% i, e, x 5 since x° = 1.
1427 = 22 (1) | = (a1) transposed.
o? =2 (v) | = (1) + 14

5=ty P =ty =t VRT3 3yT0
2 .

. 2a
Bx. 4. Given 2 +4/a% + a2 = m to find the values of #.

OPERATION.
2a*
Zr - ———
BT TEra | O

WEF B+a+a? = 22| () | = (1) x yE TR
T afd@ T = dt-xr ()] = () transposed.
e+ xt = ot - 2% + 2% | (v) | = () squared.
3a2x? = at (¥) | = (1v) transposed
a? '
= — (1)} = (v) % 3ak,

=ik =+ayf=1lays,
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7% — 22 afeli 2
Bx. 5. Given Y% =% = ¥@*+& D 4\ fnd the value of a.

OPERATION.
JE=P-ATTD
JEaeimd | ©
2fa?~z* b+d .
TiEraE S bod (o) | = (1) taken as in Art. 106 (vi).
@-z2  (b+d)?
FraE T (-b——T)Z (mm)| = (1) cancelled and then squared.
at~zt  (b+d) .
FrE ST (1v) | = () taken as in Art. 106 (vi).

(b +d)?
a-rt= 2(b‘+d2)(a +cz) @ | = (@) x (@ + D).
(@ + d)* 2a%(b% + d2) — (b + d)?a? — (b + d)%c*
=gy (@ r ey =2 ~Z&+% €23
Q2P 4 20— b + 2bd - i) ~ cA(b +d)*  @*(V- 2bd+ d)-cA(b+ 2
= 200 + 4% PGS
a2(b = d)* - c2(b + d)? ,
ETGETR)

Neerp.——In equations of the form of Ex. 5, in which the unknown quan-
tity doos not enter into both sides, the pnncxples deduced in Art, 106 ay
be used with much advantage, as is here illustrated,

Exercise XLIX.
Find the values of z in the following equations :—

1, 222 -6 = z%+ 3. Z,L—+—9_:25
2+2x  2-2z ’
2 2+ ‘ 4. 4z~ 8z0=1
3 e . =1.
5. (x-3)*= 13- 6z. 6. 3(x + 5)% = Tx = 23z.
10224+ 17 Bx*-4 122%+ 2
L T R P

8. 24-F¥TP=16. . 9.0+ @-DETI)=

,\/4_ %X ®
1o—+“ ==y 1. @ T B - JaT = b,
12 Za.x"’ +b=4=ca-5+doprh
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13, fE =22+ xfa® =1 = a1~ 2%
cb?
14, 2+ F a2 = —— .-
Lot N
15. Y3+ iz ~Aiz =z —3. 16 YaF¥z+¥a-z=b

201. By transposition and reductiony and change of
signs, if necessary, every adfected quadratic equation may
be reduced to the form

z? +pz 4+ g =
where p and ¢ are either positive or negative, integral or
fractional.

202. To investigate a rule for solving adfected quad-
ratic equations, we proceed as follows :—

If we take any binomial, as x + ¢, and square it, we obfain
2%+ 2ax + a*. Now we observe that (¢*) the last term of this,
square is the square of half the coefficient of x in the second
term, and we hence conclude that when we have reduced a
given quadratic equation to the form z* + pxr=-p, we may
regard the left-hand member as being composed of the first two
terms of the square of a binomial, and that we may make the
1st member a complete square by adding to it the square of half
the coefficient of its second term, and of course adding this to
one side we must also add it to the other, in order to Preserve
the equality of the ‘members, Thus we get

7’ »*
;2 — = = —
a,+p:l:+4 q+4.

s

The first member of this equation is now a complete square, and
we obgerve that by extracting the square root of each side we
shall get rid of the second power of the unknown quantity, and
thus reduce the quadratic to a simple equation. Thus,
P _ p?
z + E = i I -q-

p
4

That is, ¢ = J(4/p% ~ 4¢ = p)

Whence by transposition x = - 3 p i«) -q
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203. Hence for the solution of quadratic equations we
hive the following

RuLe.—By transposition and reduction arrange the equation in
such o manner that the two terms involving the unknown gquantities
shall be alone on the left-hand side, and the coefficient of x? shall be
+ 1.

II. Add to each side of the equation the square of half the coeffi-
cient of x.

ITI. Eztract the square root of both sides of the equation, and
thence by transposition find the values of x.

Ex. 1. Given z? + 10z = - 24 to find the values of z.

OPERATION.
22410z = - 24 )
2?+10c+25=1 | () |= () with (342)%=5%= 25 added to
each gide.
r+5=4+1 (1) | = (1) with square root taken.

£=%1-5=—4o0r-6|(v) l = (ur) transposed.

NoTE.—When we solved the general equation 224-px+-¢=0, we obtained
=4z sz ~—4g —p). Now we may use this as a formula for finding
the value of z in a quadratic equation. Thus, in the Inst example p =10
and q = 24; then

T= (VP -4g =) = i(+V100 ~96-10) = { (£/4 - 10)
-8 12
=4(x2-10) = 7 T =—4o0r-6.
But although quadratic equations may thus be solved by formula, this
method should be resorted to only by the advanced student, as the junior

student requires all the practice he can get in the solution of quadra-
tics by completing the square, &c.

x T+ 1 1
Ex, 2. Given + = — to find the values of x.-
z4+1 z 6
OPERATION.

x z+1 18
it s T | @
622+ 6(x +1)2=13z(x + 1) | (1) | = (1) cleared of fractions.
6x? +6x%+ 122 + 6 = 132% 4+ 13z | (u1) | = (11) expanded.
2?tr=6 (1v) | = (1) transp. and red.
224x = 64+)=3f (v) | = (av) with } = (3)? added.
z+i=2§ (v1) | = (v) with 8q. root taken.
z=+§-%=20r-3 (vi)| = (v1) transposed and red.

n
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. o 22+ 9 4z -3 3z - 16
. 3. Gi = to find the
Ex. 3. Given 5 +4x+3 3+ T o fin
values of x. ’ .
OPERATION,
2:c+9+4:c-3_ 3z -16 .
9 Tiz1373t s ®
12z - 54
4x+18+m—:54+31‘—16 (III) = (1) x18.
T2z -54 .
Terg "20-z (ur) | = (u) transp. and red.
72z — 54 = 80z + 60 - 4x% - 3% ) [ = (m) x (4 + 3).
42% - Bxr =114 | (v) |=(v) transp. and red.
z¥— by =134 (vi) [=(v) + 4.
7%= Sx 435 =1L 4 2= 1840 | (vin) | = (vI) with (§)? added.
T f=TE =448 (viu) | = (vir) with square root of
each side taken.
z=+424+4 =6 or - 4} (ix) | = (vi) transp. and red.
. a2?  2ax —-m? -
Ex. 4. Given —; -~ — = —~ to find the value of .
m ¢ ¢ _
OPERATION.
© a%ctxt - 2nem’r = —m* | (1)
2 4
Iz_gﬂz:_i () | =1+ %2
ac a?c?
. 2’”(-2 mt A mZ\ 2
x% - T g = 0 |(m)|= 1 with <E> added. '
m? ‘
z - —-=0 (xv)| = m with gq. root not taken.
m? .
T= : (v) | = 1v transposed.

Note.—In this example \§7é may conclude that the two roots of the
equation are equal.

“Exzurome L.
Find-the values of z in the following equationg :—

1. 222 + 8x -~ 20 = 70. 2. 2% - 19 = 8z - 10.
3, 2% - 8z = 20, 4, 2%~ 29 = 16 -~ 12z,
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6. 22+ 2= 15=T0~x~a% 6. 2% = 47 + 15 = 10z — 22%

7. 118z~ §a®= 2%+ 23}, 8. 42?7 - 3x = 20 = Bx + 300,
F a 2
— _— = — 2 —

9. s Tl R 10, 224+ 3% - 72 = 201 ~z = 425,

3x -1 . z%412
.11, -——z a2} - =

TT3-Ece-th 1 — dz+jz=0

13, 2%~x =8z -2, 14, acx® + bex = adx + bd.

15 Ttz -z 2 .

“roye I 16, 2% -z =40 = 170,

n x +3 x4 11 18 -2 -3 . z+4 x+2
3ttt i TIis T Isd T xlw

19. (Tz +3)(3 + Tx) = 10{ 2(z = 1)(3 + x) - (3 + 2z)(x ~ 3)}.

20. az? - bx + ¢ = f2? 4 cx = b.

2l (a-mitz)d=a"t-m-l4 21,

22. aba? = 2z(a + b) 4/ab = (¢ = b)%

204. Many of the foregoing equations when reduced
agsume the general form ax® + bx + ¢ = 0, where a, b and
¢ may be any quantities whatever; now when we further
reduce this to bring it under the rule (Art. 203) we get

2 . b ¢ . .
@+ —@ = —, and consequently we have the inconvenience

of dealing with fractions throughout the entire process.
To obviate this difficulty we may proceed as follows: —

Taking the equation @2? + bz = ¢, let us multiply every term
by 4¢, and then add 5% to each side of the resulting equation,
and we get 4a%® + 4ubx + b% = = dac + 3% The left hand mem-
ber is now a-complete gquare, and extracting the square root of
each member we get 2ax + b = /b= dac - ‘

=b4 yB= dac.
whence z = '—'za——‘

205. This operation translated gives us the following :—
RuLn.—Having reduced the equation to the form ax®+ bx = c,
multiply every term by four {imes lhe coefficient of x% and to each
member of the resulting équation add the square of ‘the coeﬁcwnt

of the second term.
Then extract the square-root of both terms, transpose ond reduce

and thus obtain the values of x,
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Ex. 1. Given 3% ~ 2z = 65, to find the values of @,

OPERATION.
32? — 2z = 65 (¢9)

362% - 24 = 780 () | = (@) x 12 1. e. 4 times 3, the coef. of 27
3627 - 24 +4 = 784 | () | = (1) with (2)? = 4 added to each side.

Gz ~2 =128 (xv) | = (1) with square root extracted.

6x=2+28  [(v) |= (V) transposed.
. 62=30 or-26| (v1) | = (v) reduced.
z=5or-4} |(vin)| = (v) + 6.

3zr-1 4x — 10

Ex. 2. Given 755 = 31 to find the values of .
OPERATION.

3x-7 4x-10

z + z+5 3 ®

72392 =10 ()| = (1)x 2z (x+5) and red.
196x2~1092z=1960 (ur)| = (1) x 28 i. e. 4 times 7.
19622~ 1092z + (39)2= 1960 + 1521| (1v)| = (1) + (39)?
14z -39 =4/3481 = 4 59 QIEDE
14z = 39459 =98 or—20 (v1)| = (v) transposed.
c.z=Tor-1% (vi)l = (v1) = 14.

Ex. 3. Given (8a®+b%)(x¥— 24 1) = (B2 + ¥ (2% + z + 1) to
find the values of x, ‘

OPERATION.
Ba?+ ) (2%~ +1)
= BV e (et +1) )

-z +1 324 d? -
Fizi1l " AT R () | = (O +8a*+b%)(z*+x + 1),
2x% 4+ 2 4b? + 4a? .

T " s (um) | = (@) a8 in Art. 106 (vir).
2+ 1 2b% + 202

-~z | b-ar @v){ = (m) reduced.
(B2 —aB)zP+ b2~ aP= ~2(b%a*)z | (v) | = (iv) cleared of fractions.
(V% = a®a*+ 2(B*+ a®)x = a*- b2| (v1) | = (V) transposed.

4(b%u?) %+ 8(b*- at)w+4 (bPHa?) = 4(a® = b)Y (b% - a%)+4(b%a2)? (vir)
4(b% - )% + 8(D% - ez + 4(D* + 0P)? = 16a%? (vim)
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a?) =  4ab (1x)

B -aPx + (b%+a?) = & 2ab
(0= a?)z = - (b +a?) £ 20b = —a* £ Zab b?

(2% = b*)x = a® T 2ab + b2
(a-b)  (a+b)
TEpE T g
a-b a+b

I Sl

A

{vit) = (V1) x 4 times coef. of 22, i, e. x 4(b% -
) (

@®) and then each

side increased by the sq. of 2(b? + 4%), the coef. of the 2nd term.
(vi) = (vir) with right-hand member reduced. (1x) = 4/viL.

. Exsrose LI,
Find the value of z in the following equations ;:—

1, 32%~9 = 76 - 2z, 2. 2% =z = 210,
3. 4a% - 3z = 85, o4 2"—+-5—=5-'5.'
5 T
5. 4x%+6x = 2z =x%+ 273, 6. 32?2+ 82 4+ 11 = 32 — 2%,

2 7

— e — 2,02 =
7. 5§.x e 8. a%x? + abx = acx + be.
9. §2% +5=%x+58, 10, Ta?=2=—(2~4/3)z+4a%/ 3,
5-xz «x T+ 4x
2 — B2 2T
11. z%4 6ax = b2, 12. 373 3 bz 5
xr m b
180 =+ == —. 14, ma® 4 mn = Zmzaafn + nal,
m x m
. a+1)(1+riad 243256
15, (I+xta®)? = (1) ) 16 = 2%+ 2z + 15.

a-1

Tx?tx-4

THEORY. OF QUADRATIC EQUATIONS.

208. We have seen (Art. 204) that the roots of the
general equation ex® + bw + ¢ = 0 are

=bxyb

@ ;

— 4ac



162 QUADRATIC EQUATIONS. (ot iX.

Now from this it appears that
1. The two roots are real and different in value if
¥ >4ac. )
1. The two roots are real and equal in value if ° = 4ac.
1. The two roots are impossible or imaginary if 4* <4ac.
Hence if any equation be expressed in the form of ax® +bx +¢=0,
its roots are RBAL and DIFFERENT, REAL and BQUAL, 07 IMAGINARY,
according as b® >, = or < dac; and similarly if the equation be of

the form 2% + px + q = 0, il8 r00f3 ¢re REAL and DIFFERENT, REAL
and EQUAL, 07 IMAGINARY, according as p* >, =, or < 4q.

207. TasoREM 1.—A quadratic equation cannot have more than
two roots.

DemonsTraTION. For if it be possible let the quadratic equa-
tion ax? + bx + ¢ have three roots as 8, y and 8. Then

aﬂ"+bB+c=6 €]
aP +by+ec =0 (1)
a3? +b54¢ =0 (1)

a(B2=7) +b(B=y) =0 | (V) | = (D) = ().
a(Bi~8) +b(B-3) =0 (V) |= ()~ (up),

aB-7)+b=0 (v1) | = (1v) + (B = 7) which is not = 0,
*.* by hypothesis 8 ig not = 4.
a(B-8)+b=0 v) |=(v) #+ (B ~35) which is not =0,
. by hyp. B is not = &.
a(y-8=0 (vin) | = (vir) - (vI).

Now a is not = 0, otherwise az? + bz + ¢ =0 would become
bz + ¢ = 0, which is not a quadratic equation ; therefore (y - 3)
must = 0, and therefore 4 = & ; but by hypothesis 4 is not = g,
which is absurd. Hence a quadratic equation cannot have three
roots.

808, Tugorey Il In any quagratic equation reduced to the
Jorm of X + px + q = 0, the coefficient of the 2nd term is equal,
when its sign is changed, to the sum of the roots, and the 3rd term
is equal to the product of the roots,
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DamonsTrATION.- Let the two roots of the equation x4+ px
+g=0begandy Then=ip++4/GpP-Q=8
: And ~3p-Jlr-9=v
By addition —p = g + y = sum of the roots.
By multiplication {~ 1 p+4/ (3 p*~ D}~ P -V (4 P*- O} = By.
That is, } p* - (3 p*— ¢) which is = ¢ = By = product of roots.
Cor. If 8 and v are the roots of the equation az® + bz + ¢ =0,

- b c
then ﬁ+'y=—a—andﬂ'y=z.

209. Trporen III.—If g and ~ are the roots of the equation x* +
PE+q=0,then x-B)(E-y)=x2+px+q. i
DEMONSTRATION. (Z —B)(z — ) = 22~ (B + ) x+By.
 But (8+y)=—~pand By=gq. (By Art. 208.)
S E-pE-y) =~ (~-patg=athpr g
Cor, If B, - are the roots of the equation ax? + bz +¢ =0,
that is, of the equation a(x? + l;—a: + c;) =0. Then we have
az?+ bz + ¢ =0 = a(x - B)(x — v).
Cor, 2. If ax® + bx? + ¢z + d = 0 be a cubic equation, and if its |
roots be B, v, 8 ; then (z ~ B)(x — y)(z ~ 3) = az® + bz® + cx + d.
ILLUSTRATIVE EXAMPLES. )
Ex. 1. Form the equation whose roots are - 3 and 4.
. OPERATION.
Since x = -3,z +3 =0, and since r = 4, x-4 = 0.
Then (z + 3)(x - 4) =0, that is 2® = x - 12 =2 0.
Ex. 2. Form the equation whose roots are 2, ~ 2, 3 and 0.
OPERATION.
2-2=0,24+2=0,r~3=0,2z=0, Then we have
(= 2)(x + 2)(x - B)x = (x¥~ 4)(x? ~ 3x) = 2% — 3z° - 42%4 122 = 0.
Ex. 3. Form the equation whose roots are 1, - 1,3, - 2, and
241 ~ :
OPERATION.
=1=0,2+1=0, x=3=0, t+2=0, £=2-4/7=0, and
z-24+47=0. o
Then (2 - 1)(z + 1)(z -~ 3)(x + 2}z ~ 2= /T =2+4T) =0,
that is, (z® - 1)(#2 ~ & = 6)(x? = 42 + 4 = "T) = 0,
that is, 20 ~ ba® ~ 6% + 322° + 2322 ~ 27z - 18 = 0,

v
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Ex. 4. Find, without solving the equation, the sum, diﬂ‘érence,
and product of the roots of 2 — 42z + 117 = 0.

OPERATION.
Let 8 and v be the roots, then Art. 208 8+ y = 42 and By=117.
Then by inspection find two numbers whose sum = 42 and
product = 117, and they are evidently 3 and 39, and hence the
difference of the roots = 36.

Ex. 5. For what value of c%n will the equation 32 + Tz + ¢'m

= 0 have equal roots ?
OPERATION.

From Art. 206 it appears that in the equation ax? + bx +e= Y
the roots will be real and equal when b% = 4ac, that is, in this
equation when 7% = 4 x 3 x ¢Zm, or when 12¢*m = 49, or ¢*m = 112-

Ex. 6. If B and v be the roots of the equation z*—pz + ¢ = 0,

8
find the value in terms of p and g of — + %, and of g* + 4%
Y

OPERATION,
Art. 208, B+ vy =pand By =gq.
2 4. 2 - 2k 28y +
Then 2 41 o BXF _Faot B4y,
v B By By By
Gk VPN PO il
T By R

And g3+ %= 8 + 38% + 387 + 9% ~ (3B%y + 38y%) = (3 + )t
- 38y(8 + v) = p° - 3¢p = p(p* - 3. '

Exsroige LII.

1. Form the equation whose roots are - 2, and - 7.

2. Form the equation whose roots are 4, — 2, 1, and 0.

3. Form the equation whoge roots are 2, - 2, 3, ~ 3, and 0.

4. Form the equation whose roots are 5, ~ 5, 2, -2, and 3 +4/2.

5. Form the equation whose roots are 1, 2, 3, 4, and 5 + /6.

6. Form the equation whose roots are 5,4, 1, 0,and 2 + 4/ —3.

7. Given 5 and - 2, two roots of the equation z* - 63 + 522
+ 12z = 60, to find the other roots.

8. Givenl t «/——6, two roots of the equation x* — 423 4 822
- 8z = 21, to find the other roots.
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9. Given 14, one root of the equation z% + 622 ~ 3920 =0, to

find the other roots. .

10. Given 2, one root of the equation % - 6% + 1322~ 102=0
to find the other roots. ’

11. Given 3 and - 4, two roots of the equation %% - 2x%— 252*
+ 2622 + 120z = 0, to find the other roots.

12. Given §4/— 2, two roots of the equation 8 - x# + 22
— 4z = 0, to find the other roots.

13. For what value of ¢ will the equation 2x%+ 4x + ¢ = 0 have
equal roots.

14. If B and y be the roots of the equation ax®+bdx+ ¢= 0,
form the equation whose roots are the reciprocals of these.

15. If 8 and + be the roots of the equation z* + px + ¢ = 0, find

1 1
the value of 8%+ 7 of (B = v)?; of g%~ +%; ofE +.— and of
BS — 73' ’ : k4
EQ,UATIONS WHICH MAY BE SOLVED LIKE

QUADRATICS.

210, There are many equations which though not quad-
ratics in reality may be solved by the rules for quadratics,
- Such, among others, are equations which come under one

2 L
or other of the general forms az® + b+ ¢ = 0 or ax® + da”
+ ¢ =0, in which # is any integral number, and @, b, c,
positive or negative, integral or fractional.

- 1
Ex. 1. Given z + 6z* = ~ 8 to find the values of z.
B OPERATION,
z+ 6:!:%,: -8 | (M

wH6a+9=1 (u) |= (1) with square completed by adding 9
‘ to each side.
(1) | = () with square root extracted,

[

22 +3=11
a? = +1-3 |(v) | = (u)«iransposed,
R — @) [=av) reduced.

v=4o0rl6 (v1) | = (v) squared.
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Ex. 2. Given ¥z% + 22¥/x = 23 to find the values of z.
OPERATION.
oraoat=os @
P +222% +121=144 (u) | = (1) with (11)% added to each side.

Yi1= +12 (t) | = (1) with square root extracted,

z
cf=tor-23 (xv) | = (1) transposed and reduced.
%=1 or— 12167 (v) | = (av) cubed.

Ex. 3. Given4/z + 12 + &/x + 12 = 6 to find the values of z.

OPERATION.
2 1
(x+12)8+(z+12)%=6 0
(= +12)%+ @+ 12 + £ = 25 () |= () with } added to each side
1
(x+12)4+34=%+% -~ (ur) | = (1) with sq. root taken.
1
(x+12)¢=20r=-3 (1v) | = (m) transposed and reduced.
x+ 12 =16 or 81 (V) | = (1v) raised to 4th power.
z =4 or 69 (v1) | = (¥) transposed and reduced.
Ex. 4. Given z6 -~ 35x% = = 216 to find the values of x.
OPERATION,
x6-352% = - 216 Q)

4x6 - 1402%+ 1225 = 361 | (u) [ = (1) x 4 and (35)* added.
228-35=419 (ux) | = (1) with sq. root taken.

223 = 54 or 16 (1v)| = (u) transposed and reduced.
o x%=27o0r8 Mi=@av) = 2.
z=3o0r2 (v1)l = (v) with ¥/ taken,

Ex. 5. Given 5¢/(a? + 6z + 28) = 2% + 5z + 4 to find the values

of x.
OPERATION.

x4+ 5z + 4= 54/ (x%+ 852+ 28) =0 | (1)

(x?+52+28) - B(z?+ 5z +28)}= 24] () | = (1) with 24 added to
' each gide,
(x450+28)-5(x2+52+38) - 434=1211 () | = () with ()? added.

ga;’+ 5z + 28)% -f=11 () | = (m) with 4/ taken,
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(z% 4+ 52 + 28)% =8o0r-3 (v) | = (av) transp. and red,
Z*+5x +28 =64 0r 9 (v1) | = (v) squared.
z¢4 Bz = 36 or — 19 " . | (vm){ = (1) transp. and red,
#%+ 5% + 28 = 169 or — &1L (vin)| = (i) with (§)? added to
T4+ E=4248 or + 4y/=51 (1x) | = (vim)with sq. root taken

T=40r-9; or§(-5 £4/~51)| (x) | = (1x) transp. and red,

Nore.—In this example we should find Dy trial that only the firat two
roots, i. e, 4 and.- 9 are roots of the proposed equation, the other two being
roots of the equation #2 + 5z + 4 + 5 (2% + bz } 28) = 0.

. (5% +102%+ 1)(5at + 10a% + 1)
Ex. 6. Given ,— RN 7
(x*+102% + B) (a* + 100% + 5

-values of z.

= az to find the

OPERATION,
(5244+102%41) (50%+1002+1)
(=*102%5)(a®10a2 + 5) = %% (D
5244102+ 1  af +10a%+ 5o :
x84 1023+ 5z~ bat+ 1022+ 1 & = ()x 1_
%%+ 5x% + 102? + 102% + 5z + 1 T
28~ 5zt + 102% - 1023 + 57 ~ 1
14 5a + 10a%+ 10a% + 5at + af

at 4 10a% + 5
* 5at+10a%+1

(ur) | = (m) taken thus:
Den. + Num, Den,+ Num,

“1-5a+ 10a%= 106 + Bat — @ Den. = Num.” Den. - Num,
(x+1)* (14 a)®
@-1 = @=a)f (1v) | = (1) bracketed.
z+1 l+a 5

Y roit1a (v) {= (1v) with ¥/ taken.

2z 2 .

% =2 (v1) | =(v)takenas in(ur)above

1 -
%= (vu) | = (v1) cancelled,

Ex. 7. Given x6 - 1 = 0 to find the values of x.

OPERATION.
26-1=0] (1)
(@ +1)(=*-1)=0 | () | = (1) factored.
2%+ 1=0 | () | ) Equation (u) iz satisfed by taking
1 either z%~1=0 or #% 1= 0, and there-
| + fore we consider 2%~ 1 = one root and
z%+1 = other root, and we get 8epge
Pe1=9 (v} | J rately 2*+1=0 and 2*-1=0,
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(z+1)(2%-x+1) =0 | (v) | = (1) factored.

(1v) factored.

one factor of (v).
other faetor of (v).
one factor of (vI).
22+x+1=0| (%) I = other factor of (vI).

cox=lz=-lz=4(l+y-3)andz= 1(-114/-3)

(z-1)(x*2+1) =0 | (VD) | =
x+1=0 | (Vi) =

2~z +1=0 |(vir)
z=-1=0|(x)|=

1

NoTe.—Nos. (vir) and (1X) give us by transposition x = -1and 2 =1,
and solving the quadratic equations (viir) and (x) we get the other four
roots z=3}(1+4/—8)and z = 4 (-1 +4/=3).

The above is of course equivalent to finding the six, sixth roots of unity.

Ex. 8. Given z* + 2 -4z + 2+ 1=0 to find the values of z.

i xd-422+2+1=0

OPERATION.
®
@ [=@ + 2% .
(1) | = (1) transposed and arranged.
(v) | =(ur) with 2 added fo each side,
(v) | =(@v) differently expressed.
("D | = (v) with sq. completed by
adding } to each gide.
(vi)| = (vi) with 4/ taken.
(vur)| = (vu) transposed and reduced.

Thus we get two distinet quadratic equations :—

1
I z+?=Zorz3—2x=—lwhencex=1;

1

II.x+ —=-3o0ra?+ 3z =

x

~ 1 whence = = (=3 % 4/5).

Ez. 9. Given x* + 3z = 14 to find the values of z,
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OPERATION.
+3z =14 (1)
2+ 32% = 4o | () | = () x .
zt+ Tzt = 42% + 14z | (u1)| = (), 4x* added to each side.
©oxt a4 A =da®+ 14z + 42| (Iv)| = (ur) with sq. completed by
adding 42 to each side.
a4+ f=+Cx+7]) (v) | = (1v) with 4/ taken.
This gives us two separate quadratic equations :—
I. z"’+§= 2z+% or 27— 2x = 0 whence = 2 or 0; and
I. a+%=—2c -1 or 2%+ 22 = — T whence £ == 1 + 4/ —6.

492 48 6
Bx. 10. Given Stz 49 =9 + — to find the values of z,
OPERATION.
49z 48 =9 6
Rk iy O
4977 48

6 .
- 49 + == ?4—9 (1) | = (1) arranged.

1
S At et el (mn)| = (1) with = added.

7 S
T -7t <?+3> (1v)| = (mr) thh«/ta.keg.

Tz

I.?——-——+3or7xz—6:c 16 whence x = 20r—17,and
Tz 7 1

Ly =-p- 3 or 2%+ 6x=12 whence x= %(—3+V—3)

Exercige LIIL.

Find the values of z in the following equations :—

L 5 -6z =16. 9. 2% —dz¥=_3,

3. 2%+20 = 1422 20. 4. 28 £ TYF = 1107 - Mo,
5. -3/ +6=2-4/T ¥ 6. 6. 2z%— 2% = 496.

7. 26 -8a%=513. 8. z+5=6+4ZF5.

M
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9.
11.

13.

14.

15.
16.
17.

18.

 JETEO 4+ T =

QUADRATIC EQUATIONS.

Jiz+2  4-4z

— —_t

15 4 /T3 = 64fx. 10, ——— =
v V Ve 4+ 4/z Wz
Hr¥2l=12~yz+21. 12. 4/2¥ -2z -z =0,

6+ zt+ 2 P4 ai-2

8 - gt b~z

54— 9y/x Tat-3z+4 23z - 46y
x+2/x T (6HT)(T + 24/7) * 6+4/x
2% - 32+ 3z = 9. o
JE-1)(@-2) + /(@ -3)(x - 4) = /2.
z*-3z+2=0.
JEErar+b + 2% -z 1 b = c.

‘x T b

Yziya-z | Ne-va-z o V&

/23 + 60x% + 9z + 540 + 89
T+ 80 + 42+ 9

. x22= 1.
.2 -6z + 1lx = 6.

23— 4zl 4+ + 6= 6.

. 28— 8x%+ 11z = = 20. .

z+a 2z +a+c\?
Tt b <Zx+b+c) :
. 3x% - 14x2% + 21z = 10.

21. x-}-a+.3:?/m=b. A

. 9x—4x2+(4x2—9x+11)%=5.
1 .
. (x+6)2+22%(z + 6) = 138 + 4/,
.t —4x% 4+ 62% - 4z = 5.
L 2x4f1l —xt = a(l + xt).
E -2 2P - (2 -2)2=88 - (x - 2).
. axt + ba + cx’ +bx + = 0.

(oS B) 2

12z - 8

L A2+ 4) ~ /(2 —2) = VT T 18y

227 + 1 + a4/(42%+3)

* 223+ 3 + x4/ (42*

[Sch. IX
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3. (z~-1)(z-2)(x-3)(z—-4)=8.
38. (x-1)(1:—2)(m—3)(9:—4)(z—5)(a:—6) (x-1T7) (x-8)
= (2 - 92) (MTa? - 1532 + 230) + 401.
39. -D(@E-2)@-3)=E@+1)@E+2)(x+3).
40. (Vo +1-2)(YZ +1-3) + 5/{yzt1(y/z+ 1 - 6) +4/z+1~1}= 0,
41. 8x%~ 162 4272 — 2(22% - 22 + 1)4/dat — 828 - 422+ Bx ~ 1 =0.
2(a + z) (a’c~1x?~b)
ax
43, 8%+ 2227+ 242 + 9= 0.
44, 3z% - 4234+ 1122 - 6z = - 5.

2+ 35 (y/3 - 4/5) ~ § /135 + 8 xz-zx(43-45)-«/2(430-45 2)
z —4/3 +4/5 z+4/3 —4/5
-8-415, o '

-2 -1/ x8 bC.’L‘ 3
42, abz % + = ¢ Y =T+

45.

SIMULTANEOUS EQUATIONS OF THE SECOND DEGREE.

211. No general rule can be given for the solution of
q{ladratic equations involving more than one unknown
quantity. In dealing with these therefore the student
must be left very much to his own ingenuity. Very often
by attentively "considering the question an artifice will
suggest itself, by means of which the roots may be easily
found. The following solutions afford illustrations of the

. employment of artifices which are very frequently used
with much advantage.

Ex. 1. Given 22 - %= 51

: to find the values of x and .

z +y = 17}
‘ OPERATION.
Z2-y? =51 | (D
z4+y=171 ()

z—y= 3| (u) @) = (1).

2z 220 | () (1) + ().
x=10 | (v) [=(v) 2.
2y=14 | (v1) = (1) - ().
y= T (i) [=(v)+ 2

I
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Ex. 2. Given 2%+ 2= T4 .
to find the values of x and .

z+y=12
OPERATION.
22492=4 (1)
z+y=12 | (@)
z? 4+ 2zy + 7= 144

(mr) | = (1) squared,
2xy =10 | (1v) | = (1) = (0.
22 - 2xy+yP=4 | (V) | =@ -(@av).
z-y=2 | (Vi) |=(v) with 4/ taken.
22=14,.20=1 | (Vo) | = (1) + (vI).
2y =10 .y =5 | (vin) | = (1) — (VD).
Or thus:—
2Z2+yE=T4| @)
r4+y=12 | (1)

z=12-y | (u) (= (1) transposed.
2= (12 -y)? | (v) |= (1) squared.
(A2 -2+ y2=174 | (v) |= (1) with (12—y)% subs. for x2.
144—24y +142+9%="T4 | (v1) |= (v) expanded.
2y% - 24y = - 0 (vin) | = (v1) transposed.
. Y12y =-35 | (vio) |=(vn) + 2.
y*—12y+36=1 | (1x) |= (viI) with sq. completed by .
adding 36 to each side.
¥y—-6=%111| (x) |=(@x) with+/ taken.
Cy=Tor5 | (x) |=(x) transposed.
Thenz=12-y=12~To0rl2-5=5o0r1.

Ex. 3. Givenz +y =33
zy = 266
OPERATION.
x+y=33 (Ij
zy = 266 (1)

} to find the values of x and y.

22+ 2oy + ¥ = 1089 | () |= (1) squared.
4zy = 1064 | (v) | = (1) x 4.
a? ~ 2zy + y2 = 25 ) () ~ (1v). )
x—-y=15 (1) | = (v) with 4/ taken.
2x=38or 28 .. x=190r 14| (Vi) | = () + (VD).
2y=28 or 38 ..y=14o0r19 ='(1) = (v1).
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Or thus :
‘ z+y=233 O]
xy =266 | (1) ‘
r=33-y9 (un) | = (1) transposed.
y(33 ~y) = 266 (v) | = () with 33 —y sub. for z.
¥*-33y=-1266 | (V) |= (1) expanded and x - 1.
4y ~ 132y + (33)2=25 (VD) | =(v) x 4 and with 1089
added to each side.
2y-33=45 (vi) | = (vi) with 4/ taken.
2y =38 or 28 | (vim) | = (vu) transposed.
y=19 or 14 (x) = (vim) + 2.

Ex. 4. Given 2a%+ 3zy +¢%= 201 .
. to find the values of z.
52 + 4y?= 41
' opERATION.

In equations like this, in which either or both of the equations
are fomogencous in all those terms which involve these quan-
tities, put x = vy, then-x? = v%y?, and xy = vy*, and the solution
will be much facilitated.

227+ 3wy + y¥ = 20 Q)
5x? + 4y° =41 () A
20%y% + 3vy? + 32 = 20 () | = (1) with vy written for z.
Bo%y? + 4y% = 41 (iv) | = (1) with vy subs. for x.
(20" + 3v + 1)y% = 20 (v) | = (ur) factored.
(5v% + 4)y = 41 (V1) | = () factored.
20 *

Yt = T rse vl (vir) | =(v) = (_21:Z +3v+1).
. 41 . 2

Y= Bt e 4 (vin) | = (v1) + (502 + 4).
20 41

right hand members of
(vir) and (vim) equated
to one another (Ax. x1).

W rdorl - 244 |

602 - 4lv =~ 13 (x) |=(x) reduced. -
v=4%orl} (x1) | = (x)solved by ordinary rule
41 a - a4

yt = Eird " 5(%)2+40r v 9or+t. Hencey=3or
Vo = el '

z=vy=}x3or ll‘-"x—fm/ﬁ—l: 1 or Li4/21. .
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Ex. 5. Given 2%+ %% = 189
x?y + xy® = 180

STMULTANEOUS QUADRATICS.

[Sker, IX.

% to find 'the values of z and y.

OPERATIOXN.

In order to show that several different plans may generally be
adopted in dealing with simultaneous quadratics, so ag to evolve
the values of z and y, we shall give two or three different solu-

tions of this problem.

lsT METHOD.

2% 498 = 189
2%y + zy? = 180
3z%y + 3xy% = 540

x* + 32% + 3xyt + 4% = 129

r+y=9
zy(x +y) =180
xy = 20

Hence z=9 —y; 2y =y(9 -

y=5o0r4andx=4or5.

®

W
(1x)
w)
™
(v1)
(viry

= (1) x 3.

= () + (u).

= (1v) with ¥/ taken.
= (u) factored.

= (vD) = (V).

y) = 20 or ¥% - 9y = — 20, whence

28p METHOD.

z¥ 498 = 189
zty + xy? = 180
zy (z +y) = 180

180

z+y= ?:1[
" , 1808
a® 4 3x%y + 3wyt + P =

) , 0¢
Bu%y + 3wy’ = 255 ~ 189

5832000-189x%3
Bry(x+y) = .
1944000 — 63ay3

zy(r +y)= —T
1944000 — 632%°

180 = ——— 2

Yy

180z = 1944000 — 63233
2432%% = 1944000
2%y = 8000
ry-= 20 -

®
@
(1)

()
™
D)
(vm)
(v
(1x).
®
(x1)
(xm)

(am)

= (u) factored.

= () + zy.

= (iv) raised to 3rd powet.

=M=

= (v1) simplified.

= (v;) +3.

(vir) with 180 substituted
for xy (x +y).

(1x) cleared of fractions.

= (%) transposed.

= (x1) + 243,
= (x11) with §/ taken.
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‘ Then.,\as before, since xy(x + y) = 180 and xy = 20 .-.

and x = 9 —~ y, whence y(9 -
y=bord4andx=4or5,

" SIMULTANEOUS QUADRATICS.
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x¥y=9

¥) = 20 or y% = 9y = — 20, wherefore

3rp METHOD.

and & = 5 or 4.

Ty =189 1 (D)
. 2%+ 2y? = 180 | (mw)
@+2+(v=-2)=189 | () |= (1) with (v +z) written
for = and (v - 2) for y.
20(v% — 2%) = 180 | (1v) | = (1r) written thus, zy(z+y)
and then (v +z)and v -z
substituted for z and y.
20° 4+ 6v22=189 | (v) |= (m) expanded and red.
29° - 2v2% = 180 | (vI) | = (1v) expanded.
—6v2? =540 | (vm) | =(v1) x 3.
80% 729 or 2v=9orv =¢F | (VIO | = (V) + (VD).
" 8wz?=9o0r82%§=9o0rz=+% (X) | = (v) -~ (VD).
Hencex=v+z=3t;=5 or 4.
y:v—:-? E)=§Fi=4ors.
41H METHOD.
2B+yP¥=189 | (1)
%y 4+ xy? = 180 | (1)
zy(x +y) =180 | (1) | = (1) factored.
180
Tty = e (av) | =(m) + xy,
189z -
-y +iP= i:oy ) | =)= v
s ., g 1890y . .
vY - v+ Y= g (vD) | = (v) with vy subs. for x."
1809%%-1800y2-180y%= 189vy?| (vIr) | = (1v) x 180.
200% = 41v + 20 = 0, | (vim) | = (vi) trans. and + 9y*
200% — 41p = ~ 20 | whick |is a quadratic equation,
180 whence v = § or &,
CvaP +uy=180 or ya: _Z_JF7 (1x) | = (1) with vy subs. for z.
180 180 .
Hencey T E vl 64 or 125 whence y=4or5
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In order to save figures, the second method is better applied
by letting z + y = s'a,nd zy = p, then.
¥+ =189 | ()
a%y + xy* = 180 | (1) ,
s%—3sp =189 | (m) |- ad+y®=(aty)d- 3ry(z+y).
sp =180 | (v) | 2%y + zy? = xy( + y).

4

180 N \
s=7 V) |=@u)+p.
180%
st= 5 (vI) | = (v) cubed.
80? .
3sp = —]—)3- - 189 V(VII) = (V) = (mm).

1
540 = —,- — 189 | (vm) | = (1v) x 3 and subs. for left-
P hand member.

180¢
729 = e (1x) | = (vu) transposed.
180 B
9= > (x) | = (1x) with §f taken.
P=20| (x1) |=(x)xpand+9. .
sp=180 -.s=9 | (xm) | = (1v) with value of p. subs.
s

Hence p = zy = 20, and =r+y=9, &c.
Exercise LIV.

Find the values of z and y in the following equations :—

1. 22— y2= 45) 2. z2'-yf=105 3. 2+ yt=41
z-y= 5) xtys= 21} T4+y= 9}

4. x2+y":113§ 5. a4 y?= 89} 6. at-yi=55 )
z—y= 15 TY = 40 Bxy =172

1. x2+3y2=148§ 8. 327-2y2=115 9. 427+ 3y% = 511
2x+y= 24 2r -3y = 2§ 3z + 2y = 27}

10. 2% - 4* = 26 % 11. 2+y=4 ‘ 12. Yz + iy =3
z-y= 2 $3+?f’=($+y)2} ' «"/517=2}

13. 2+ 4y = 14 } 14. 22 + 2y — 5y% = 20
i+ 4z =2y + 11 2¢ -3y =1 }
9z + 5y -

15. 7 =:cy} 16. x2y2+4zy=96%
z-y=2 z+y= 6
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17.

19.

21.

23.

25.

27,

29,

31.

33.

37.

38.

39.

40.

4l

C @)1

x? 4z
—+——=39i) 18, % + zy = 11
vy 5 zy - y% = 12)
T-y=2 Yy-y=
2 yZ
zt 4oy = 66 20, — + == 18
2? gt = 11 y =
y's z+y=12
z5 4 y5 = 33681 : 22. :c3+y3=>133
x+y=8 . :c+y=z
attyt=97) 24, 2t ¥ =91
T-y= 1§ %y + xy® = 84
T+ 3 T+ T -
Y2 26, =¥ L Z2Y o)
y ~ 4 -y xr+y )
‘TH+y-13=13-2%-192 a? + ¥ = 52
x+y=at 28. z*+ y* = 14x%y*
7y-—2z=36§ zt+ty=m
224292 = T4 — ay 30. a* — 2%+ y* -y = 84)
2xy+y2= 73 — 922 x2+2x2yz+yz= 85)

322 + 22y — 4y* = 108 32. yz—a:z—y—x=12§
a;z_gxy_'Zyz:—Bli (Y- x)(y+ ) =48)

—_— + = ———

CRREY] Y
z+8=4y

V@ 1FL (249)+3) 36 2t +yt=a)

T A/ (@49)-3 1 2t +y¥= 1)

z (y+1)% = 36(° + 1) |

(8 + 1y = (3% + 1)a®

‘@S + Lo = 9(a% + 1)y

z? oy L E 27 yz}

z?2 2x 4+ 2tz
Y 9.7 } 34.13+y3=35}

+yt=13

x—y:é
V(B +8(y) +4fy =10 —y/z )
Jzb + 4y = 275
Brypf=z-y
x* +y* = ary } “
zy +a(z —-y) =d®
z+yPP+al=0
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1
42. s+ Y+ ar=0
zt+yt 4 at + 2@y + %) =0}
43. 22+ 3y+af =0 |
z6 = 3y + ab + 2%y (3% - y) = a4 (@* + 2))
4. z-y=a
zt+yt =Dt
45, 22—y + Y’ = a®
x% - xhy? 4yt = bt
46. 3x5 — 12z + 182% = 2y6 ~ 11y* + 52y + 27) to find = and ¢
x4 -yt — 3+ 22%(a~1) = 2a(y?-1) + 2y%(x*-1) § independentofa

47, (Y= 1) (-t A)5 = 204 (Y5 -z B)~(ba 128y -6yP) (y*-1") |
yt—3y%—1=ba? - Sx(l—+/a* ~ 20 +5) + 4 )
48. (x? - y¥)(2F + 42 - 4) = 4(z? - 3)
xW? + (2% - y*) = 6xi/y® — 2% )

PROBLEMS PRODUCING QUADRATIC EQUATIONS.

1. What two numbers are those whose difference is 5 and the
product of whose sum by the greater is 2287

SOLUTION.
Let & = the greater, then z -5 = the less.
T+ ~5=2x ~5 = their sum. '
Then z(2z — 5) = 228 (O]
222 - Bz = 228 (1)
1622 — 402 + 25 = 1849i(nr) | = (i) x 8, then sq. completed.
4 -5 =443 () |= (m1) with 4/ taken.
4r = 48 or — 38
.z =12 or — 9} = the greater.

x—5="1Tor - 14} = the less.

2. A poulterer bought 15 ducks and 12 turkeys for 105
shillings, at the rate of 2 ducks more for 18 shillings than of
turkeys for 20 shillings. What was the price 9f each?
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SOLUTION,

Let z = price of a duck in shillings and y = price of a turkey.
.Then 152 4 12y = 105 ()
18 20

F ()
5z + 4y =35.| () |= (1) reduced.
9y - 10z =xy | (1v) |= (u) reduced.
10z + 8y =170 | (v) |=(um)x2.
1y =zy+70 | (vi) | = (@@v) + (V).

35 ~ 4y )
=5 (vir) | = (1) transposed and reduced.

B = IS
Ty -y (_335—4y> =10 | (vi) | = (vI) with a;ﬂ sabs. for x.
. 2%+ 26y =175 (1x) | = (vur) reduced.
6y° + 200y + 625 = 2025 | (x) | = (1x) x 8 and sq. complete.
4y + 25 = 4 45.
4y = 20 or — 70 whence y = 5s.
35 ~ dy 35 - 20

T = 5 = 5 = 3s.

Note.—The negative value - 17s. 6d. for the price of a turkey is not taken
1to account here, as although - 17} is undoubtedly a root of the equation
y2 4 25y =175, yet ~17s. 6d. as the price of a turkgy, does not satisty the
onditions of the problem as given and must therefore be neglected.

3. Find a number such that the sum of its square and its cube
hall be nine times the next higher number.

SOLUTION.

Let z = the number, then z* = its square, and a® = its cube;
dso x + 1 = the next higher number.
Then z8 + 2% = 9(z + 1) | (1)
2z +1) =9z +1) | (u) |= () factored.
2?=9 (m (=@+x+l
z=1+3 . () | = (r) with 4/ taken.

Verification, Take + 3 ; then 27 + 9=36=9(3+1).
Take — 3; then ~27+9==18=9(-3+1)=9x-2.
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4. A person at play won, at the first game, as much money as
he had in his pocket; at the second game he won 5 shillings
more than the square root of what he then had; at the third
game he won the square of all that he then had, and he found
that he then possessed £112 16s. What had he at first?

SOLUTION.
Let « = the shillings he had at first.
Tﬁen 2z = the shillings he had at the end of the 1st game.
Wiz +5= sum won at the 2nd game. i
22 +4/2z + 5 = sum at end of 2nd game.
(22 +4/22 + 5)% = sum won at 3rd game.

(2 +4/22 + 5)2 + 2z + /27 + 5) = sum at the end of the 3rd
game. Then '

(27 +4/22 +5)% + (22 +4/22 +5) = 2256] (1) .

(22+y2245)% + (2+y/2245) + 3 = 2928 (1) | = (1) with 2 added.

Gz +4/2z+5)+3 =448 () | = () with / taken.
2@ +4/2z = 42 or - 53 (v) | = (ur) transposed.

= Rejecting the negative result we | have

' @) +4/2z=42 * | (¥)

@x) +4/2z + 1 =15 | (v) | = (v) with sq. comp.
W2z 43 =412 (viD) | = (v1) with 4/ taken
2z =6or=1 (vim) | = (vir) tff}nsposed.

2z = 36 or 49 (ix) | = (vur) squared.
z=18s. -+ ) |=@ax) 2. '

Nore.—The 24} which wo get here as one value of « is not admissible a3
an answer to the problem, simply because it does not answer the conditions
of the problem as given, and it obviously arises from the fact that the

2z may be either T. It becomes an answer of the problem if we under-
stand that at the 2nd game he lost a sum which was 5 shillings less than
the square root of what he then had. ‘

5. What number is that which being divided by the product

_of its digits, the quotient is 2, and if 37 be added to the number,
the digits will be inverted ¢



ART. 211.] PROBLEMS IN QUADRATICS. 181

SOLUTION.

Let  and y =the digits, z being ihe lefi~hand one. »
Then 10z + y = the number, and zy = the product of the digits

0z +y
"t } ®

102 +y+27=10y+ 2 ()
r=y-3 () | = (u) reduced and transposed.
10x +y = 2zy ) | = @) x zy. .
10(y-3)+y=2y(y~3)| (v) (1v) with y — 3 subs. for z.
2% - 1Ty = - 30 (vr) ™) reduced and transposed.
16y~ 1369 + (17)%= 49| (vi) | = (1) x 8 and’with sq. complete.
y-17=+" (vin) | = (vi) with 4/ taken. .

4y=24;y=6;r=y-83=6-3=3

n

1]

Hence the required number is 36.

Note.—The second value of y is obviously not admissible here.

6. A and B travelled on the same road and ‘at the same rate
to London. At the 50th milestone from London A overtook a
flock of geese, which travelled at the rate of 3 miles in 2 hours,
and 2 hours afterwards he met a waggon which travelled at
the rate of 9 miles in 4 hours.” B overtook the flock of geese at
the 45th milestone from Liondon, and met the waggon 40 minutes
befors he came to the 31st milestone. Where was B when A
reached London?

SOLUTION.

A and B travel in the same dirdction, at the same rate, and on
the saime road, and consequently the distance between them is
always the same, '

Let z = rate per hour of travelling.

The places-where A and B overtook the geese are 5 miles apart,
and as the geese travel at the rate of  of a mile per hour, to
travel over 5 miles they would require 5 + # = 3 hours. Butin

10x
L2 hours A has moved on 5 miles, while the geese have moved

“on only 5 miles. *
W 10z
Therefore distance in miles between Aand B= 3 5
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"Again, 4 met the waggon 50 - 22 miles from London,
2z '

while B met it 31 + Y miles from London, consequently as the

waggon was travelling from London, the distance in miles

2z
travelled by the waggon between the two meeting was( 31+ —

3
8x ~ 57
- (50 = 2x) = miles. And since the waggon travelled at
. 8x — 57 32z — 228 i i
the rate of § miles per hour, 3 7 4= o7 = time in

hours which elapsed between the meeting.

32x — 228
. But in 7‘)79‘ hours .4 has moved toward London

27

. . 8x - 57 .
direction <7 miles.

322 — 298 . . . .
( z miles while the waggon has gone in the opposite

3
. . . 32z% — 228z
Therefore distance in miles between .4 and B = — 7

8z =517
3

And since distance between 4 and B is always the same,

322%-228x 8z-57 10z ’
T A S ai L B O '

162% - 123z = 189 @) = @) reduced.

1024x%- 78722+ (123)2=27225 | (1) | = (1) x 64 and with sq.
then completed.

(v) | = (ur) with +/ taken.

o

32z — 123 = 165
165 + 123 .
* = —gy— =9 =rate per hour of travelling.
. 10z .
Distance of B from 4 = 5 - 5 =41~ 5 =25 miles = distance

of B from London when .4 arrives there.

Exgrcise LV.

1. Divide the number 19 into.two parts such that their pro-
duct shall be 84.

2. What two numbers are those whose sum = 17, and the
product of whose difference by the greater is 30.
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3. There is a rectangular field whose area is 2080 rods, and
its length exceeds its breadth by 12 rods. Required its "dimen-
sions.

4. What two numbers are those whose difference is 9, and
the sum of whose squares is 353 ?

5. Divide the 16 into two parts such that their product added
to the sum of their squares shall be 208.

6. A commission merchant sold a quantity of wheat for B171,
and gained as much per cent. as the wheat cost him. What
was the price of the wheat ?

7. A person bought-a number of sheep for $80, and found
that if he had bought 4 more for the same sum they would have
each cost $1 less. How many did he buy?

8. A certain number consisting of three digits is such that
the sum of the squares of the digits,i without considering their
position, is 104, and the square of the middle digit exceeds twice
the product of the other two by 4; also if 594 be subtracted
from the number its digits will be inverted. Required the
number.

9. A farmer paid $240 for a certain number of sheep, out of
which he reserved 15, and sold the remainder for $216, gaining
40 cents a-head on those he sold. How many sheep did he buy,
and what was the price of each ? '

10. What two numbers are those whose sum is 10, and the
sum of whose cubes is 2807

11. What are the two parts of 24 whose pxoduct is equal to
35 times their difference.

12. Find two numbers such that their sum, their product, and
the difference of their squares are all equal to one another.

13. The fore-wheel of a carriage makes 6 revolutions more
than the hind- wheel in going 120 yards, but if the circumference
of each had been increased one yard, the fore-wheel would have
made only 4 revolutions more than the hind-wheel in going the
same distance. What is the circumference of each wheel ?

14. The sum of.two fractions is 114 and the sum of their
reciprocals is 2-%. What are the twe fractions?

. 15 A person dies leaving $46800 to be divided equally among
his children. It chances, however, that immediately after the
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death of the father two of his children also die, and in conse-
quence of this each remaining child receives $1950 more than it
was entitled to by the father's will. How many children were
there ?

16. During the time that the shadow .of a sun-dial which
shows true time, moves from one o'clock to five, a clock which
is too fast by a certain number of hours and minutes, strikes a
nunber of strokes, which is equal to that number of hours and
minutes, and it is observed that the number of minutes is less by
41 than the square of the number which the clock strikes at the
last time of striking. The clock does not strike 12 during the

. time. How much is it too fast ?

17. Two locomotives commence running at the same time
from the two extremities of a railroad 324 miles in length ; one
travelling 3 miles an hour faster than the other, and they meet
after having travelled as many hours as the slower travelled
miles per hour. Required the distance travelled by each.

18. A person ordered $144 to be distributed among some poor
people ; but, before the money was divided there came in two
claimants more by which means the share of each was $1 helow
what it would otherwise have been What was the number at
first ?

19. Find a number such that, being divided by the product of
its two digits the quotient is 2; and 27 being added to the °
number its digits are inverted.

20.-A grocer sold 60 lbs. of coffee and 80 lbs. of sugar for
$25, but he sold 24 lbs. more of sugar for $8 than he did of
coffee for $10. What was the price of a 1b. of each?

21. A and B engage to cradle a field of grain for $36, and as
A alone could cradle it in 18 days, they promise to complete it
in 10 days. They found however that they were obliged to call
in O, an inferior workman, to assist them for the last four days,
in consequence of which B received $1-50 less than he would
otherwise have done. In what time could B or C separately
reap the field ?

22. A rectangular vag 5 feet deep holds, when filled to the
depth of 4 feet, less than when completely filled by a number of
cubic feet equal to 80, together with half the number of feet in’
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the perimeter of the base. It is also observed that the length of
a pole, which reaches from one of the corners of the top to the '
opposite corner of the bottom of the vat, is equal to J3; of the
number of feet in the square inscribed on the diagonal of the
bottom. Required the dimensions of the vat.

23. Two persons set out at the same time to travel on foot, A
from Toronto to Cobourg, and B from Cobourg to Toronto. When
they meet it is found that A has travelled 15 miles more than B,
and that A will reach Cobourg in 2 hours; and B, Toronto in
4} hours after they have met. Find the distance between Toronto
and Cobourg and the rate of travelling of each.

24. Find two numbers such that their product shall be equal
to the difference of their squares, and the sum of their squares
equal to the difference of their cubes.

25. Bacchus caught Silenus asléep by the side of a full cask,
and seized the opportunity of drinking, which he continued for
% of the time that Silenus would have taken to empty the "
whole cask. Silenus then awoke and drank what Bacchus had
left, Had they drank both together it would have been emptied
two hours sooner, and Bacchus would have drank only half
what he left Silenus. How -long would it have taken each to
empty the cask separately ?

SECTION X.

RATIO, PROPORTION, AND VARIATION.
RATIO.

212. Ratio is the relation one quantity bears to another
in regard to magnitude, the comparison being made by
considering what multiple or fraction the first is of the
second,

Nore,—~It will be seen from this definition that the term ratio is equiva-
lent to the common arithmetical term guotient,

.N‘
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213. The ratio of one quantity to another is expressed
by placing a colon between them or by writing them in the
form of a fraction.

Thus, the ratio of @ to b is written @ : b or more commonly %—

214. Ratio can exist, of course, only between quantities
of the same kind, because it is only between such quanti-
ties that any comparison as to magnitude can be instituted.

215. Quantities are of the same kind when one can be
multiplied so as to exceed the other.

Thus, a ratio can exist between a cent and £100, or between a square’
nch and an acre, or between a grain troy and a cwt., because in each case
the one can be multiplied so as to exceed the other, or, in other words the
quantities entering into the ratio are of the same kind ; but no ratio can
exist between a linear inch and an acre, because the former cannot be
multiplied so as to exceed the latter.
216. The term of the ratio which precedes the sign :
or which is written as numerator of the fraction is called

the antecedent of the ratio, the remaining term, the conseguent.

217. A ratio i3 said to be a ratio of greater inequality,
a ratio of equality, or a ratio of less inequality, according
as the antecedent is >, =, or < the consequent.

218. 'If the antecedents of any ratios be multipled to-
gether and also the consequents, there is formed a new
ratio which is said to be compounded of the former ratios.

Thus, the ratio ace : bdf is said to be compounded of the ratios a¢: 5,¢:d,
and e : f,

219. A ratio compounded of two ratios is called the
sum of these ratios, thus, when the ratio a: b is com.
pounded with itself the resulting ratio a? : & is called the
double of the ratio @ : & or more commonly the duplficat
ratio of @ : b; also the ratio a® : 1* is called the triple o
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the ratio @ : b or more commonly the &riplicate ratio of
a: b

- ) ’
NoTg.—Similarly the ratio Va : Vb is called the subduplicate, the ritio
. . 3
Va : Vb, the subtriplicate; a2 : b?; the sesquiplicate of the ratio a : b; &c.

220. Problems upon ratios are solved by writing the
~ratios as fractions and treating these fractions by the ordi-
nary rules. Ratios are compared with one another as to’
magnitude by writing them as fractions, reducing these
fractions to a common denominator and comparing the
nunierators.

221. TagoreM I.—A4 ratio of greater inequalily is diminished,
and a'ratio of less inequality increased by adding the same quuntity -
to both its terms.

DEMONSTRA[rION.—Let « : b'be a ratio of inequality, and let & be added
to each term.

Then* i > atz

asab+am>ab+bx orhsaxszorﬂi a>b That

a+tz
b+ x
a+m
b4 2.

5 but if

is if @ > b then ax > bz and ab + ax>tzb+ba:nnd£>

a<l bthenaw<bmandab+am<ab+brand <

[
* Read —b is greater than or less than : j__ Z according as, &c.

222. TreoreM I1.—A ratio of greater inequalily is increased,
and a ratio of less inequality diminished by subtracting the same
quantity from both its terms.*

DrMoNSTRATION.—Let & : b be a ratio of inequality, and let = be sub.
tracted from each term.

a -
Then — =
enb<b—

z > b - br: or > >
x,asa,b —-‘ax<ab bx; or as bm<axorusb<a

*The quantity subtracted must however be less than either of the terms,
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293. A ratio is increased or diminished by being compounded
with another ratio according a5 the latter is a ratio of greater-or
less inequalily.

DEMONSTRATION.—Let the ratio @ : b be compounded with the ratio
m : n, the latter being a ratio of inequality.

¢ & am . < < .
Then — —, according as aln abm, oras g s m,orasm : nisa
b > n’ ® > ' S>>

ratio of greater or less inequality.

Exgroise LVI.

1. Find the ratio compounded of @ : b; ¢ : «*; and b : cd.,

2. Compound together the ratios a®—b% : ¢® +0%; (¢=0)* 1 a
and a®?—ab + 8% : (a-b)% '

3. Compound together the ratios 22—2z —15 : z2-32-10;
22+ x-2: 22+ 8z + 15 and 2%+ 122 + 35 ¢ 2f~ 1.

4. Which is the greater ratio that of a® + 0% : a*+ b%or
at+ b a4+ b. 1

5. Which is the greater ratio that of a? + y“ oz -y or
@+y)t: zt—a? y+atyf-xyd +yt; 25 being > y YT

6. What quantity must be subtracted from each term of the
ratio a ; b in order to make it equal to the ratio ¢ : d.

7. What quantity must be added to each term of the ratio
m : ninorder to convert it into a ratio of equality.

8. If @ : b be a ratio of greater inequality, what is the ratio
compounded of the ratio of @ +b : a—b, the difference of the
duplicate ratios of a:aand a: b, and the triplicate ratio of
b:a+b. ) .

9. Prove that the ratio a : b i the duplicate of the ratio of
a+ctob+e if ¢ be a mean proportional between o and b.

10. Prove that a® 0% : o? + b* i greater or less than the rdtio
of a—b : a+baccording as @ : bis a ratio of greater or less
inequality. .

PROPORTION.

224. Proportion consists in an equality between two
ratios, the two equal ratios being connected by the sign ::
or by the ordinary sign of equality.

\ :
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For example, if @, b, ¢, and d be four proportional quantitios;, the pro-
portion existing between them is expressed by writing them thus,
a:b::c:d

Note 1.—The first and fourth of such proportional quantities are called
the extremes ; and the second and third, the means.

NoTe 2.—When three quantities a, b and ¢, are proportionals, so that
G 2 b::b:c;the second term, b is said to be a mean proportional
between the other two, and the third term ¢ is called a third proportional
to the other two.

225. TaroreM I.—If four quantities be proportionals, the prbduct
of the extremes is equal Lo the product of the means.

DEMONSTRATION.—Leta : b : : ¢ : d, then ad = be,

a c
For ; = 3 and multiplying each of these by bd we have ad = be.

Cor. Hence if three terms of a proportion are given, the fourth may be
be ad ad be
readily found. Thus, 6= —; b = —;¢c=—; d=—
: a c b @

226, TreorEM IL.—If the product of any two quantilies be
equal to the product of any two others, the four are proportiona?s
—the fuctors of either product being made the extremes, and the
Jactors of the other product the means.

DEMONSTRATION.—Lot ad = be, then dividing each of these by bd and wo

a c
have — = —thatisa : b::¢: d,
b a

227. Bince the two ratios composing a proportion may be
written as two equal fractions, it follows that all the results ob-
tained in Art. 106 may be applied to proportional quantities, or
in other words, we may combine together in any manner what- -
ever by addition or subtraction the first and second terms of a
proportion, provided we similarly combine the third and fourth
terms. So also we may proceed with any multiples whatever
of the first and third, and any multiples whatever of the second
and fourth terms. Similarly we may combine any powers or
roots of the first and*sécond terms, provided we also combine
the same powers or roots of the third and fourth. (See the
'demonstrations in Art. 106 (1—-xv1).
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228. In solving problems in proportion the student must
carefully bear the last proposition (227) in mind, and also
that :—

1. Any proportion may be converted into an equation by
taking the product of the extremes equal to the pro-
duct of the means. .

II. Any proportion may be converted into an equation, by
writing the first term divided by the second = the third
term divided by the fourth.

b
Ex. 1. If a: & :: ¢: dprovethat (a+b) (c+ d) = E(C+d)2

b B2
—J(a+).
a ¢ b d
I—Iet‘e—l,)zTi.'.tz,:Ecandc:a'T b

Tn the expression (a+b)(c + d) substitute 7 for a, and we

'hadve (a+d)y(c+d)= <%£+b> (c+d)= <bc;bd> (c+d)=
——((_+d) (c+d):£(c+d)Z

Similarly in the expression (a +"b)(c + d) substitute ﬂ for c.

This gives us (a+b) (c+d) = (¢ + b) (ﬂ.,_d) = (a+b)

ad + bd ~ b b d_d L aa
( % >_(a'+)(,a+)3'_b(a7b)'

Ex. 2.—Given 2% + 3% : ¥~y 1 1 559 1 127 and % = 294 to
find the values of x and v.

OPERATION.

12723 + 127y = 5592% — 559y° or 686y° = 43228 or 343y% = 216x®
or Ty = 6z .. y = fx. Substitute this value of ¥ in the second
equation and we have , ‘ i

) 6z8 3
2% =294 or a? x § x = 294 0r%=294, ox‘xT = 49; or x*

=343 ; orx = 7, whence y = 6.
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Ex.3—~Ifa:b: :c:c[a,ndﬂ.lsom:n:‘:p:q.

Prove that ma +nb : ma—nb : : pc+ ¢d : pc—qgd.

4

Since a : b : :c:dandm : n::p: g then =d—aud

a
b
m P e ¢ m
= = TZ_ Multiplying these equals together, we Lave bx;
_C_p ma_pc . Mmatnd  pe+qd
= dx—q or = e Then, Art. 106 (vii), P m
that is ma +nb . ma-nb : : pc+qd : pc—-qd.

Exercisg LVIIL

1. Ifa, b, ¢, d be any four quantities whatever, find what
quantity added to each will make them proportionals.

2. If four numbers be proportionals show that there is no
number which, being added to each will leave the resulting four
numbers proportionals.

3.Ifa:b::c:dandm :n: :p: gprove that ma®-2nb® :
pe? - 2qd? 1 ; ma® + 20b% ¢ pe? + 2¢d?

4. There are two numbers whose product is 24, and the dif-
ference of their cubes is 'to the cube of their difference as 19 to
1. What are the numbers ?

5. The number 20 is divided into two parts, which are to
each other in the duplicate ratio of 3 to 1. What is the mean
proportional between these parts? o

6. Ifz:y::dd:banda: b {fy {5 ¥/d+ yprovethat
dz = cy. . »
. (a+b+ctd)(a~b-—c+d)=(a-bt+c-d)(at+b-c-d)
provethata : b : : ¢ d.

8. What two numbers’ are those whose sum, difference and
product are as the numbers s, d and p respectively.

9. A person in g railway carriage observes that another train
running on a parallel line in the opposite direction occupies
two seconds in passing him ; but, if the two trains had been
proceeding in the same direction, it would have required 30
seconds to pass him ; c%mpare the rates of the two trains.’

10. A and B speculate in trade with different sums of money.
A gains $150 and B loges $50, and now A’s stogk is to B's as
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‘3 : %, but had A lost $50 and B gained $100, A's stock would
have been to B's as 5 : 9. What was the stock of each ?

11. If b=+fac prove thata +b+c: (a+b+c)?: i a~b+c:
a? + b2+ 2 : :

12. If b = 4fac prove that a: ¢ 11 (a+b)(a=b): (b +c)(b-e).

13. What number is that to which if 3, 8 and 17 be severally
added, the first sum shall be to the second as the second sum is
to the third.

14. If m shillings in a row reach as far as n sovereigns, and a
pile of p shillings be as high as a pile of g sovereigns, compare
the values of equal bulks of gold and silver.
4%a+ 1136 -42c + 113

da-56 ~  4c-5d -

16. Ifa, b, ¢, and d are in continued proportion, express (¢ +b)
(¢ - d) in terms of « and ¢, and prove that a : {a : : b ; §/d.

15. If @ : b :: c: d prove that

VARIATION.

229, Variation is an abridged method of indicating
proportion, and is conveniently used in investigating the
relation which varying but dependent quantities bear to
one another.

The two terms of a variation are the two antecedents of the correspond-
ing proportion—the consequents not being expressed. Thus, when we
say the interest varies as the principal, we mean that if 7 and p De any

two principals and I and ¢, the corresponding interests at a given rate and
time, then :

I:4:: P: porbriefly, omitting the consequents, 7« P,
230. The sign cc is called the sign of variation and is
read varies as.

Thus, I« P isread, Ivaries as P,

281. One quantity is said to vary directly as another
when the two quantities depend upon each other, so that
if one be changed in any manner the other must also be
changed in the same proportion.
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Thus, Ieaﬁng time and rate per cent. out of consideration, the interest
(1) varies directly as the principal (P), for if Iis changed to ¢, P must also
be changed 10 p in such a mannerthat I': ¢ : : P : p,

NoTe.—When we simply say that one quantity varies as another, we are
always understood to mean that the one varies directly as the other.

232. One quantity is said to vary inversely as another
when the first cannot be changed in any manner, but
the reciprocal of the second is chanoed in the same pro-
portion.

I
Thus, 4 oc 7 (4 varies inversely as B), if, when 4 is changed to a, B
1 1
must be changed to b, so that 4 : « : :E : 0 2 by B
For example, if the area of a triangle be given the base varies inversely
as the altitude, for if 4 and @ be the altitudes and B and b the bases of two

1 1
equlsltriangles,thenA_B:ab cd4:a::b:Borda:: 77 or 4
©« —

B

233. One quantity is said to vary as two others jointly,
if when the first is changed in any manner the product of
the other two is changed in the same propoxtion.

That is 4 «c BC (.4 varies as B and C jointly) when if 4 be changed to a
the product BC must be changed to bc in such a waythat 4 : @ : : BC:bc.

Thus, the area of a triangle varies as the base and.altitude jointly; for if
A, B and P represent the area, base and altitude of any triangle, and
a, b, p the area, base and altitude of any other triangle, then 4 =} BP

A4 __BP

1
= — o H . Ada BP.
and o o) op =% .Ad:a::BP:bp 7

234, One quantity is said to vary directly as a second
and inversely as a third, when the first cannot be changed
in any manner, but the quotient of the second by the
third is chano"ed in the same proportion.

’

i :
Thatis 4 o il (4 varies di?ectly as B and inversely as C), when, if 4 be

B c b B b
— s — Ara::—:—
changgcl toa, Cmust be changed to p so that [ o
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Thus, the base of a triangle varies directly as the area and inversely as

: .. BP A
the altitude; for taking 4, B, P; a, band p as in last article e
P B Ap 4 | a 17 b
munltiplying both 7 we get T = FTPT B
A a A a. P

Z: — or B =
P V4 P

THEOREMS.

235. TeroreM 1.—If one quantity vary as another, it is equal
{0 some constant multiple of that other. That is,if A oc B then
A = mB where m s a constant quantity.

DEMONSTRATION.—For if 4 «« B then 4 : @ :: B : b, alternately
A a . a A
:B:ra: S = = - — = m, then == =m ... A=mB
A a:b 7 b,letb ‘mtenB
where m is a constant quantity.

Note 1.—This prineciple enables us to convert a variation into an equa-
tion and is therefore>made use of in almost every problem and theorem
in variation.

NoTe 2.—Hence if m is a constant quantity and 4 — m.B then 4 B, i.e

m

A varies as B; also if 4 = B then 4 e % i.e. A varies inversely as B; qlso.
mB B )

if 4= N then 4 « ol i. e. varies directly as B and inversely as C.

Also, if 4= mBC, then 4oc BCi.e. 4 varies as Band C jointly.

236. TurorsM III.—If 4 « Band B o« C, then A < C.

DeMONSTRATION.—By Theorem I, 4 = mB and B =n0 where m and
n are constants, then 4 = mnC, that is 4o C, because both m and n
heing constant, mn their product is also constant.

NoTE.—Also if 4 « B and B %; then 4 o —é

237. Tazorey IIL.—If A oc C and B oc C then A+ B oc Cand
V(4B) cc C.

DEMONSTRATION.—By Theorem I, 4 = mC and B=nC where m and »
are constants. Then 4 T B=mCinC=(m tn) C... 4+ B G
because m 1 n is a constant quantity.

Also ¥ (AB) =+ (mOxnC) = Vimnc2)= A (mn)C .. N AB« C.

. A4 A
238. Turorem. IV.—If A oc BC, then B oc T and C oc B
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DEMONSTRATION.—By Theorem I, 4 = mBC, then B — ~A—' = »1——‘4-'
A 4 14 a4 mC m C
s B < andC—EE_y—n.E.. Cmi.

239. TesoreM V.~—If A oc B and C oz D, then AC cc BD.

DEMONSTRATION.—By Theorem I, 4 = mB and C =aD, then AC=
mnBD and .. 4C o« BD.

240.' Tagorem VI.—If A oc B then A™ oc B™.

DEMONSTRATION.—By Theorem I, 4 = m.B, then 4™ = m" B", but m
is a constant quantity ... 4" o« B™

NOTE.~—So also if 4 o= B then ¥/ 4 e ¥/ B.
241. TrgoreM VII.—If A oc B and P be any other quantity
A B
.then AP oc BP and—oc —

PP

DEMONSTRATION.—By Theorem I, 4 = mB hence P4 = mPB
“..P4 « PB. .
.. 4 mB B 4 B
50 4 =mB 7 y3 m 7B P

NOTE.—.Hence % is constant, for if 4 « B dividing both by B, we have
i 7 « 1.

242, Taeorim VIIL.—When three quantities dre so related that
the increase or decrease of oné depends upgn the increase or decrease
of the other two, in such a way that if either of these lulter be
invariable the first varies as the other, then when both vary the first
varies ds their product, That is, if A oc B when C is constant
ond A oc C when B is constant, then A oc BC when both B and C

“are variable.

DrMONSTRATION.—The variations of 4 depends upon the variations of
two other quantities B and C; let the variations of these take place separ-
ately, and when B is changed to  let 4 be changed to @, and when C is
changed to ¢ let @ be changed to a'. Then

d:a::B:b; and

a:a':: C: c¢and by compounding these we have

A:d:: BC: be .. (Art.2?9);Am BC.

Nore.—In a similar way it may be shown tbat when-there is any num-
ber of quantities, 4, B, C, D §e., such that 4 varies as each of the others
when the rest are constant—then, when they are all changed, 4 varies as
their product.
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Ex. 1. If z cc yz? and 2, 3 and 5 be contemporaneous values
of z, y and z, express & in terms of yz.

OPERATION.
Since x oG y22 ..z =myz?and whenz = 2, ¥ = 3 and z = 5, then
substituting these values we have 2 =mx 3 x 5%=T6m . m=
. Then x = myz® or x = % yz*.

-Ex. 2. Given that a oc b and that when ¢ = 2, b =1, find the

value of ¢ when b = 5.
OPERATION.

Since ¢ cc b .. @ =mb or 2 = m, because ¢ =2 andb =1,
Then when b = 5 we have a = mb = 2:x 5 = 10,
Ex. 3. Given that x oc yz, and that 2 = 2 when y = = = 2, find
the value of x when y =z =
OPERATION.
Since z oc yz .. x = myz, that is 2=mx2x2=4m ... m=}
Thenz=myz=4x3x3=§=4f wheny=2=3
Ex. 4. If 4y + 3z oc By + 42, shew that y oC =
OPERATION.
4y + 3z oc By + 4z or 4y + 3z =m (5y + 4=) = bmy + 4mz
4m~3
L4y -5my=4mz—3zor (4-5m)y=(4m-3)zory= )

. 4m~—- 3 4-5m
or y = z multiplied by the constant quantity T Yy oC oz,

Ex. 5. If y = the sum of three guantities «{ which the first
oc % the second oc z, and the third is constant, and when
x=1,2,8,y=8, 11, 18 respectively, express ¥ in terms of z.

OPERATION.

The first quantity oc x® and is .. = ma?, similarly the second
quantity oc x and is therefore = nz, and the third quantity is
constant, and is .. = p, say. Then y being = the sum of these
we have y = ma® 4+ nx + p, and taking x =1, 2, 3 and y = 6, 11,
18, we get the three equations :—

.  6=m+n+p 2

1l1=4m+2n+p
) 18=9m+3n+p
which when solved givem =1 ; n=2,and p = 3, and substituting
these in the equation y = ma? + nx + p we have y = 22 + 2z + 3.



Art. 942 VARTATION. 197

BxEromse LVIII.

1. If ma? + y oc cx? — dy shew that z oc y:

2. Given that z oc ¥ and that When x =17, y=3 find the
equation between z and y.

8. Given that x = the sum of two quantities whereof one is
constant and the other varies inversely as y, and when y = 2,
z'=1wheny=1, x =2, find the value of z when y = 15.

4. Given that 22oc y®and £ =2 when y = 4 find the equa-
tion between z and y. : )

5. If x = the sum of two quantities whereof one is constant
and the other cc zy, and when = 2,y = 3, When r=3,y=~3,
express z in terms of y.

6. If y = the sum of three quantities, of which the first is
constant, the second oc z, and the third oc 2%; and when z = 3,
5 T,4=0, - 12. — 32 respectively ; find the equation between
z and y. '

7. Given that y = the sum of two quantities one of which
varies as the square of x, while the other varies as x inversely,
and that when z =5, y = 7 and when = = 9, ¥ = 5 find the equa-
tion between z'and .

8 Given tha.t y oc (b + 2%), and when z = 4/ (a® - b%),

Y= b_ find the equation between x and y.

9. If x, ¥, z be all variable quantities such that = -z -y is
constant, and (z +y + 2)(z -y - =) oC yz, prove thatx — ¢y + =
oc yz. | ‘

10. A locomotive engine without a trais, can go 24 miles per
hour, and its speed is diminished by a quantity which varies as
the square root of the number of cars attached. With 4 cars
its speed is 20 miles per hour. Tind the greatest number of cars
the engine can move.
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- SECTION XL

PROGRESSIONS, P.ERMUTATIONS, AND COMBINATIONS.

ARITHMETICAL PROGRESSION.

243. Quantities are said to be in Arithmetical Progres-

sion when they increase or decrease by a common difference.

Thus, 4, 6, 8, 10, 12, &c,, arc in arithmetical progression, the coﬁxmon
difference being 2.

21, 18a, 16a, 12a, 9a, 6, &c., are in arithmetical progres., the common
difference being - 3a.

3a 4 5a 4+ Tn -|-\9a, &c., are in arith, progress., the common difference
being 2a.

244. In every progression the first and last terms are

called the extremes, and the intermediate terms the means.

245. In arithmetical progression there are five things
to be considered : ‘
The first term.
The last term.

The common difference.

W b

The number of terms.

oo

. The sum of the series.
These quantities are so related to one another that any three of tliem

being given, the other two can be found, and hence there are 20 distinet
cases arising from these combinations.

246. If we represent these five quantities bjr letters, thus,

a = the first term, ! = the last term, d = the common difference,

n = the number of terms, s = the sum of the series,
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the general expression for an arithmetical series will
become

a+t (@ + d)+ (a + 2d) +(a + 3d) + (@ + 4d) + (a+ 5d) +, &c.,

- where the coefficient of & is always one less than the number of the
term. Thus, in the third term the coefficient of & is 2, which is
1 less than the number of the term ; in the fifth term the coeffi-
cient of d is 4, which is 1 less than the number of.the term; &ec.

Hence I = ¢ + (n — 1)d ; that is, the last ferm of an arithmetical
series is equal to the first ferm added to the product of the com-
“ mon difference by one less than the number of terms.

247. Since the sum of the series is equal to the sum of
all the terms taken in any order whatever, we have

a+d+|at2d+
I-d+jl —2d+

s=a+
, Also s=1+

l-d+
e+ d+

I—2d+
¢+ 2d+

L

l-3d+]...e+3d+ a

a+3d+‘...l—3d+

Hence 2s= (a+D)+(a+D+(@+ D+ @+ +.... tonterms'.
But (¢ + 1) + (e +1)....to n terms = (¢ + D)n. .-

Therefore 2s = (a + )n, and dividing these equals by 2, we
- .
have s = (a+l)é—. That is, the sum of the series is found by

adding together the first and last terms, and multiplying fhewr
sum by half the number of terms.

248, From the formula obtained in Art. 247, we find
by transposing the terms '

l-a
l=a+ (- 1)d d=n—1

l-a
a:l—(n-l)Jf dn = 7 +1

and substituting these values of [, ¢, d, and n in the formula
obtained in Art. 247, we find
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. n
s={2a+(n-1)d}2—

s:{2l—(n-—1)d}g—
(d-a)(+ay l+e
Y e

We thus obtain the five fundamental formulas from which the
other fifteen are derived, by transposing the terms, &c. Thus,

l=a+ (n—1)d gives formulas for /, a, n,d = 4

s:(a+l)g— LU o s,a,l,n=4
n .
s={2a+(n-—1)d}2— « s,a,n,qlzc}
n
s:{zl—(n—l)d}z— u s, L,n,d=4
l I- L+
s=(+a)25l a)+ 2a B Gold=s
Total 20

249. By means of these equations when any three of
the quantities «, d, I, n, s, are given, we may find a fourth,
and may moreover proceed to the solution of many prob-
lems which without their aid would, be difficult or even im-
possible.  The student is recommended to carefully study
the following examples :— .

Ex. 1. Find the sum of the first 50 terms of the series 4a + 6¢
+ 8a + 10a + &ec.

OPERATION.
s={2¢+(n- l)d};i: {8a+ (50~1)20} 52 = (8a + 49 x 2¢)25
= (8a + 984)25 = 106a x 25 = 2650a.

- Ex. 2. Given 3, the first term, and 55, the last term, of a series
consisting of 27 terms, to find the common difference.

OPERATION.
-
lz=a+(n=-1)dor(n-1)d=1l-a .. d= ,411
n—
55 -3 5
d= ° _——E':Z
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Ex. 3. Insert 5 arithmetical means between 1 and 28.
OPERATION.

Since there are five means and two extremes, there are in all
"7 terms, and we must find the: common difference of an arith-

metical series of 7 terms whose first term is 1 and last.term 23.
i l-a 23 -1 22 32
“m-1 1-1 6 °%

Hence the series is 1, 43, 8%, 12, 153, 194, 23,

Ex. 4. How many terms of the series 6 + 8} + 103, &c., make
up 3795?
OPERATION.

s={20+ (n-1)d}; 3195 = {12+ (n - D2} 5

7590 = 120 +(n*-n)3} ; 22770=36n + T2 -"Tn; T2 +29n= 22770
W30+ (H)E = 2UT0 4 44 = SIELS 0+ 3= 2 T

+ 799 - 29
== == 17p = 58,
n L

NorE,—The negative value -57"% doos not satisfy the conditions of the
question, and is therefore inadmissible.

Ex. 5, The sum of four numbers in arithmetical progression
is 32, and the sum of their squaresis 276. Required the numbers.

OPERATION.

Let z = the second number and y = the com. diff.

Then z —y, x, z + v, and « + 2y is the series.

SLZ-y+axtr+y+r+2y=4r+2y=32o0r2z+y=16.

Algo (z = )2+ a2 + (@ + )% + (x + 2y)? = 4oy + 4a”? + 642
= 276 or 2z% + 2xy + 3y% = 138.

And y = 16 — 2z .-. 22% + 2x(16 — 2z) + 3(16 - 2x)* = 138.

“That is, 22% + 32z ~ 4x% + 768 — 1922 + 12a% = 138.

That is, 102% — 160x = — 630 ; 2? - 165 =-63 ; 2°~16x +64=1.

z—-8=tlorz=9or 7.

y=16-2x=16~18=—2, or 16 - 14 = 2.

Hence taking = 9 and % = —2 we have the series 11,9, 7, 5;
taking # =7 and ¥ = 2 we have 5, T, 9, 11.

0
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Otherwise, let z — 3y, z —y,  +y, and 2 +3y represent the
number, where 2y = the common difference.

Thenz -3y +z —y+x+y+ax+3y=4x=32. Lx=8,

(-3 (2 -+ (x+y)P+ (T + 3y)2 = 4z% + 20y%= 2176
or 20y% = 276 — 256 = 20.

g?=1,y=+1. Hencex-3y=8F3=5o0rll, &c.

Exercise LIX.
Sum the following series:

1. 63, 65, 67, &e., to 31 terms and also to n terms.

2. - 200, -188, — 176, — 164, - &c., to 22 terms and to » terms.
3. 2, 33, 5, &c., to 17 terms and also to 2m + p terms.

4. 3,0, -%,- 1%, &c,, to 11 terms.

Tind the 17th and 28th and nth terms of the series:

2, 5, 8, &e.

3,-2, -1, &c.

2}, 3%, 314, &c.

Insert 3 arithmetical means between 3 and 33.

Insert 4 arithmetical means between 9 and — 66,

10. Insert 7 arithmetical means between - 1 and 100.

11. Find the sum of 73 terms of the series 1, 2, 3, 4, &c.

12. What is the nth term of the series, 1, 3, 5, 7, &e.

13. Prove that the sum of n terms of the series 1, 3, 5, 7, &c., Is
equal to n2.’

14. If a body falling to the earth descends a feet the first,
gecond, 3¢ feet the second, 5a feet the third, and so on; how
far will it fall in ¢ seconds ?

i 156. How far will the body (Question 14) fall during the 20th
second and during the £ th second.

16. There are four numbers in arithmetical progression, of
which the sum of the squares of the extremes ig 200, and the
sum of the squares of the means is 136. Find the numbers.

17. There are four numbers in arithmetical progression whose
continued product is 1680 and common difference 4. What are
the numbers ?

18. There are five numbers in arithmetical progression whose
sum is 25 and continued product 945. What are the numbers?

©® oo
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19. A man borrowed $60 at 6 per cent. simple interest, per
year of 360 days. How much must he pay daily to cancel the
debt, principal, and interest, in 60 days ?

20. Prove that the sum of » terms of the natural numbers 1, 2,
n(n + 1)

3, &e., is

21. Prove that the sum of the squares of the first n natural
n(n+1)(@rn+ 1)
5 .

22. How many terms of the seriés 2, 11, 20, &c., are required
to make up 517 ?

23. Find the arithmetical series the last three terms of which

amount to 96, and the preceding four terms of which added
together make up 86.

24. Find the arithmetical series of which the 5tk and 7th terms
are respectively 7and 5.

25. Given s the.sum of an arithmetical series = bn + ¢n? for all
values of n, find the tth term of the series.

26. Prove that the sum of the (m —n)th and (m + n)th terms
of an arithmetical series is double the mth term.

27. In an arithmetical progression if the (p + ¢)th term = m,
and the (p - ¢)th term = », prove that the ¢th term of the

L p
series is = m ~ (m ~ n)z—q.

numbers is

28. Bum to n terms the aritbmetical progression whose pth
term is 7 - 1;—

29. There are three numbers in arithmetical progression, such
that the square of the first added to the product of the other two
is 16; the square of the second added to the product of the other
two is 14. What are the numbers ?

30. The sum of four whole numbers in arithmetical progression
is 20, and the sum of their reciproecals is 3%. Required the
numbers.
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GEOMETRICAL PROGRESSION.

250. Quantities are sdid to be in geometrical progres-

sion when they inerease or decrease by a common multiplier.

Thus, 2, 4, 8, 16, 82, &c., are in geometrical progression, the common
multiplier being 2.

5a, — 15a?‘, 45«13, - 135@4, &c., are in geometrical progression the common
multiplier being - 3.

251. In geometrical progression there are five things to
be considered :
The first term.
The last term.
. The common ratio.
. The number of terms.
5. The sum of the series.

B

As in arithmetical progression, these five quantities are so related that
any three of them being given the other two can be found, and hence there
are 20 distinet cases arising from their combination.

252. Representing these five quantities by letters, thus,
« = the first term, I = the last term, r = the common ratio,
n = the number of terms, s= the sum of the series,
the general expression for a geometrical series becomes
a4+ ar+ art + ar® - art + ar’ + &e.,

where the index of r is always one less than the number of the
term. ’

Thus, in the third term the index of ris 2, which is one less

than the number of the term ; in the fifth term the index of r is
4, which is one less than the number of the term, &c.’
Hence I = er™~1; that is, the last term is equal to the first

, term multiplied by the common ratio raised to that power which
is indicated by one less than the number of terms.

253. Since the sum of the series is equal 'to the sum of
all the terms,
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s=atar+arit. .. +ar™ i @™ L muliiplying by 7, we get

sr=ar+art+.... et g ool y g,

Hence sr —s =ar™—a; or s (r = 1) = a (*" = 1), and therefore
a(r” - 1)

TS

254. From the formula obtained in Art. 252 we get by
transposing the terms, &e.,

e NS
a

l log. l-log. a
n= ——

P _ log. r
And substituting these values of l, a, 7, n, in the formula

obtained in Art. 254, we find
rl-a ) n

n

5= T
r=1 §=" i
(™ =1) 1 g

§= (r-1)m-1

and these together with the two formulas obtained in Arts. 252
and 253,

a(r"-1) -
FET
l=agrm-2

are the. fundamental formulas of geometrical progression from
which the other fifteen are derived by reduction. Thus,

rl—a
§= = gives formulas for s, 7, [, and a, = 4
L(r*-1)
= G-t “ s, 7,1, and n, = 4
1n-1 _gn-1
§= —— “ s,l,n,and a,= 4
P11 wqgr-1
a(r®-1
§ = ( ) @ s, 7, ¢, and n, = 4
r—1
l=a@™-1 ¢ Liar,andn, =4

Total 20
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255, When the common ratio of a geometrical series is
a proper fraction, the series is a descending one, and if the
number of terms is infinitely great, 7» becomes infinitely

small; i. ¢, 7 becomes = 0; hence ar* in formula
ar™® — o A
=3 becomes equal to zero, and the formula for finding

- a
the sum becomes — =
r-1 1~

properly speaking, however represents the Zemit of the sum
of the infinite series rather than the sum itself.

. @
The expression =7

256. By means of these formulas many problems in
geometrical progression may be solved, but as a rule ques-
tions in which the value of » is sought are incapable of
solution except by the higher analysis.

Ex. 1. Find the last term and the sum of the series 3, 6, 12,
&c., to 11 terms.

OPERATION.
I=arm-1=3y,210=3x1024 = 3072
a(r®~1), 3(2t-1
P Gl D RO ) 3(2048 - 1) = 3 x 2047 = 6141.

r-1 2~1

Ex. 2. Find the limit to the sum of the series 8 +4+2+ 1+
&c., ad infinitum.
OPERATION.

_a 8 8 16

T1-r 1-% 3T

Ex. 3. Find the 7th term and the sum of 8 terms of the series
5 10

5 1
9y Z7

o

OPERATION.

The common ratlo is always = 2nd term + 1st term.

Lo = ()0 - § By - By
=D @71 @D jens
r-1 7-1 =3 5
=5 (3080 = e = 2431,
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Ex. 4. Insert three geometrical means between 4 and 324.
' ) OPERATION.
1= a1 - g1 = —l—
e

And since there are here 3 means and 2 extremes there are in
all 5 terms, then 5 -1 = 324 r% = 81, whence r is evidently = 3,
and the series is 4, 12, 36, 108, 324.

Ex. 5. Find six numbers in geometrical progression such that
the sum of the extremes is 99, and the sum of the other four
terms, 90. OPERATION.

- The sum of the six terms is evidently 99 +90 = 189.
Let = = the first term and y = the common ratio.
Then z, zy, xy% zy®, xy*, zy®, represent the terms
lr-a "zyS-z z(y$-1)
r—1 y-1 ~ y-1
189(y -1
= ygy 1—) ButzyS +x=2(y* +1)=99 ...z =
_189(y-1) 99 20(y*=1) 11
-1 ¥+l yf-1 0 T pr-giryieytd
21 11
Tyt il Tt -ty + 1 :
21yt = 2198 + 2197 - 21y + 21 = 11yt + 1192 4+ 11

10y* + 1092 + 10 = 213° + 21y

10(y* + 4%+ 1) = 21y (y2 + 1)

10(y*+ 212 + 1 — ) = 21y(y% + 1)

10¢y% + 1)% < 1092 = 21y (¥% + 1)

02+ 12 - 21y (%% + 1) = 10y?

21y 21y\? 44197 40042 - B41y*

@+ D - (P )+ (W) =200 T 200 * 400
21 29
2y 2%

20 20
21y £29y 50y 5y
po1s DUEDY S0y sy
27 -5y=~2; 16y° 40y +26=—-16+25=9
Y-5=23;4y=5+3=8 .. y=2
99 .
= :'/6 + 1 =§'§'=3'
Therefore the geries i3 3, 6, 12,24, 48, 96.

¥ 1

¥ +1-

€
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Ex. 6. The sum of four numbers in geometrical progression is
equal to the common ratio +1, and the first term is 1. Required

the numbers.
OPERATION.

Let r = the common ratio.
1 r 12 r?
Then the numbers are 0 19 1% and 7
147 +7247%  l4r+o¥(Lt+r)  (1+r)(1+7Y)
Then 1+ 7 = 17 = 7 = 17
1472 ’
17
and the numbers are iy, \¥, 1§, $4,
or % — 1% th -

sols=

or 1™+ 1=17; =16, .. 7 =1 4,

Exerose LX.
Find the last term and the sum of :

1. 349427+ &c. to 6 terms. 2. 1+ 2+ 4 + &c. to 9 terms.
3. #+4+8+ &c. to T terms. 4. 3-6+12— &c. to 12 terms.
5. 4-5+64— &c.to6terms. 6. 30-15+ 171 —&ec. to 8 terms,

Find the limit to the sum of the infinite series :

7. =13 + & - 38 + &ec. D8 %+ &+ &
9. 7-3f + 1% - &e. 10. 64 - 32 + 16 — &ec.
11. *623. 12. 1.

13. “976. 14. -86232.

Bum the following series :

15. 1+ 3+ 9 + &c. to n terms,

16. 2 - # + S ~ &c. to » terms.

17. 2+ 4/8 + 4 + &c. to 10 terms.

18. aP + a?*2 + a? +# + §e. to n termg.

19. Insert three geometrical means between 1 and 3£,

20. Tnsert seven geometrical means between 2 and 13122.

21. Insert three geometrical means between 9 and §.

22. The sum of the first-and third of four numbers in G. P. is
148, and the sum of the second and fourth is 888.- What are
the pumbers ?
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23: The sum of the first and second of four numbers in G. P.
is 15, and the sum of the third and fourth is 60. Required the
numbers.

24. The sum of $315 was divided among three persons in such
4 way that the first received $135 more than the last. The three
shares being in G. P., required what they were. Interpret the
negative result obtained in the solution.

25. There are five whole numbers, the first three of which are
in G. P.; the last three in A. P.; the second number being the
common difference of these three terms. The sum of the last
four is 40, and the product of the second and last is 64. Required
the numbers. .

26. Prove that the.sum of n terms of the series a + (a4 b)r
+ (e +20)r* + (a + 30)r® + &c.,

a-{at+ (n-1)b}r™ br(1-r""%)
= -7 T Taeae

27. If a, b, ¢, d, are four quantities in G. P., prove that a* +b*
+2> (e -b+c)? and that (e + b+ c+d)? = (@ + b))+ (c+ d)*
£200+0)%

28. In a G. P. if the (p+¢)th term =m, and the (p - th
term =7, show that the pth term = Vﬂ?z, and also that the gth term
(2} -

A\m

29. The sum of three numbers in G. P.is 35, and the mean
term is to the difference of the extremes ags 2:3. Required the
numbers. )

30. There is a number consisting of three digits, the first of
which is to the second as the second is to the third ; the number

itself is to the sum of its digits as 124 : 7, and if 594 be added to
it, its digits will be inverted. Required the number.

HARMONICAL PROGRESSION.

257. Quantities are said to be in harmonical progression
when their reciprocals are in arithmetical progression, or
when of any three consecutive terms the first is to the third



210 HARMONICAL PROGRESSION. [skor. Xi.

as the difference between the first and second is to the
difference between the second and third.

Thus. ¢, b, and ¢ are said to be in H. P. when @ : ¢ :ta-b:D-c. 4150,
sinee 8, 7, 11, &c., are A, P., their reciprocals D ‘%‘1 1lr; &c., are in H. P.

258. It may be easily proved that the reciprocals of a
series of quantities in H. P. are in A. P., as follows:—
Leta,b,cbein H. P, Thena:c::a-b:b~cora(d-c)
=¢(a—b), or b - dc = ac - be, and dividing each of these by
1 1 1
abc we have it Sl Sl But when the difference between
the first and second is the same as the difference between the
second and third, the three quantities are said to be in A, P.

259. No general rule can be given for finding the sum
of a series of terms in H. P., but, by inverting the given
terms so as to form a series in A. P., many useful problems
may be solved.

Ex. 1. Continue the H. series 21, 1%, 11, three terms each
way.

OPERATION.

Since §, §, §, are in H. P., their reciprocals, 2, , £, are in A.
P., and their common difference = . Hence -}, %, %, 2, 2, 4, §,
$, I, is the continued A. series, and these terms inverted give us
for the required I. series - 5, cc, 5, 24, 1%, 11, 1, %, . )

- NotE.—The second term of the A.P. is §, which inverted gives us $
which =cc. (See Art. 66.)

Ex. 2. Insert four H. means between 2 and 6.

OPERATION. .
F-3
6-1
= -k Hence the A series is 4, 14, 1, %, 5, &,

Ingert four A: means between } and 4. Here d =
1

Ot | e

. H, series is 2, 24%;, 28, 3%, 4%, 6.
Ex. 3. Ingert three H. means between 10 and 30.
’ OPERATION.
To-h
B-1 4
= — s and the A. series is v, ¥, oy, ¥, &. Hence the H.
gerieg = 10, 12, 15, 20, 30.

Insert 3 A. means between 45 and ;. Here d =
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Ex. 4. Find the nth term of the H. series 1%, 1, 3; &e.
OPERATION.

The nth term of the A. series 3,1, §, &c., = a+(n-1)d=% +(n-1)}

2 n 1 1 n+1

n
=g 33 + 33 the nth term of the given

3
H series is
n+

260. Let a and b be any two quantities, and let 4 be
their arithmetical mean, G their geometrical mean, and H
their harmonical mean. Then, )

L A-a=b-A or2d=a+b .. A=}(a+b). Art. 243,
IM.a: G:: G:bor GP=ab .. G=4ab. Arts.224and?250.

b
L a:b::a~H: H-b or afl+bH = 2b .-.H:(l—ig Art. 257,

261. Hence the A. mean between two quantities s equal to half
their sum, the G. mean between two quantitiesis equal to the square
100l of their product, and the H. mean between two quantities is
equal to twice their product divided by their sum.

262. TaporeM 1.— Taking A, G, and H, as in last article, G is
the geometrical mean between A and H.

2ab
DestoxstraTION. Since 4 = }(a +b) and H= Pl AH =
at+b  2ab
% ——-_7_ 5= ab, but G? = ab ~. G* = AH. Extracting the

square root of both, we have G = 4/4H, that is, G is the geomet-
rical mean between A and H.

263. Taporem IL.—Toking A, G, ond H as in Art. 260, then of
the three A is the greatest and H the least in magnitude.

DzmosTrATION. Because, (Art. 134) o?+b% > 2 ab, af + 2ab + b%

4ab a+ b 2ab gt b -
> dab, anda+b> 2 5 and > ,but —— = 4, and
2ab + b 2 atd 2

=H 4> H. And G being the geometrical mean be-

Cat b
tween A and H is of intermediate magnitude, i. e., is greater than
Hand less than 4, .-, 4> G > H. -
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264. THrorew [11.—Three quanlitics, a, b, ¢, are in A. P. or

P i a—bg‘ a 2 a
H. P., or G. P., according b~ a" D"
~-b a
DesonsTrATION I, = —=1.,.a=-b=b~corb=i(atc).
b-¢c @
-b _
Mo”2 a2 . ab-bt=ab-acorb2=ac . b=ac.
b-c b
a-b a
L 7 =— catcila-b:b-c
-¢c ¢

Ex. 5. Find the 4. G. and H. means between 1§ and 10.

OPERATION.
A=3(@+b) =315 +10) =3 x 11} = § x 82 = 8] = 57
@ = yjab = /1L x 10 = 4/16 = 4.
2ab 2x1ix10 32
Sa+d T 1L +10 T 11}

Ex. 6. The difference of the A. and H. means between two
numbers is 14; find the numbers, one being four times as great
ag the other.

OPERATION.
2ab a+ b 2ab
=i(a+d)and H=-—— Py . A~H= 5 " ard
a? + 2ab + b% - 4ab (a-5)2
= = =2 s = 4b we have
2(a+b) aarby = F since a

(4b-b)? () 9 9b

9
= . — =1 -
2(4b +b) ~ So%eb - 106 "0 F 9 s ord=2and
a = 4b = 8.

Exmroise LXI.
oL Oontmue three terms each way the H. series, (1) y 51 3
(1) 1§7 1o 167 (III) Hhhd v 1 197 5 (O fn 127 -13
(v -

2. Insert thlee H. means between 2 and 3 ; between 5 and 7
between 11 and 3 ; between 21 and 3%; between 6 and ~

3. Find the 5th, llth and nth terms of the H. series 21, 1
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4. Findthe 6th, 10th, and last term of the H. series 4}, 64, 13.

5, Find the 4th.and 8th terms of the H. series -%;, s, 1.

6. Find the nnknown terms of a H. series whose first term is
4 and fourth term 1.

7. Find the 8th term and the nth terms of a H. series whose
first term is ¢ and second term b.

8. Find the H. mean between

1
mia and o
9. Find the A. G. and H. means between 4 and 9..

10. Find the A. G. and H. means between 6 and 4}.

11. If @, b, ¢, be three quantities in H. P., prove that ¢® + ¢*
> 202, if ¢ and ¢ are both positive or both negative.

12. If a, b, ¢, are in A. P., and «, mb, ¢, in G. P., prove that
a, m®, ¢, are in H. P.

13. From each of three quantities in H. P. what quantity must
be taken away in order that the three resnlting quantities may
bein G. P.?

14. The sum and difference of the A. and G. means between
two quantities are 16 and 4 respectively. Required the numbers,

15. The A. mean between two numbers is 2% of the . mean,
and one of the numbers is 2. Required the other.

16. Find two numbers whose sum is 30 and H. mean 13}.

17. Find two numbers whose difference is 164 and the G. mean
between the H. and A. means of which is 9.

PERMUTATIONS, VARIATIONS, COMBINATIONS,

285. The different orders in which any given number
of quantities can be arranged are called their permutations
oY VaATLULiOns.

" Thus, the permutations of «, b, ¢, taken three together, are
abe, ach, bac, bea, cab, cbe; taken two together, they are ab, be,
ac, ca, be, cb. -

Nore.—Some writers make a distinction between permutations and
‘variations—limiting the application of the former term to those cases in
which all the quantities are taken together, and calling others variations.
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266. The combinations of any given number of things
are the different collections that can be formed out of them
without taking into consideration the order in which the
quantities are placed.

Thus, the combinations that can be formed ount of three things,
a, b, ¢, are three in number, viz., ab, ac, and be.

267. THEOREM L.—The number of variations of n things -taken
p together isn(n —1)(n—-2)....(a - p+1).

DevonsTraTION. Let there be » different things «, b, ¢, d, &c.

Then the number of variations which can be formed out of
these n different things taken one at a time is manifestly = n.

From the n things 4, b, ¢, d, &c., let us remove «a, then there
will remain 7 — 1 things b c, d, a.nd the number of variations of
these n — 1 things taken smgly will of course be=n - 1. Now
if we place a before each of these n~ 1 variations there will
n — 1 variations of ¢, b, ¢, d, &c., taken fwo and fwo together, in
which a stands first. Similarly there will be n — 1 such varia-
tions in which b stands first, and so of the rest. Therefore there
are upon the whole n(n — 1) variations of n things taken fwo and
two together.

Hence of (n— 1) things b, ¢, d, &c., taken two and two to-
gether, there are (n - 1)(n - 2) variations, and placing a before
each of these it appears there are (n — 1)(n — 2) variations of n
things @, b, ¢, &c., taken three and three together, in which a
stands first, and as the same may be said of b, ¢, d, &c., there are
upon the whole n(n-1)(n — 2) variations ofnthmgs taken three
and three together.

Similarly the number of variations of n things taken four and
four together, may be shown to be n(n — 1)(n — 2)(n - 3), and
five and five together, n(n ~ 1)(n — 2)(n-3)(n - 4), and so on.
Now it has been shown that variations of # things taken

2 together = n(n-1) orn(n—-2+1)
3 4 =p@m-1)(r-2) or n(n—1)(n- 3+1)
4 “  =am-1)(n-2)(n-3) or n(n=1)(n—2)(n=4+1)

and so on. Hence the variations of n things taken p together
=a(n-1)(n-2)....(a-p+1).
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Cor. 1. If p = m, that is, if the quantities are taken all
together, the variations or permutations of » things is n(n—1)
(n=2)....(n=n+1)y=n(n~-1)(n-2)....3.2.1, or, reversing
the order of these terms we have permutations of = things
=1.2.3.4....n.

Cor. 2. Hence denoting the variations of » things taken
1, 2,38, 4, &c., p together by V,, V,, V3, V,, &c., ¥, we have
Vi=a; Ve=a@m -1); Vy=n(n-1)(®n-2); V,=n(n-1)
(n=-2)(n=3); &e.; V,=n(n-1)(n=~2)(n—38)....(n—p+1).

Nore.—For the sake of brevity n(n -1)(n - 2)....3.2.1is frequently indi-
cated by |n_(read factorialn.) accordingly, |n denotes the continued pro-
duct of the natural numbers from 1 to n inclusive.

268. TeeoreM II.— The number of permutations of n things
taken all together, whereof p are n's, q are b's, and r are ¢'s, s

T

Bk’

DeuoxsTraTIiON.—Let NV denote the number of permutations
under the given conditions. Then if we suppose that in any one
of these N permutations we change the p &’s into letters differ-
ing from all of the rest, we could from this single permutation
produce |p different permutations, and as the same would be
true for each of the-N permutations, it appears that if the p o’s
are changed to letters differing from all the others, there will be
N |p permutations of » letters, whereof there are still ¢ &’s and
r 5.

If now the ¢ ¥’s were changed to letters differing from all the
rest, it may be shown by similar reasoning that we should have
N|p |g variations of » things, whereof there still remain r ¢'s.

Similarly, if the 7 ¢'s are changed to letters differing from all
the rest, we shall find that the number of permutations of » differ-
ent things = V' | p [¢ [r. But the permutations of » different things

is |n.
Hence N |p g Ir = |n, and dividing both sides of the equation

|n
by |p{glr we have N=_ —
lelek o plelr
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Fx. 1. How many variations can be made of 10 things taken
3, 5, 8, and 10 at a time ?
OPERATION.
=n(n-1)(n-2) = 10.9.8 = 720
V,=n(n-1n—-2)(n-3)(n-4)=10.9.8.7.6 = 30240
=am-)(n-2)n-3)(n-4)(n-5)(n-6)n~-T)
= 10.9.8.7.6.5.4.3 = 1814400
Vip=1.2.3.4....n=1.2.3.4.5.6.7.8.9.10.= 3628800.
Ex. 2. How many different words can be made with all the
letters in the expression atbcide®.
OPERATION.
We are to find the permutation of 13 letters, of which 4 are
@'s, 2 are ¢’s, and 5 are s,
»  1.2.3.4.5.6.7.8.9.10.11.12.13
T lrlalr 1.2.3.4 x 1.2 x 1.2.3.4.5

=Tx9x%x10x11x12 x 13 =1081080.
Ex. 3. The number of variations of n— 2 things 3 together:
number of variations of n things 3 together :: 5 : 12, Find
the value of n.

OPERATION.
(n-2)(n-3)(n-4) : a(n—-DR-2) :: 5:12
12(n - 2)(n = 3)(n - 4) = 5a(n - 1)(n —
12(n—-3)(n—4) =5n(n - 1)
12(n® = Tn + 12) = 5n* - Bn
12n% - 84n + 144 = 5n% — 50 or Tn? ~ 19n = — 144
196n% — 221270 + 6241 = — 4032 + 6241 = 2209
14n -~ 19 =+ 47 -, 14n =126, 0or n = 9,

Ex. 4. The variations of a certain number of things taken 3
together is 20 times as great as the number of variations of half
as many things taken 3 together. Find the number of things.

OPERATION.

n(n = 1)(n - 2) = 20 x in(in - 1)(3n - 2)
10 n— 2\ /n- 4

"\ T2 2
n(n—1)(n~2) = fa(n-2)(n-4)

and dividing both by n(n —-2) wehaven~-1= )(n 4) whence
n = 6.

nin - 1)(n - 2)
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Exsreise LXIILL

1. In how many different ways can six different counters be
arranged ? )

2. How many variations can be formed out of § things taken
(1) 4 together, (1) 6 together, and (1) all together,

3. How many different words can be formed out of the expres-
sion a%b%cd ?

4. Assuming that sixteen changes can be rung per minute,
and that the bells are rung 10 hours each day, how long would
it require to ring all the changes that can be rung on 12 bells ?

5. If the number of permutations of n things 5 together is six
times as great as the number 3 together, find .

6. A landlord agrees to board a company of 10 persons as
meny days as they can sit in different positions at table, for
$5000. Assuming that the board of each is worth $5 per week,
how much does he lose by the transaction? What is his loss if
the $5000 is paid at once and placed at simple interest at 6 per
cent. per annum till the close of the term of agreement ?

7. The number of variations of 15 things taken n together is
ten times ag great as the number taken (n - 1) together. Find
the value of =,

8. How many different words may be made of all the letters
in the words Constantinople, divisibility, octoroon, commemoration.

9. How many different permutations can be formed with the
letters in the words algebra, demonstration, Toronto.

10. The variations of §» things taken 3 together . variations
of 4n things taken 3 together :: 145 : 2. Findn

269. Tumores III.~—The number of combinations of n things
) ., a(n-1(n-2)(n-3)....(a~p+1)
taken p fogether is 1.2.5.2....D
DemonsTrATION. The number of combinations of n things two
and two together is evidently only half as great as the number
of variations of # things two together. Since each combination
ub gives two variations, eb, ba, hence the combinations of #
. n{n-1) .
things two together is L—Z——

P -
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Again, since there are n(n — 1)(n — 2) variations of » things
taken three together, and each combination of three things
admits of 1.2.3 variations, it is evident that there are 1.2.3
times as many variations of = things taken three togéther as
of combinations taken three together, and counsequently the
n(n - 1)(n —~ 2)

1.2.3 '

Similarly, the variations of n things taken p together is
(= 1)(n = 2).... (n = p + 1), and every combination of p things
will make 1.2.3....p variations. Hence there are 1.2.3....p
times as many variations as combinations of n things taken
p together, and consequently the number of combinations is
an=1DM-2)....(n-p+ 1)

1.2.3....p

number of combinations is

270. Tawores 1V.—The number of combinations of n things
taken n =p af a time is equal to the number of them taken p ot a
time,

DemonstraTION. It liag been shown by lagt theorem that the
number of combinations of n 'things taken p together is
a(n-)(n-2)....(n=p+1)

, and multiplying both numera-

1.2.3....p
tor and denominator of this expression by 1.2.3....(n-p) we
Lo nm=1)@B=-2)... (-p+1)x(n-=-p)..... 3.2.1
find that it = 1.2.3......px1.2;3......(11-1;)
a1 (n=2).... ... 3.2.1 _ In_
B lp In-p 7 jn-p

Now putting # ~ p for p in this result, as ‘may evidently be
done, since the expression holds for all values of p which ars
less than n, we have n —p =n - n + p = p and donsequently

[n [n

Pk TRer 2

that is, the €, of n things = Cy_; of the same n things.

= Cﬂ—p

Hence if p >>}», the numberof combinations is more easily found
by the supplemental formula, i. e., taken (., instead of C,.



ART, 270.3 COMBINATIONS. 219

Note.—The truth 6f this principle is also evident from the fact thatif, from
» things p be taken, (» - p) things will always remain, and hence for every
different set containing p things-there will be a different sct left containing
% - p things, and consequently the number of the former equals the number
of the latter. )

Cor. 1. Hence representing combinations of n things, 1,2, 3,
&e., p together, by C,; Cyy Cy, &c., C;, we have

n n(n—1) n(n—1)(n-2)
Co=qiCe=—75 0= T.2.3 2%

Cor. 2. To find the sum of all the combinations that can be
made of » things taken 1, 2, 3, &c., n together, we proceed as
follows :— ‘

n(n-1) nm-1)(n-2)

1.2 7 1.2.3
&c.; are the coefficients in the expansion of the binomial (1-+2)",
so that (L+z)® = 1 + C 1z + Coz? + Cya’+ &o. + Cra™

. ‘n
It will be shown hereafter that IR

Now writing 1 for = we have
Q+1D)*=2"=1+C +C; + C3 + &e. + .

Hence 2" - 1= C, + C, + C; + &c. + Cp, or the sum of all the’
combinations which can be made of n things taken 1, 2, 3, &c.,
n together = 2" ~ 1.

Ex. 1. Required the number of combinations of 22 things taken
6 together. -
) OPERATION.
Heren=22andp=5 .
L R CRDICERICEE 22.21.20.19.18
& 1.2.3.4.5 - 1.2.3.4.5
=22.21.19.3 = 26334.

.Ex. 2. How many combinations can be made out of 23 things-
taken 19 together?
) OPERATION.

Here n = 23 and p = 19, and consequently 2 - p = 4
23.22.21.20

C P
1.2.3.4

p = Cy_por Cg=0Cy =

= 8855,
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Ex. 3. What is thé sum of all the combinations which can be
made out of 10 things taken 1, 2, 3, &c., 10 at a time.

OPERATION.
Cit €yt Cy+ O+ &o. + €y =210-1=1024 -1 = 1023,
Bx. 4. Out of 10 consonants and 3 vowels how many words
each containing two vowels and four consonants can be found ?

OPERATION:

10:9.8.17
1.2.3.4
= 210 combinations; and similarly the combination of three

10 consonants combined together 4 and 4 will give

3.2 .
vowels two together = - = 3. Hence'the combinations of

1‘ 2
the 10 consonants and 3 vowels = 210 x 3 = 630.

But each of these combinations of 6 letters will furnish
1.2.3.4.5.6 = 720 permutations each, forming a different word.
Hence the entire number of words formed will be 630 x 720
= 453609. ’

Bx. 5. How often may o different guard of 4 men he posted
out of 50? On how many occasions would a given man be

selected ?
OPERATION.

N 50.49.48.47 ~
17 1.2.3.4 = 230300
Taking away one man there remains 49, and the question now
becomes, how many combinations may be formed of 49 men
taken three together.
49.48.47 o
s = T 1.5.3 = 18424 to each of whicli the reserved mdn
may be attached.
Exercse LXIIL ‘

1. How many combinations may be made of 10 things taken
3 together? How many 5 together ? How many 8§ together ?

2. How many combinations can be formed out of 15 things 5
together ? How many 7 together 7 How many 12 together?

3. How many different clasges of 5 children can he formed
out of a school containing 12 children ?



'ART. 271.] COMBINATIONS. 221

4. The whole mumber of combinations of 2n things is 513 times
the whole number of combinations of # things ; find n.

5, From a company of 36 policemen 5 are taken every night
for special duty. On how many different nights may a different
selection be made ; and in how many of these will any particular
man be engaged ?

6. How many words of 7 letters can be made out of the 26
letters of the alphabet, with three out of the five vowels in every
word ?

7. In how many ways can 10 persons be seated 2t a round
table so that all shall not have the same neighbours in any two
arrangements ?

8. If the permutations of n things 3 togéther : combjnationy
of n things 4 together :: 6 : 1. Find n.

9. The number of permutatlons of »n things p together is 10
times as great as their number taken p —1 together, and the
number of combinations p together . number p — 1 together

: 513, ‘Find n-and p.

10. In how many ways mayn persons be arranged in a circle ?

11, With ten flags representing the 10 numerals, how many
signals can be fortned each representing a number, and not
consisting of more tha.n five flags ?

12. How many different sums can be fou:ned with a guinea, a
half guines, a crown, s half-crown, a shilling, a sixpence, a
penny,-a halfpenny, a,nd a farthing ?

SECTION XII.
BINOMIAL THEORENM.

271, The Binomial Theorem is a general formula
invented by Sir Isaac Newton, for the purpose of expedi-
tiously involving any binomial to any power. The formula
is expressed as follows:

- -H(n-2
(1_1:+rl:)"=a“+ ;L_an-1x+7_l(_71]'_._1_) a”""’x"-}—ﬂl—'—;—%—)— v 83
n(n-1)(n—2)...(n~7+1) -
1.2.3....7

“rat,

+ &c.? the (r +1) th term being
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Where (@ + z) is the given binomial, n, the exponent of the
required power may be any quantity positive or negative, integ-
ral or fractional, and » any positive integer whatever.

Nore 1.—The (r + 1)th term as above is commonly called the general

.term of the expansion.

Note 2.—The coefficients of x, zz, 2® &e., " inthe above expansionare,

-when # is a positive integer, merely the general expressions for the number
of combinations of » things taken 1, 2, 8, &c., r together (See Art.269),
and we shall therefore use the expressions C,, C,, €', &c., ¢/, to repre-
sent these coeflicients, so that the formula given above may he written

(@+a)=a®+C1 " T+ Cea® P2t &e, +Ca" T A 4+ &e.

272. Bince in the formula (¢+ 2)* = ¢®+ C ® 1 z + C? o™~ %2
+ &¢., @ and x represent any quantities whatever, we may write
—.x iniplace of x and we thus obiain:—
(a-2)t=a"+ Cya" "t (mz) + Cy a2 (-x)%+ &e,
=a"~-C a* " Yx+ C, a" %% - &e.
The terms being alternately plus and minus.

Cor.Ifa=1(ata)'=(1tz)"=1%Cx+Coz?t Cya?
+ C, x‘*i&c.

273. TuporeM I.-—The Binomial Theorem 1is true in all cases
when n is positive and integral.

DemonsrrATION.—By actual multiplication it appears that :—
(z+a)x+d)=2+ (a+b) z + ab.

(EFr@E+b)E+e) =23+ (@ +b+c) 22+ (¢b + ac + be) x + abe,
(EFRa)@E b)Yz o) +d) =3t + (atd+ctd)z? + (ab+ae
+be + ad + bd + ¢d) 2% + (abe + acd +bed + abd) x + abed.

Now it is evident that in these results the following laws
hold :— .

I. The number of terms in the.right hand side, is one moxe than
the number of binomial factors which are multiplied
together.

I1. The exponent of x in the 1st term = the number of binomial

: Juctors, and it decreases by unity in each succeeding term.
IIL. The coefs.of st terms = unity ; coefs. of 2nd terms = sum of
- 2nd terms of all the binomial factors ; coefs. of 3rd terms

= the sum of all the products of the 2nd terms of the bino-

mial- factors token two at @ time; coefs, of 4th terms =
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sum of all the products of same second terms taken three ut
a time and so on; the last term is the product of all the
second terms of the binomial factors taken all together.

Let us assume then that these laws of formation in the pro-
duet bold for n - 1 binomial factors (2 + @), (z +b), (= + ¢), &e.
_ So that (z + a)(z + b)(z +¢) &covviu(z + k)
=z 1+ Az 2+ Ba® 34 Cz" -4 + &e.... + K.

where A=a+b+c+...... k; B=ab+ac+bc+ &,
C=abc + acd + &c.
&c. = &e.

K=abed.... k.
Then introducing a new factor = + ! we have:

(z+a)(z+b) &e....... @+ (x+D) =a" + (4+1]) an -1y
(B+lA)yz"-2+&c....... + Kl
Wherefore A+ lza+b+ec..... k4L }

B+lAd=ab+ac+bct...... tal+bly.o. okl
&c. = &e. ‘ .
Kli=abed...... kKl
That is 4 + I = sum of all the second terms of the binomial
factors.

B + 14 = sum of all the products of the second terms e,
b, ¢,...... 1 taken two at a time.” And so
on, and

. Kl=product of the second terms when taken all together.
Hence if the laws indicated hold good when n — 1 factors arg
multiplied together, they hold good also when n factors are
multiplied together. But we have shown that they hold good
when 4 factors are multiplied together, therefore they hold when
b factors are multiplied together, and therefore also for 6 and so

on, and hence generally for any number whatever,

Nowleta=b=c=d= &ec.

Then.ﬁ:a;i-a+a+ ...... to n terms = na.
Bza?+ad+...... - &c., to a number of terms = to the
No. of combinations of n things taken two tor
n(n—1
gether = %-—-2-—) o,
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C=d*+d®+ &ec., to a number of terms = to the No.
of combinations of » things taken three together
_n(n-1)(n-2) s
1.2.3
K=a.a.a.a to n factors = a”,

’ Anﬂ S0 on.

Also, (x +a)(z +b)(z +¢)...... &c., becomes (z + a)(z + @)
oo o o terms = (x4 a)”®,

n n(n=-1 nn-1)(n-2
So@ )t = :v”'+—ax"'1+—(—1—2—)— a“xn‘2+———( T ;%—2
LUk N 3 . Hadd

274. Tagorgy I1.—The Binomial Theorem holds for all values
of n either positive or negative, integral or fractional.

DemonsTrRATION. (EULER's.) It has been already shewn that
when n and m are positive integers,

@ @ ""‘)m:f(m)=l+? - m(;n; 1) " m(m I.lz)'(;n— Z)x"

+ &e.

n an=1) . (n-1)(n-2)
i (1+z)n=ﬂn)=1+1_x+ (1.2 ot X 1.2%3 o

wheref(m) andf(n) are symbols used to denote the series
1

m m(m—1 n o« nn-1
1+—=x ( ):z"'+&c.and1+—x+ ( )

hia el 7 P
1 + 1.3 1 12 ° + &c.

Hence whalever may be the values of m and n,

m m(m—1 ' n -
{1+—a:+ —(1 ) x2+&c.}{1+1—x+7i1n—21—)x2+&c}

1 .2

= fom < f.

But the product of these two series will evidently be a series
of the form of 1+ ax + bx? + ca® + &e., ascending regularly by
the integral powers of g, the letters g, b, ¢, &c., being used tq
represent the coefficients, found by addition, of =z, a7, % &,
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Now it is evident* that the product of thése two series must

be of the same fo1m whether m and n are positive or negative,

integral or fractional. Whatever therefore be the forms assumed

by a, b, ¢, &c., when m and n are positive integers, they will
remain the same when m and n become fractional or negative.

But when m and 7 are positive and integral we have seen that
by multiplying I and II together we get
f(m)'xf(n) S(l+a)?Px (L +z)'=(1+2)"*%=1 4 ax + ba?

+ ¢zt + &e.
m+n  (mt+n)(m +'n,-1) (m+n)(1n+n 1y(m+n- 2)

=ld ——z+ 1.2 1.2.3
+ &c.

=ﬁm + n) by the notation adopted.
(). . Generallyf(m) xf (n) f(m +n) for all values

of m and n.

And since this is true for all values of m and #, for n we may
. write n+7, thenf(m +n+r) =f (n+r)x (7n)=ﬁm) x I (n)
xf(r). '

Similarlyﬁm N A ) =f (m) Xjp('n) Xf ()

xﬁs) Xarras . 1. e. the product of two or more such series as

that denoted byf(m) produces another series of precisely the
same form. p ‘
Nowletm=n=7r=s=&c,=— where p and ¢ are positive

integers, and su};pose the number of terms to be ¢.

Thenf (p + = + — + &e., to ¢ telmS)) f(%)X/<§)x
f( > to q factors

* The product of two algebraic iactox g i not altered in form by any varia-
tion inthe value or nature of tfe factors. Thus (z+ ) (x+Db)= 2+ (atd)z
-+ ab for all values of &, @and d. So in the above, although by changing
the values of m and'n we alter the values of b, ¢, &c., yot their forms, ..
the manner in which m and # enter the series, remain the same,
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f {f( >} . But'gincepisapositive integer,
= §—= 2
S ot )

2 E(E-1) (- 1)(__2

r
or(1+x)7:1+%m+ x?+ *+&e.

1.2 1.2.3
by the notation adopted.

Thus the Theorem is proved for a fractional index,

Again in (u1) put m = - 7n.

Then f(n) x J(~n) =ﬁn— n) =f(0): 1.'. the agsumed serjes
becomes 1 when m = 0.

And since J(n) x (— n)=1 dividing each byﬁn)

since n is positive.

f( = f(n) (1+w>’*

(1+ =y = (14 ) "hyArt. 165 .. (4z) "0

n (-—n)(—n-—l) o “H-n-1(=n=-2)
ﬁ"")‘1+< > 1.2 * 1.2.3

z% + &e.

Thus the theorem is also ploved when = is any negative quan-
tity.

275. From this theorem then it appears that :—
7 n(n-1) . n(n—-1)(n - 2)

n o ol
1. (1+:c) 1% tTIv 3 + 1.9.3 x® + &e.
-n -n(-n~-1) —a(-n=1)(-n- 2)
- —_ 2
IIL. A+ )y "=1+ 1 T+ 1.3 z? + T2.3
+ &ec.
Lon a(n+1l) o n(+(n+2)
—1+T5€+ 13 " 12,3 =% + &e.

i 1.2 123 :
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p LML zoron
_ £ [ q q 7 9
Slig et g T.7.3 @ &
R R ¢ X)) 2@ - -29)
SlETer Tgg ft T g g ot
R AR ()
L
- q 7 q 2y

IV. (132) 1=11— W 1.2.3

+ &e.
122, p(p+q)x2_p(p+q)(p+2q)x3+&
ity La.¢g “F T 1238 e

And these reduced general expressions should be carefully
noticed by the student, and used as formula for the expansion of
binomials according as » is positive or negative, integral or frac-
tional.

’
Note.—No examples with n integral and positive are given, as there are
a number such in Exereise XXX VIIIL.

~ 10 10.9 10.9.8 10.9.8.%
Bx. 1 Q420 =1+ o+ ool +poaat

1.2 1.23° " 1231
zt + &e.
=1+ 10z + 45z% + 1202° + 2102% + &e.
Bx . (1aay- o1 B gy 56 560, 5.6.7.8
x. 2. (1+2) 1ttt 123 Y1252
z* + &e. :
=1~ 5z + 1522 — 35z°% + 702* - &e.
1.2 . 1.2.3  1.2.3.4

1
—)tal+satat
Bx.3. =2} t= 14 potqpeitgomat+ 5o
+ &e.

P e e BT e

Nore.—Henge it appears that in all cases when # is integral if the sign
of the exponent and that conuecting the terms of the binomial are both
like, ¢. e. either bothr plus or both miénus, the signs of the expansion are all
plus, but if unlike, the signs of the expansion are plus and minus alter-
nately.

3 3 338-5) , 3(3-5)(3-10)
Ex. 4. (1+2) =1+‘5“”"+1225 St 17.5.1%
33-5)(3-10)3-15) "

1.2.3.4.625
-1 3 3xX—2 . 3Ix-2x-1 . 3x-2x-Tx-12
Ty ttiaaet TTgs.a T 1234625

zt + &e,
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3 3 7 21
= — —-—22 ———14'}"&0
e AR T oY

s 3 33+2) , 3B+NEHY

Ex.5. (1-2)7 2 =1+ oo+ ="’ + =7 57575
33+DETHBHE)
* 1.2.3.4.16 zt+ &c.
3 3.5 3.5.7 3.5.7.9
=1+— 2 28 xt+ &o
Lt e ¥ T35 T 1.2.3.4.16 ,
: 3 +15 " 35 . 315 s
= _ —_— bt — C.
R R A TR R T T
. - 22\ °* . 2
Bx. 6. (¢+22) %= qa(1+ — =a"®(l+2e 1x)"

2 29.4 iy 203:4.5
=" ‘{1—-—-(2& 1x)+ (Za ) A G MWW
(2atz)s t
= '1{1-—4a Yz + 12a %% - 320323 + 80a~ ¢zt ~ &c. }
= @ % — 4a~ 3% + 120 2% — 3207 523 + 800~ 6zt — &e.

Bx. 7. (a2+z")—7‘-{a2(1 +a'zzz)}—“=a_:‘“(1+a"~zz)_‘
3 3.1 3.7.11 )
-3 1—-— a~*x? +_,_ a2t~ 2T T (g-ig?)d
{ ( ) 1.2.1 ( ) 1.2,3.64( )
3.7.11.15 o
* 1534256 ¢7°F)
-3
za *{l1-%a % 2%+ a 42:4——7—1(/, 6x8 + 158 a 2% + &e.}
= a—%_%a‘;xz_l_;z_la‘ 2]' 4o Lha” L2ﬁx6 + %zjga‘lzg 8
- &e. :

Exeroisp LXIV.
Expand to five terms each of the following exypressions ;—

. 1 1 1
1. (L+xz)-8 8. (1 - 4x)* 15. (a* —x¥)"2?
2. (1+x)~? 9. Q+x)~3 16. (at—z%)3
3. (1-20)-' 10, (1-3z)f 17, @+ -2
4 (L-3z)-% 11, (1+ 32y 18. (a5-z %)’%
Ay
1
5. (1+8z)% 12 ———f 19. (a'm—z?
are) TP @n-shy 3
— — 22y -3 —_—
8. (T=22)5 13. (a - a?) 20. @ro-9-1
1
7o 14, (@ + 291 21.
¢ (1__;”).1 ((1 +x) 21 '\/a—_ba:
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976. TarorEyM I1L.—In the expansion of (1 + x)® there are only
0+ 1 terms, when the exponent is positive and integral.

DexonstrATION.~~The coefficient of the (r + 1)th term is C, =
nn-Ln=-2)(n=-3).....n~7+1)
r '

n=71+1=0, then the (» + 1)th and all following terms vanish,
and the series will terminate with the rth term. Butifn—7r+1
=0;7r=n+1 and the (n+1)th term is the last term of the series,

Now if r be such that

NoTe.—If n is negative or fractional, the series never ends, but may be
continued to an infinite number of terms, since as r is necessarily integral
and positive, we can then find no value for r which will render n —r 41
=&

277. TugoreM IV.—In the eapansion of (1 + x)* when n is
positive and integral, the coefficients of terms equally drstant from
beginning and end are the same.

DexonsrraTion.—The (7 + 1)th term from the end having 7
terms after it is the same as the {(n + 1) — } th term from the
beginning, i. e., is the same as the (2 —r + 1)th term from the
beginning. And since, Art. 271, the coef. of the (+'+ 1)th term
is C, writing n — r for 7 the coef. of the (n — 7+ 1)th term will
be C,_,. !

But it hag already been shown (Art. 270) that
C,__n(n—1)(n-—2).....(n-1‘+1): ]_n - l_’”_ -0 .
T 1.2.3....07 Ir jp—r  |p—r|r

that ig the coef. of the (r + 1) from the beginning = coef. of
(r + 1) term from the end.

278, To find the general' term of the expansion of (a + x)®,

In writing down any term of the expansion of (1 + )", say
the 5th term, so as to exhibit the factors of the coefficient thus,

n n-1 n-32 n—3 '
— . S n~4x4 we observe
1 2 3 i ¢ ’

I. The numerator added to denominator of each factor=n+1,
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II. The number of such factors is one 1es= than the number of
the term. R
III. The exponent of x is equal to the denom. of last factor.
IV. The exponent of @ = n ~ (the exponent of z).
Hence the (r + 1)th or the general term of the expansion =
nn-1)n-2)....(n-r+1) ‘
1.2.3....7

TL r x’r.

279. The student must note the following points with respect to
this general term :—

1. The gen. term of (1 + z)™ when n is a positive integer, is as
above.

II. When n is positive, the gen. term of (1 ~z)* = C, (- z)"

= C, (=1)z" = (=1)"Ca"= (-1)" ( n(n—1)(n- OI)T (71—7'+l)ﬂ)

where (— 1)* will of course be positive or negative according as
r is even or odd, that is, according as 7+ 1, thé number of the
term, is odd or even. .

III. If n be negative, the general term of (1 + z)~" =
—-n(-n-1)....~{n-(r+1} n(n+1)....(n+r-1)

G - e K =)
IV. Ifn is r;gative, the general term of (1 Ax_):"= (-1)7x
o = (o1 o1y (RDEE Dt D).
_n(n+1)(n+2). cen(nEr-1) T

7 7 %", Since (- 1)"x (- 1)"
=(=1)"=+1 -
When the exponent is fractional, the sign of the general term
is subject to the same laws, and C, may he written as in ITT and
IV on pages 226, 227. Thus the general term of

r - _9 .
V. (1+2)7 = PP - 9(P ql)r - ;p (r=Dq} , )
VI (1_:0)‘%:(_1)a~<P(P+q)(p+lz7q)x - Aqpt =1 g >

PP (P +29).. Pt -1y !

»
VIL (1+x) ¢ L
q

"
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V:III. (1_3)7= (-1 <73(P“9)‘(P-*Zé)..;(.(:f{p—'-(r—l)q} x’>

Ex. 1. Find the general terms in the expansions of (1 +x)8;

-1 =
Q-a)"%, (@-2)" ¥, (1132)-2

8.76 8—r+1 8.%...(9
G.T.of (1+x)8=+ = 3( T, %)
1. 1+ (r-1)2
G.T.of (1=2%) — %=1 — |{r><2$1 )2} (aty
1.3.5....(2r - 1)
SR T L

G T. Of(az—xz)—'“=a"% (l-a'ZxZ)‘%z
N s {3.7.11.l. {3+ (r~1)4}

X 4" (a77a®)" =

g 3.7.11.. (47—1)
er4*

2 g .

/2.3.4....2+7=1) ,
G. T. of (1 +3x)'2=(—1)’< G >(3x)7=(—1)"

2.3.4.....(r +1) .
T 3a"= (- 1)"(r + 1)8"a". Since [r in
den, ca.nc-e—ls 1.2.3.400 7 =_|__ in the numerator.

Ex. 2. Find the general term in the expansion of (1 + .r)§
§.8:2. -1 -4... {5-(=13]
G. T.of (1+2)% = | o 3,

) 45214 B8]
=(-D |r><3’

NoTe.—In the above expression for the general term it will be observed
that we change all the negative signs in the numerator, and then prefix &
powerof(-1). Nowif a]l the factors-in the numerator are negative, (- l)T
is the prefix, andif any even numbers of negative factors are changod to
positive, (- 1) is still the prefix, but if any odd number of them is changed,
the sign of the product of the whole, i. e. of the general term, is altered, and

r
becomes ( -1)" **. In the expansion of (1 4 )¢ thevefore the sign of the
general term is ( - 1) or (-1)" 1, according as the number of positive
fuctors 8 even or odd. X

7+ 1
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r
In the expansion of (1 - 2)7 the general term will of itself involve ( - ]:)",
and this taken in connection with the above rendersthe sign of the general
term (- 1% =1 or (- 1)¥ *?=-1 according as the number of positive
tactors is even or odd.
ReEMARK.—In the above paragraph the general term merely expresses
any term after negative factors begin to appear in the numerator. -

3
Ex. 3. Find the general term of (1 ~x)*
3:-2:-T....[3-(-1)8}
|7 x5

El
G.T.of (1-2)° =

3.2-7 (51—8)
| rox b

Ex. 4. Find the 8th term of the expansion of (1 +x)~*
Since the genelal term = (r + 1)th term = 8th term, r = 7

4.5.6.7.8.9.10.11
Formula II. 8th term = ( = 1)7 ( 1.2.3.4.56.7 z*

= - 132028
Ex. 5. Find the 5th term of the expansion of (1 -z) ™ *
1.3.5.. {14 (4-1)2} ,
[4x 2%

Formula VII. 5th term =
1.3.5.7 35

= ———— 3% = —— gt

1.2.3.4x 186 128

Ex. 6. Find the Tth term of the expansion of (1 - z)1

11.10.9.8.7.6
R Y Jinnbich it b
Formula II. 7th term = (- 1) 12.5.45.6 &

\osen o B2 16
= XKe— = — 2% = ——
729~ 29" T 2a3”

:c)é

Ex. 7. Find the 6th term of the expansion of (I - x)%

7.2.28 . {T=(5-1)5) | T23..{(4x5)-1} |
Formula VIII. | 5 X 5 (55
7.2.3.8.13 182
5= 4 8

=ti232.5%6125 % 30625

Since there are two positive factors in the first expresslon,
The sigr is ( - 1) # = + 1, see note above.

Ex, 8. Find the llth term of the expansion of (o~ by :rz)l‘*l
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(‘1_'%+x2)l4]_= {a_% ¢! +a$}Jc2 )}]1]}&;_%‘l (1 ydb :c2>l‘fl"

Then by formula v the 11th term
po 173 -1.5. . {11~ (10-1)a) g
13 { Ilo < 41{0 }} (az xZ)lO

-1 11.7.8.1.5....(36 - 11)
=a” T x (DM ( |10x4 g ab z20
e 11.7.3.1.5.9.18.17.21.25
ca X~ 1%.3.4.5.6.7.8.9.10.1048576 2" %

.y 85085 . 85085 ., .
=a X = 368435456 ©F T T 268435456 %° %

280, Tb find the sum of all the coeﬁments of (1 +x)n,
lx lz—z + &c., is true

The Theorem (1 +z)* =1+
for all values of z. Letz = 1.
-on(r=1) a(m-1)n-2) .
Then(1+1)"‘—2”—1+7+ T 1.2.3 + &o.
sum of all the coefficient of (1 + z)”

. T —
281. TrporEM V.—The sum of the coefficients of the odd terms
in the expansion of (1 +x)™ is equal to the sum of the coefficients

of the even terms.

DemongTrRATION.—Put £ = — 1 in the expansion of (1 + z)™
nn-1) nar-1)(n-2)

T2~ l.2.3 Té&.

Then (1-1)"=0"=0=1~-
Sum of coefﬁciénts of odd terms — sum of coef. of even terms =0
Sum of coefficient of odd terms = sum of coefficients of

even terms.
Cor.—Since the sumsg are equal, each sum i3 evidently half
X3

of 2n, Art. 280, and is therefore = 5 =2 1

282, To find the greatest Yerm in the expansion of (a + x)8
a(n = 1)(n - 2|)....(n—r+1) ner g
r

The (r + 1)th term =
Q
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nn-1 -2 . (m=7+2 '
The rth term = (o )(n |'r)-1 ( )a""‘”a:"‘l.

Hence the (v + 1)th term is obtained from the rth by multiply-

n-7r+1 =z .
— Consequently the rth term will

ing the latter by .

n-r+l1 =
be the greatest as soon as —— —— - becomes <1.

That is as soon as (n~7+1) <tirorr(a+:c)> (n+1)=z.

That is as soon as 7 > (n+1)a+x' .

7 therefore must be the first whole number > (7 + 1) ;7

z
is a whole number, then two terms are equal,

If (n+1) ——

and each is greater than any other term.
If n is negative, r is the first whole number equal to or next

x.
greater than (n - 1) PR

Ex. 9. What is the sum of all the coefficients of (1 + x)°.
Here Art. 280, 2™ = 29 = 512.
Tx. 10. What is the sum of all the odd coef. of (1 + z)15.
Here Art. 281,27 1= 216-1=214 = 16384.
Ex. 11. Which is the greatest term in the expansion of (1+x)'3
when z = 3.
Here 7 is the whole number equal to or first greater than

-3 3 42
a3+1) 15 14 x 313 which i3 4, therefore the 4th term

is the greatest.

» Exerorse LXV.
Find the general term and the 6th term of :—
L(-2)% 2. Q+a)t 3 (1-2z)F 4 Q-2)}
5 (1+ :c)‘5 6. (1 +z)"3' . (—2x)1 8, (a+} xﬁ
Find the general term and the 5th term of:—
9. (1 -2x)* 10. (1 + :;:zZ)-%'
11, (a?+a-}% 12. (i-a-$)?
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Find the sum of all the coefficients of :—

13, (L+2)10 14, (14 2)7 15 (1-2)'3  16. (1 +x)'2,

17. Find the greatest term in the expansion of (1 + x)* when
T =2, '

18. Find the greatest term in the expansion of (l+a)-5
when z =3,

19. Find the greatest term in the expansion of (Za + x)2¢
when ¢ =4z = 1.

20. Find the greatest term in the expansion-of (1 +z)~7
whenx = £,

SECTION XIIL
NOTATION AND PROPERTIES OF NUMBERS.

283. Any number N may be expressed in the form of d, m+
d mt 4 &e +dy P+ 3,124+ d, 1! + d° where r s a positive
integer, and the coefficients 4°, d,, &c., d,_;, 4, are also in~
tegers all less than r, the radiz of the scale.

For let N be divided by the grealest power of r it con-
tains, and let the quotient be d,,, less of course than r, and let
the remainder be N;,. Then N=d, 7"+ N,.

Similarly let N, be divided by the greutest power of r it con-
tains, and let the quotient be d™-! with remainder N;. Then
Ny=d,. , ™ 1+ N,.

Similarly N, =d,_, 7% + N, and so on, and continuing
the process until the remainder becomes < r = say d, we have

Nedyrady_ L 7" 1+ o000 G+ d, 7%+ dy 7+ d.

Where any of the coefficients dy,, dy_1, &c., d3, ds, dy, d,
may vanish, i. e., become = 0, but none can be >or =7. In
other words, these coefficients,, or digits as they are called, may
have any value from O to 7 — 1 inclusive, and consequently in
any scale r there occur r digits, including zero. (See National
Arithmetic.) ’
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284, To express any number in any proposed scale :—

Let NV be the number and let 7 the radix of the proposed scale.
Then by last Art., the given number may be written as =
o™ +dp_1 7" 1+ &o. + dy 72+ d 1+ dy.

Dividing this by » we get a complete quotient with remainder
d®, the right digit of the number in the proposed scale.

Dividing this complete’quotient by 7, we get another complete
quotient with rem. d,, which is the second digit of the number.

And proceeding thus as long as we get a quotient divisible by
r, we obtain as remainders the successive digits of the number,
(Bee Arithmetic.)

285. To prove the rule for reducing a pure repetend to its equi-
valent vulgar fraction.

Let R = the given repetend, and let it contain r digits, and
let V = its value.

Then ¥ = -RR &c. (1). Multiplying each by 10" we have

10"V = R-RR &c. (11). Subtracting (1) from (11)

R
10" —-1"

But since = the number of digits in the repetend, 10" — 1 will
be as many 9's as there are digits in the repetend.

Repetend

As many 9’s as there are digits in repetend”

10V-V=R, VA0 ~1)=R .., V=

. V=

286. To prove the rule for reducing a mixzed repetend to its
equivalent vulgar fraction,

Let ¥ =the value of amixed repetend in which F represents
the finite part and R the repetend, and let F and R contain
respectively f and r digits.

Then V= -FRR &c. Multiplying these by 10/+” we have

10/*7V = FR-RR &c. (1). Also multiplying them by 10/,

107V = F-RR &c. (). Subtracting i from 1,

rar _ ) FR-F

(10 10/)¥V = FR - F. That is, V:m

But 10/ is unity followed by as many ciphers as there are
units in f; i. e., as many ciphers as there are digits in F, the
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finite part, and 10"~ 1 is as many 9's as there are units in 7, i.e.,
as many 9's as there are digits in R, the repetend.
Whole repetend minus the finite part.

. P= As many 9's as figures in repetend followed by as many 0’s
as figures in finite part.

287. TreEorEM I.—If from any number the sum of its digits be
subtracted, the remainder is divisible by the radiz of the scale
decreased by unity.

DemonstrATION.—Let r be the radix of the scale, and
let @ + br + ¢r? + dr® + &c. be the number.
Subtract e +d +c¢ +d + &c. the sum of the digits.

Then the rem. = br—b+crf—c+dri—d+ &c.=b(r-+c(r*-1)
+d(r* - 1) + &c., which (Art. 80) is evidently divisible by 7 — 1
ie., by the radix decreased by unity.

288. Tmeoreyx II.—If the sum of the digits of any number is
divisible (v - 1), that is by the radiz decreased by wunity, then the
number itself is divisible by one less than the radiz.

DemonsTrRATION.—For let IV = the nymber and S = the sum of
its digits, and since § is by hypothesis divisible by (r — 1) let
=m(r —~1). Then Theorem I, N - § is also divisible by -1,
et N~ 8 =p(r-1).

Then by substitution we have N—m (r~1)=p (r = 1)

< N=p(r-1) +m@ ~ 1) = (r - 1)(p +m), and since the
right-hand member is evidently divisible by 7 -1 .. also the left-
hand member N is divisible by r - 1.

Cor. In any scale such that » — 1 is divisible by 3, if the sum
of the digits of any number be divisible by 3, the number itself is
divisible by 3. 'For let IV and S represent the number and the
sum of itg digits, and let § = 3m and r —~ 1 = 3¢.

Then N~ 8 = p(r - 1) = 3pg .. N—3m =3pq .-. N =3(pg+m),

That is, IV is divigible by 3. ‘ :

Hence in the common scale a number ig divisible by 3 or by 9,
according as the sum of its digits is divisible by 3 or by 9.

289. TreorEM IL—If from any number the sum of the digits
standing in the odd places be subtracted, and to it the sum of the
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digits standing in the even places be added, then the resull is divis-
ible by the radix increased by unity.

DemondTRaTION.—Let r be the radix and let the number be
a+br+er? +drd + ert + &ec.
Add- a+b~¢c +d -e + &ec.
The result is br + b+ cr?—c+dr¥+d + ert—e + &c., which is equal
t0 6(r + 1) +c(r* - 1) +d(@® + 1) + e(r* - 1) + &e.
But 7+ 1,72 - 1,784+ 1, 7¢ - 1, &c., are all (Art. 80) divisible
by 7+ 1, .. 8(r+ 1) + ¢(r? +1) + d(@® + 1) + &c. is divisible by
r+ 1. .

Cor. Hence in the common scale any number answering the
conditions given above is divisible by 11.

290. TrEoREM IV.—If inany number the sum of the digits stand-
tng in the even places be equal to the sum of the digits standing in
the odd places, then the number is divisible by the radiz increased
by unity.

Let N = the nomber, § = the sum of digits in the even places,
and §, the sum of the digits in the odd places.

Then Theorem III, N+ § - §, is divisible by +1. But since
by hypothesis § = §,, it follows that § — §, =0 .. N is divisi-
ble by 7 + 1.

291. To prove the common rule for testing the accuracy of mul-
tiplication by casting out the 9s,

DrmonstraTiON.—It follows from Theorem II. that any
number in the common scale will leave the same remainder when
divided by 9 that the sum of its digits will leave when divided
by 9. Letthen 9 + c be the multiplicand and 95 + d be the mul-
tiplier. Then 81ab + 9bc + 9ad + cd will be the product. Now if
the sum of the digits inthe multiplicand be divided by 9, the rem.
s ¢, if the sum of the digits in the multiplier is divided by 9 the
rem. is d, and if the sum of the digits in the product be divided
by 9, the rem. is evidently the same as the rem., obtained by
dividing ¢d by 9.

292. TaroreM V.— The product of any three consecutive numbers
in the scale of 10 is divisible by 1.2.3, ie., by 6.

H
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DenmoNsTRATION.—Every number must be of the form of 3m
or 3m + 1, or 3m + 2, because every number when divided by 3
must 1ea.ve 0 or 1 or 2 as remainder.

. The product of any three consecutive numbers may be
represented by 3m(3m + 1)(3m + 2). But 3m is a multiple of 3
and of the other factors 3m + 1 or 3m + 2 one must be even, and
must therefore be divisible by 2, .». 3m(3m + 1)(3m + 2) must be
divisible by 1.2.3, i.e., by 6. '

293. TreoreM VI.—The product of any r consecutive numbers
is divisible by 1.2.3....1.

DemonsTraTION.—Let n be the least of the n‘umbers, and let
Mf—;—z)—-—(l"i_ D be represented by "P_ for all

.2.3.4....
values of n» and .

n(n+1)....(n-|;r—2) ntr=-1 -1
. Sl T T+ 1

Then.Ps =553 T -D T
n-1 (r=Dn(n+1®@+2)....(n+r~2)
=P . x—— 4 P, _, = 1.2.3....7 *

P, =, P, +,P .

Now if we assume that P, _, is an integer, or in other words
that the product of any (+ — 1) consecutive integers is divisible
by 1.2.3....7

Then gince as above shown P, =, ,P .+ ,P__, we have
nP, =P, + int., an integer for all values of » and 7, and writing
in succession 7 — 1, 7 — 2....3.2 for » we obtain
wrPr = 40P, + ini.,
naP, = ﬂ_gP, + int.

&e. = &e.
oL, =P, +int.
oP, = P, + int. Adding these equals and cancelling, we

b 1.2.3.4....7
have P =,P +sum of integers, but ,P, = ;5————=1.

cLP=1 + sum of integers = an integer.

Hence if P, | is an'intevger, then also P _is an integer. But
it has been shown Theorem V that ,P;is an integer therefore
also P, is an integer, and therefore also ,P; and so on, .. P, is
an integer, that is n(n + 1)(n+2)....(e+7r~1) is divisible by
1.2.3000.r,
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SECTION XIV.

INEQUALITIES, VANISHING FRACTIONS, INDETER-
MINATE EQUATIONS.

~ INEQUALITIES.

294. In addition to the axioms given on pages 16, 17,
the student will find it advantageous to remember the fol-
lowing propositions :

L. If the same quantity be added to or subtracted from two un-
equals, the sums or differences are unequal.

Thus ifa > b thenat+tc>b +c.

II. If two unequals be both multiplied, or both divided by the same
positive quantity, the products are unequal, as ulso are the
quotients. '

Thus, if a> b,.a — b is positive; and if m be positive then
also m(a - b) is positive, and .-. ma > mb; similarly
1 e a b
(@ —b) is positive, .-. e ™

IIL. If the terms of an inequality be multiplied or divided by any
negative quantity, or if the signs of all the terms be changed,
the sign of inequadity must be reversed.

Thus, if a>bthen ¢—5>0 or ~d>—g,0or~a<-b; soalso
if @ > b ard - m be any negative quantity, a — b is
positive .. m(a — b) is negative, ... m(b - e) is positive

1
».mb > ma or ma < mb. Similarly Y (b-a)izpos.
b a a b
o= 2> — that is — < —
m~ m m " m

IV. If any number of inequalities, all having the same sign of
inequality, i.e. all > or all <, be all multiplied together,
left-hand members by lefi-hand members, and right by right,
then the resuliing products will form an inequality with the
same sign.
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) ‘Thus, if a > b, ¢ > d, ¢ > f, then ace > bdf.

V. If &, b and n be positive quantities, and a>>b, then ar> bo and
Ha> b,

Thus, a > b, .. last article, a®> b2, .. ¢®*> b3, and so ons

Lar> b"‘, similarly Va> Wb
VI. If any number of inequalities having the same sign be added
together, the sum is an inequality of the sume kind.

Thus, if a>b, c>d and e>f, thena+c+e>b+d + f.

Note.—It does not, however, follow that if one inequality be sub-

tracted from another, the difference is an inequality of the same

kind. Thus, if a>b and ¢>d it does not always follow that a - ¢>0 - d,

since ¢ may be nearer in magnitude to ¢ than b to d; for example, although

7>5and 6>2, 7 - 6, is not greater than 5 - 2, i. e. 1 is not greater than 3.

VIL If the same gquantity or two equal quantities be divided by

each side of an inequality, the sign of inequalily will be
reversed.

15 15

Thus 6 ~ 3 but—5— < L ie. 3<5; so also if ¢ >bthen by
dividing m by each we have — <——.

~b - b*

Ex. 1. Shew that if @ be pos. and b >« thena+b >a,z—+b7‘

Since 2> 0 multiplying by ab we have 2ab>0 .-. alsod? + 2ab
+5%> a% + b% and Qividing each by (o + b?) (¢ + ) which is
1 a+b
positive since @ and b are both positive, we have payd < gy
and multiplying each of these by a —~ & which is negative, because
a-b - b
b> & we have, proposition 11, — s >[I,Z s
z6 + yb
Ex. 2. Shew that 22+ y* < i Yo - TP+ g
Because (Art. 134) 2zy < z? + 3% multiplying each each by
zy we have 2z%° < 2%y + a:y“,
And adding z% ~ gby'— x2y? oy’ + y* to each we have x* — 2%
. W - x4y + yt
+ Y mp oyt a2yt 1 <x4=—_a:“y+zzy g
and multiplying each of these unequals by % + 42 we have
6 + yb
e 2ty + 2ty =yt Lyt

.’52+y‘<
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Ex.3. Given3z -4 <2 +6

o 524+ 7>3x+13
“From Ist inequality, 22<{10.*. £<5. From 2nd inequality, 2x>6
<.x > 3 sz is >3 and < 5, i.e. is any whole number between 3
and 5. Hence z = 4.

to find x in whole numbers.

Exercise LXVI.
Find the limit to the value of z in the following inequations :

T T z x N
1. Tx-13<22. 2.?+'3—+Z+'€+1—2—7 9.

3. Tx - 1<3z+11. 4.2z+5>%z—10.
. ax a? bz b%

5. Given ?+bx—ab > 5 and 7—az+ab <7 to find the
limits of z.

6. Prove that ¢® + 1 is equal to or greater than u?+ a accord-
ingasa=1lora> 1.

7. Prove that ¢®+ 1 > a® + a when « is negative and numeri-
cally <1.

8. Prove that Ta- + % > 2 when 2 and b are both positive or
both negative,
9. Given }(z+ 2) + 1z < 3(z ~ 4) + 3 and i(z + 2) + iz
>3(z +1) +} to find the value of z in whole numbers.
10. Shew that o + b% + ¢ > ab + gc + be unless ¢ = b = c.
11. Shew that abc > (a + b — @+c-b)d+c-a) assuming
that @, & and ¢ are unequal.
12. Shew that (1 +a +¢®)? < 3(1 +a%+ a*) unless a = 1.
13. Shew that ab (a+b) +bc (b + ¢) + ca (¢ +a) > 6abc and
< 2(a® + 6% + ¢®) when q, b and ¢ are positive quantities.
14. If 2% = ¢® + b% and % = ¢? + d% shew that 2y > ac + bd.,

15. If a > b shew that +/(a + by(a - b3 +4/6(2a =b) > q.
16. Shew that (@ + b + ¢)* > 2%7abc and < 9(a® + b + ¢%).
17. Prove that (a + b)(b + c)(¢ + a) > Sabe.

a? + 34z - T1 .
18. If = be real prove that iz —q cal havg no value

betwen 5 and 9.

2 —n+1
19. Shew that I lies betwen 3 and 1 for all real values
of n. )
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VANISHING FRACTIONS.

295. A vanishing fraction is one which assumes the
0 A s

form of — when some particular value is given to some

0

pafticular letter in both numerator and denominator.

a? — b?
Thus, =i is a vanishing fraction when b = a, because then
. 0
it becomes = o

296. Now it will be readily seen that in the above ex-
ample, and indeed in all others, the peculiarity arises from
both numerator and denominator having a common factor,
which factor = 0 under the assumed conditions. Thus, in
(a + 0)(a—b) and

a—0 ’
striking out the common factor ¢ ~ & which'= 0 when b <o
the expression becomes a + b or 2a since b = a.

297. In order therefore to find the value of the fraction
or more properly-the &imit to its value, we endeavour to
find out the common factor involved, and casting it out, the
result required is obtained by a simple reduction.

the example givén above we have

4 — gt
Ezx. 1. Find the value of s when x = a.
OPERATION.
zt—at (z-a)(z+a)(@@®+at )
Here = ( X ) ) = (z + a)(z* + a2)
z-a z-a

Now making = = a we have thus = 2a x 2¢* = 44
™ — g™
Ex. 2. Find the value.of~>——~ when z = a.

OPERATION.

a — g 3 L -4
=gM-1 4 gzm-2 4 g2 g3+ a2 2™~ % 4 &c., tom

Here
L -
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; ; ~gm-1 4 gm-1
terms and when x = ¢ this expression becomes = ¢ +a +

am-ly g™l &l oo, to m terms = ma™ "1,
x - a +4/2ax ~ 2¢*
Ex. 3. Find the value of — ———— when z = a.
Afa? ~ a?
OPERATION,
:c—a+;\/2a(x—a) Wz — a{«/x-a+1/2a}
Here ——————
VE-D)(E +a) Jz—aiz+a
~ Nz ~a 442 _ Wi-a+42a B J2a
Jzta Jat+a 32a
Exercise LXVII.
Evaluate the following vanishing fractions:
1-2™ ) z¢ - ab ]
1. -z Whenz=1. 2. Zy g2 When 2z =a.
1
3 z —adst b x2+2x—35 b 5
-~z -g Vhenz=a. 4 5y When z =
5 2%+ fx— 8 . s z“+bz-—axz—ab b
CEogaa 1 TORTT R 6 T g YRR e -

1]
azx?® + ac? - 2acx

T B2 Zher 4 B YReR T = C.
ar — z2
§ W T T e S R T = e

8 + 2ax® ~ oz — 2a®
9. 2 — 13a%z 4 1245 WHen T =a.

INDETERMINATE EQUATIONS.

298. It has been already stated, Art. 122, that when
there are two or more unknown quantities involved in a
single equation, the number of solutions is unlimited,
and the equation is indeterminate.
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Thus, 82 + 2y — 11 is an indeterminate equation because the number
of values which may be assigned to 2 and y is indefinite. This number
may, however,be decreased : 1st by rejecting all fractional values; 2nd,
by rejecting all negative values; 3rd, by rejecting all numbers that are
squares or cubes, &c.

299. TaeoreM I.—The indeterminate equation ax + by = ¢
- admits of at least one solulion when a is prime to b.

cFb
DEMONSTRATION.—azZ + by = ¢ .. x = y ;and substituting in

succession 0, 1, 2, 3....(a¢ = 1) for ¥, ¢ being prime to b,
the several remainders must necessarily be different. For if any
two values of y asv and o’ give the same remainderr, ¢ and ¢ being
.the quotients, then ¢ + bv = ag+rand ¢ + bv' = ag’ + 7. There-
fore + bv T b’ = a(q - ¢), that is b(v ~ v) = a(¢ - ¢') or
b - %) = a(g— ¢); that is b(w-7) and b (' — v) are
divisible by a without a remainder. But by hypothesis b is
prime t0 @ ., » — v’ is divisible by @ which is impossible, since
vand v’ are both by hypothesis less than a, and consequently
v~ and v/~ v are less than a. Hence the remainders are all
different and their number = @ and each is a positive integer less
than @, consequently one of them must = 0, .. = i3 an integral
number for s certain integral value of y less than @, and these
integral values.of z and y satisfy the equation ax + by = c.

Ex. 1. Find integral values of z and y which satisfy the
equation 5z + 23y = 170.

BOLUTION.
Here z = }—70—;@ and substituting in succession 1, 2, 3, &c.,
for y and we find that 5 will do.
Thus,l.m;&:%: 11:1:.'.:1:= 11 and y = 5.

300. TamorEyM II.—The equations ax + by = ¢ cannot be solved
in. positive integers if a and b have o divisor which does not also
divide c. )

DemonsTrRATION.—For if it be possible let ¢ and & have a com-

mon meagure m which ig not also a measure of ¢, and let & con-
tain m, p times, and let b contain m, q times. Thenaz +dy=cis
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¢
equivalent to pmz + gmy = ¢, or pr gy = . And since bothp
c -
and ¢ are integers, and — is a fraction, it follows that z and ¥
m

cannot both be integral.

Note.—If @, b and ¢ have a common measure the equation may be
divided through by this, and thus ¢ may be made prime to . In the fol-
lowing articles this is always assumed to be done.

301. Given one solution of the equation ax + by = ¢ in posilive
integers to find the general solution.

Let 2 = 8 and ¥ = 4 be one solution of the equation ax + by = c,
LA Ak

b g~z

a
Now since 7 s in its lowest terms, a being prime to b;

Then ag +by=c=ar +by ...a (B-x)=b (y—=) .~

. whatever multiple y —  is of a the same multiple is g8 — x of
b. Lety -~ = at, then 8 — z = bt where #is an integer, since we
are only to obtain integral values.

Therefore y = + at and » = 8 - bt is the general solution.

Similarly writing — b for b we obtain for the general solution
of ax —by=c,z=8+btand y =y + at.

Hence if one integral solution of the equation az { by = ¢ can
be’ detected, the others can be readily found by giving different
integral values to f in the equations x = 8 ¥ bt; y =y +at.

Ex. 2. Given 3x + 4y = 39 to find the positive integral values
of x and y.
SOLUTION.

Here x = 1 and y = 9 ig evidently one solution.
Thenz=1~4tand y=9+ 3t Nowlet =<1, then x =35,
y=6,lett=-2thenz=9,y=3.

Nore.—Since the values of z and y may be found by substituting for ¢
in the general solution z = 8 ¥ b, y= ¥ + az, successively the values 0,
11, £ 2 %3, &, it follows that the values of z and y taken in 01‘(161"
constitute two arithmetical series, and consequently that as soon as two
contiguous values of each are determined, the rest may be written at once.

802. TuzorEM.—The number of positive integral solutions is
limited for ax + by = ¢, but unlimited for ax — by = ¢.
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DenoxnsTratioN.—I. By Art. 301 it appears for ax + by ¢ = the
general solution is = 8- bt and y = v + at where z = 8 and

' ¥ = yis one solution and ¢ is any integer positive or negative.
Now since by hypothesis = and y are both to be positive, it is
manifest that 8 ~ bt must be positive, that is bt must be less
than 8, that js ¢ is limited to integral values which are less than

3~ Hence the number of positive integral solutions of ux + by

= ¢ is restricted.

II. Similarly in the general solution of az - by = ¢ we have
z=B+btand y =y + at where z = 8, y =y is one solutionand ¢
is any integer positive or negative. Now since by hypothesis z
and y are to be positive, B + bt and v + af must be positive and
since B, b and vy are positive it is manifest that £ may be any
negative integer such that bt <8 and at <y and that # may be any
positive integer whatever. Therefore the number of positive
integral solutions of ax — by = ¢ is unlimited.

303. In addition to the method indicated in Arts. 299,
301, for finding the values of the unknown quantities in an
indeterminate equation, the following method may be
studied with advantage.

Ex. 3. Solve 4z + 13y = 123 in positive integers.

SOLUTION.
Divide by the least coefficient, which in this case is 4, then

I+3y+% =30 + 2. And since = and y are to be integral
3=y ... \

T+ 3y - 30 is integral and .. —— which is the equal of

Z + 3y — 30 is integral.

Let ——; Yo t, an integer, then 3 —y=4f .. y = 3 — 4L,

Substitute this in the given equation for y, and 4z = 123 -

- + 52t
13 (3-4t) - 2 =122 9;9*5”: 84 -t
Hence « = 21 + 13¢
y=3-4t

Toket=0; thenx =21 +0=21,y=3-0=3.
Taket=-1; then2=21-13=8,y=3+4="T.
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Nore.—These are the only positive integral solutions, because as y is to
be a positive integer, 3 - 4 must be a pos. int. .-. 46<(8 .". ¢t < § thatis ¢
may be any positive integer which is less than 3, but 0 is the only positive
integer less than } .-, £ cannot be a positive integer greater than 0. Similarly
since x must be a positive integer 21 4 13¢ must be a pos. integ., i.e. ¢ may
be any negatlve integer which will not make 21 - 13¢ megative, i.e. 132
5121 ori <2r3 i.e, ¢ when taken negatively must be an integer less than
T3 or in other words can only be - 1.

Ex. 4. Solve 3z - 17y = 20 in positive integers.

BOLUTION.
2 %
Divide by the least coefficient, 3. Then z - 5y — ?y =6+ 5’
2+ - 4+ 4y, .
<« —g is integral, .. multiplying by 2, —3— Is integral,

l+y l+y . .
or 1 +y+ —— is integral, .-, T I integral = ¢, say,

3
Then I + ¥ = 3% and y = 3¢ - 1. Substitute thisin the given
. : 20 — 17 + 51%
equation and 3z = 20 + 17 (3t - 1) "y =17+ 1,

Hence x =17t + 1 z =18, 35, 52, 69, 86, &e.
y= 3t—1§ “y= 2, 5 8,11, 14, &e.
According as =1, 2, 3, 4, 5, &c.
NoTz.—We multiply here by 2 in order to render the coefficient of Yy

divisible by the denominator with a remainder 1, and this we seek to do in
all cases.

Ex. 5. ‘Solve in positive integers 5z + 19y = 207.
SOLUTION,
4y~ 2

4
Here dividing by 5 we have x + 3y + ?7] =41+ % . is

. - 16y -
integral, .. multiplying by 4 we have y5 integ., .©. 3y = 1

Y-8, . y-3 y-3
+ =5 is integ,, .'.—5—1s1nteg Let————ttheny 3 =5t

and y = 5t +3. Substitute this value of ¥ in the given equation and
we get 5z = 207 = 19 (5¢ + 3) = 207 — 57 — 19 x 5¢.
wx=30-19¢
y=5f +3 }
Now when ¢ = 0 we have z = 30, y = 3,
Whent=1wehavex=11,y=8.
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*. The pos. int. solutions are = = 30 or 11.and y=3or8.
Ex 6. Solve in positive integers 41z + 68y = 2789.
SOLUTION.
e : 2T 27y~ 1
Dividing by 41 we have z + v+ A 68 + RS Sl is
41 41
811 3 8ly -3
int. ; multiplying by 3 we have il int. .. 2y ~ Zl is int.
82y - 81y + 3 +3 +3
" i that is y41‘ is int. Let =5+ y —ttheny 41¢-3.

Substitute this value of y in the given equatwn and
41z = 2789 — 68 (41¢ — 3) = 2789 + 204 - 68 x 41¢.
2993 ~ 68 x 41¢
=% =73 - 68¢.
Hence x = 713 — 68¢ z=5
y=41t-3 } “y=38.
It is evident that this is the onmly int. pos. solution, for
%73 — 68t must be pos. int., so also must 41¢ — 3 .-. 68¢ < 73 or
t<%5g ; also 41¢>> 3 or t>#; and the only positive integer
between %%, and % is 1.

gwhen,t: 1

NoTr.—The student will not fail to observe the artifice made use of, in
the 2nd line of the solution, to avoid using a large multiplier, and the
trouble of searching for it, since it must be such as to repder the coeffi-
cient of y divisible by 41 with a remainder 1.

. 8z — Ty +2z =16 { tofind the positive integral

£x. 6. Given 5z + 3y — 42 = — 4 § values of z, y, and 2.

SOLUTION.
Multiplying the upper equation by 4 and adding the two
together we have

17z - 25y = 60, and dividing by 17 we get z - y - ‘8%=3+1;97
B 8"{1_';_'9_is integral.

So also is 16_?/1_""7 18 and g0 also isy - A16y1+718_ integral.

%8 is integral = ¢, say, then y = 17¢ + 18.

Then 17z = 60 + 26y = 60 + 26 x 17¢ + 450 = 510 + 25 x 17¢,
,®=30+26fand ¥ = 17t +18.
R
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Hence z = 5, 30, 55, &c., and y = 1, 18, 35, &c.

But = also has to be positive and integral, and therefore the
only values of z and y which are admissible are z = Sand y = 1;
and consequently z = 8. '

Ex. 7. What is the least number which when divided by 4, 6
and 7 shall leave remainders 1, 3 and 5 ?

SOLUTION.

Let the number =4x + 1 =6y + 3="z+5. Then 4z ~6y=2.
¥ y+1,
S@2r-3y=1cx-y =] 1. I int. = m, say
Then ¥ = 2m = 1.

Also (1) 6y = T2=2, thatis 12m—-6-T2=2 .. 12m - Tz =8

5m 1 5m-1, 156m - 3,

Som=2 + g = 1 +—7 7 is int. .-, —7—13 int.

m—B- .
-—77—13 int. = ¢, say, then m = 7¢ + 3.

Hence y = 2m ~1=14{+ 6 — 1 = 14¢ + 5.

Gyra 31 apels 1
FETY TR¥tTRT T g tpTilits
By~2 84t+30-2
Andz= = —— =24,

Consequently =8, y =5, and z = 4.
And the required number = 4z + 1 = 33.

Ex. 8. In how many ways can £80 be paid in sovereigns and
guineas ?

SOLUTION.

a

Let z = number of sovereigns and ¥ = number of guineas.
Theni. n shillings 20 = + 21 ¥ = 1600 .-.  + y +2—y = 80
o .

..y = 20f, And 20z = 1600 - 21y = 1600 — 21 x 20¢.
ooz =80 - 21%.,
Thenj ince 80 « 21 must be pos. and int. ... 80 must be

. cannot exceed

greater han 21#, and since 21¢ <" 80, ¢ <8—0 and .
21
3; and consequently there are only three ways of payment.
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Exercise LXVIIIL

Solve in positive integers.

1. 4x + 3y =11 2. 5z - 13y =11 3. 2z + Ty=159
4. bz +1ly=26 5. 9z — 1y =2 6. 13z + 21y =89
7. 12z-4ly=—-17 8. 3Tz 4+ 43y.=357 9. 22x - 43y=6 -
10. Tz + 255 =177 11, 99z ~ 160y = 335 12. 17z.— 4y = 22.

Find a positive integral solution of the following :

13. 21—:—3y+4z:29% 14. 4z—5y—6z=17§
3z +5y-32= 9 2z +y + 11z = 47

15. In bow many ways can the sum of $697 be made up by
bank notes of the respective value of $3 and $5?

16. In how many ways can $27.30 be paid in twenty-five cent
and ten-cent pieces ?

17. What is the simplest way for a person who has ouly
guineas to pay £7 10s. 6d. to another who has only half
crowns ?

18. Find two integral square numbers whose sum is a square.

19. Find two integral square numbers whose difference is a

. square.

20. A basket of apples is known to centain between 90 and
100, and it is found that when they are counted four at a time,
there are two over, and when counted: six at a time there are
also two over. How many are there in the basket ?

21. Find the least integer which when divided by 6, 8 and
10 respectively shall leave remainders 1, 5 and 3.

22. How many fractions are there with denominators 10 and
15, whose sum is 23? .
’ 23 A person bought 50 barrels of fruit, consmtmg of apples,
pears, and cranberries, for $250 ; the apples cost $2 per barrel,
the pears $5 and the cranberries $4, how many barrels weré
there of each ?

24. How can a debt of £100 be paid with £5 notes; £1 note
and crown pieces ?

25. Divide 25 into two parts, one of which may be divisible
by 2 and the other by 3. L3

'26. Divide 24 into three such parts that if the first be multi-
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plied by 36, the second by 24, and the third by 8, the sum of
the three products may be 516. .

27. Find a perfect number, ¢. e. one which is exactly equal to
the sum of all its divisors.

28. What is the least odd integer which divided 10, 12, 14
shall leave remainders 7, 9 and 11 respectively ? |

29. A person buys 100 head of cattle of three different kinds
for $500. For.the first he gives $50 a head, for the second $30,
and for the third $2, how many were there of each kind ?

MISCELLANEOUS EXERCISES.
. Simplify 3 (1= ©)} - § (33 (92 - 6)}).
~2. Prove that (z%+ 1 ~z"%)2 - (22 -1 -z ~#2= 4 (z?~z"%),
~+3. Find the G. C. M. of ¢®+ 2ab + b% o+ %, a*—b® and
& + 262 + 2ab% + b3, ’
z-b z-a b?
¥. Find the value of —— — —— where z = ——.
3 b b-a
’ . Givenx+y+2=3(z+2z~-y)=5 (z-x-9) =15 to find
the values of x, ¥ and =z.
6. Find the value of 53/135 — 3{/40 + 28/625 — 4¥320-
7. Given 2%+ 1 = 0 to find the values of z.
8. If @: bibic,and b:citc:d, show that
a+bib+eiib+cictd. ’
9. Shew that if aicii2a — b:2b - ¢, then will a, %b‘and 1c be
in harmoniec progression.
_ s N2
10. In the series ¢ + a <1 ——) (LR (1__> n
P y2 .
T ,
+a (1 - ;—) % + &c., the sum to infinity is p times, the sum of

the first # terms.

S 5 30 S
2 2 23 +a’xr® +a¥
T X . .
11. Reduce ® = — and T 3.1 3 to their simplest
& z® +a%z% + o3
form. zi-x *?

12, Find the cube root of 343z6 - 44125y + TTTxby? ~ 53128y
+ 444yt - 144xys + 64yS,
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13. Simplify a2m~% x g2n-p » z%-m and also ab P-4

be ca ' ¢
X -a—:rq‘"x T z’ P,
. 14. Find the product of 222+ y + 1z 22 jnto 227 - Y+ iz~ %2;
of 22+ gz + b2 into 2% — az + b% and of ™ + yP into z™ + 14,

) 34/5 = -
15. Simplify 85 - 2y3 y W5
3W/5+2¢/3 345243
. 1
16. Find the value of - 1
2z + — T

3$+4—x

17. Find the value of
1 1 1 2z + 1

T@r-10) 4d@z+D T 2 @ -1 +1).
'18. Find the values of z in the equations
’ a ¢ a—c
(I)z+a T z4+c xHa-c¢

@ V@ -.'11)(::: -2+ V(lz -3)(z-4)= 12

=0,

(M) 297 15T 27+ 22— 35~ 2% — 13z — 48

b+
19. If m = 6-:—2, and b be the G. mean between a and ¢,
a* ~ bz. )
ther: e will be the H. mean betweer 7 and w
ob. 4 ana B can together perform a piece of work in @ days,
which 4 and C can finish in & days, and B and C in ¢ days.
Find the time in which each can perform it separately.
21. Find the values of
aZ . bZ ) CZ
@-0@a-09 g-HG-d G-9E-0°
. a? + 4h% — 9¢%\ %
20 Shew that o ~ ( ——— ) =
4b
(e + 2b+3c)(a+ 2b — 3e)(a — 20 + 3c)(20 — a+ 3¢)
16b%

7
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23. Find the two factors of a* + 0%, and the two factors of
£ _ 2h% 1 bt
a* - a%” + b ‘4 "

z+Yy+ 7

24. Simplify — 3

x+y+ )

25. Find the I. c. m. and also the G. C. M. of z? + 3zy — 2847,
z? — 2zy ~ 8y% and z% - Sxy + 4y

26. Find the general expression for the sum of a geometrical
series when r = + 1.

217. If by the notation @, we represent the ¢th term of a series;

then in an /4. series (p ~ ¢)(a, ~ @) = (t —n)(a, — a,) and in

\p - a,\m—n )

a G. series (a_>p 7. <—"> . Required proof.

n aq
28. In comparing the rates of a watch and a clock, it was
observed that one morning when it was 12h. by the clock, it -
wag 11h, 59m. 49s. by the watch, and two mornings after when
- it was 9h. by the clock it was 8h. 59m. 58s. by the watch. The
clock is known to gain one ténth of asecond in 24 hours. Find
the gaining rate of the watch.
"29. Sum to 12 terms the series 8 + 12-+ 18 + &c., and find
the series both .4 and G, whose 3rd term is 4, and 6th term 32.
30. The receiving reservoir at Yorkville is a rectangle 60
yds longer than it is broad, and its area is 5500 square yds.
‘What are its dimensions? -
$t. Divide (1) 25 — 22%°+ y0 by 2% - 22y + ¥ by the method of
factoring.

@ Tz + bxt — 42 + 32 + 9 by 2® + 2z ~ 1 by
Horner’s method.

(m) a™ —z-"™byx -2x-1 to five terms. Also find
the 7¢h term, and if m be an even integer,
prove that the complete quotient can be
separated into two parts of which one is 2™
times the other.

32. Find the square root of 37+ 204/3, and of 4z + 24/4z%Z - 1.

33. Find the fifth term of the expansion of (a% ~ x~%)-8,

34. In how many ways can a party of seven men be formed
out a company of 28 ? ’ '



MISCELLANEOUS EXERCISES. 255

35. Find the square root of x* ~ 4z 4+ 9z -%-12x-2 10 by
inspection. ]
36. Find the three cube roots of unity, and show that their
sum is equal to the sum of their squares.
37, Find the values of x and y in the equations :
T oy r—a y-b
@gry=l=— +
() =% = 6z + 4y
y? = 4z + 6y
38. 4 and B sold 130 yards of calico, (of which 40 yards
were A's and 90 yards B's) for $42. Now .4 sold for §1, one-
third of a yard more than B sold for the same sum. How many .
yards did each sell for $1?
39. Insert five H. means between } and 4.
40. What is the difference between an 1dent1ty and an equa—
tion, and to which of the two does
a+c b+ T +c
. (a-d(z- D" @-b(z~b) (z-a)ya-
41. Solve the equation &/z +l44z=1.
42, Simplify ab - [(a + ¢) b - 3ac - {ab - 2¢ (a - b}
43. Simplify
Ba?- jay - Yyt - mz + oy + (320 oy = £5YFpT - qy)
(x? = 2z — 48) (2% + 3z — 28)
(2% + 2z — 24)(2% — 3z — 40)
45. Find the value of z in the equations

b) ]loelong’l

44, Reduce to its lowest terms,

z a b 1
OG- DE-HTE-bE-a G-DC-2)
@ 3@+2) <3 @z-p=1
46. Find the value of z, ¥ and 2 In the equations
2 ray+y?=3T7; P+yz+22c 28, and 22+ 22 +22=19,

47, Find the least possuble value of 20LZ + 2a%b + a?h® ~ Zab.v
+b%? for all real valaes of z.

48. Pind the square root of 267 + 9z = 67 - 4z4P + 4(z?P-31~ 21’)+6
by inspection.

49; Sum to 8 terms each of the series 33 + 6% + 9} + &¢., and
8lo%— 54210y + 36x3y? ~ &c. Also find the sum of the latter
geries to infingky when z = 2y =1,
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50. Find a geometrical series such that the sum of any three
consecutive terms may be -4 that of the succeeding six terms.

51. Simplify a™™ -/ g™MP-m) ghm-n),

b+ b4 2tz +l

52. Reduce por S e S to its lowest terms.

53. Solve with respect to x the equation x? ~ Zax — 2bx — 342
+ 10ab - 3b% = 0.

54. Given 4/y — 4/y — @ = 4/20 — x, and also IR Véo_——ac
112 1 2 to find the value of = and y. ‘

55. Find by inspection the product of (z2 — 2z + 3) by

(z? +2z +1),and (z*+ Zny% +39%) by (xt - Z:v:"’y32 + 7).

56. Solve the equation z* + 4 = ¢®, and =¥y + xy? = 5%,

57. A company at a tavern had $35 to pay; but before the
bill was paid, two of them left, and in consequence of this the
remainder had each $2 more to pay. How many were there in
the company at first?

58. Find the ninth term in the expansion of (u% + b%)4.

59. Find by inspection the coefficients of z® and z1 in the
expansion of (1 + ax — $ax? - 2a%z% ~ 25 + Jaz® ~ 3027)2 7 .

60. Find two numbers such that the greater shall be to the
less as their sum to @, and their difference to b.

1 D241\ (224 ¢ 24
61. Reduce 2 + — 1 and also ( o >(.___>
-1 EAR A
34—~
to simple quantities. | z—1-

62. Find the value of the expression

z+6 z -4 x+ 2
2222 -35 T H Y10z + 2l - z?— 2z ~ 15

2 2 T

63. Find the square root of gz- + % - (; + %) + 27 by inspec-
tion, and also of 2 ~ 22% + §a% — L 2 + 1.

64. Multiply (2™ - 24™) by (@™ - y™), and also (m"‘2+ ax™ - b)
by (& - azm +.b).

65. Divide (12z% - 192) by (3z ~ 6), and (20a%6 — 22437
+ 11a%h® — 3ab9), by (4a2® - 2ab? + b%). The former by factors
ing, and the latter by the method of detached coefficients,
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66. If four quantities are in continued proportion, the first
has to the fourth the triplicate ratio which it has to the second

67. Find the integral values of = which satisfy the inequality
%10z - 16.

. 18-z -5
. 68. Given —————=— = 3 to find the value of z.
13+ 24/x -5

69, If —Z— be any fraction whatever the sum of it and its recip-
rocal is greater than 2. g

70. Shew that the sum of the cubes of any three consecutive
numbers-is divisible by three times the middle number.

71. Divide (ab — 4a* + 7a¢® - 5a + 6) by a®+ 5a — 4 synthe-
tically. Also divide (2% + -6 ~ 2) by (z® + -2 ~ 2) by inspec-
tion, '

72. Find the continyed product of
{:v(%)n-l —o B } (.7:% +a%) (z% +a%) <. .. &c., to n factors.

e s 1 L r—-4

8. Siwplify 15 3y~ Ta@w £ 5) " aF+ O

14. Find the product of (322 + jzy +%y") into (322~ dzy + 3y,
and of (Za:i + 3y%) (2.’1:% - 3y%) (470i + 6z%y + Qy%) into the
quantity (456% - 6x%y’?‘ + Qy% ) . .

5. Given 2x4/3 ~ 8ys/ 2 = 6 and 3z4/ 2 — 2y4/ 3 = 54/ 6 to find
the values of z and y.

76. Prove that if the series 1 + 3 + 5 + T+ &c., be continued
to any even number of terms, the sum of the latter half is three
times the sum of the former half. -

a b
7. If the 4. mean between two quantities be -+ +2,
a b X a b
and the H. mean be Tro-% then the G. mean will be - -
18, It @, b, ¢, be in H. progression, then will
. 1 1 1 1

—_—— — = ——
a

¢c "b-a + b-¢
x
9. Ifr+s+¢ =v, where r is constantand s oc ?and t oc Tyl

and when z =y =1,»=0, and whenz =y = 3, v = 8, and when
#=0,v=1, find v in terms.of z and y.
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80. Solve with respect to x the equations
@ {(a+d) z+a-bl(a+bd)z+b—a}=4ab
ax b b
() Tt

81. Find the continued product of (a = b)(a + b)(? +0%) + &e.
to n + 1 factors. .

82. Divide z* - (¢ + b + p)z® +(up + bp - ¢ + g)a% - (ag + bg ~
cp)x — gc by 2% - pr + g synthetically.

83. Find the square root of 2%z8 + 2abz* + (b%+ 2ac)x?+ ¢*x -2
+ 2be. '

84. Slmphfy

1 .
. {(a: ta)(x-b)t(zx—-a)(z+ b)} {(a:+a)(a:+b) (x— a)(z—b)}
-85, Find the G. C. M. of x* + p%x?+ p*and x*+ 2pz® +pic* — pt.
- 86. Find the L. ¢. m. of 23(x% +« -~ 20), 34(x®* - = - 30) and
43 (2% — 10z + 24).
817, Soélve with respect to x the equation
(@ -1)x?-2(ab+ 1)z +0%2-1=0.
88 Simplify the following expression
Brzt+2@+z ) -1\?
-z 3-2x-2Y " <12+1>

89. Prove that if to any square number there be added the
square of half the number immediately preceding it, the sum will
be a complete square; viz., the square of half the number imme-
diately following it. '

90. A cistern is furnished with two supply pipes .4 and B,
and & discharge pipe C. "If .4 and C be left open together for
three hours, and C be then closed, the cistern will be filled in
an hour more ; if B and C be left open together for five hours and
C be then closed, the cistern will be filled in 1% hours more ;
or it canbe filled by leaving .4 open for 13 heurs, and B } hour.
In what time can the cistern be filled or emptied by .4, B, and
C, separately.

91. Find the G. C. M. of 225 + 22* - 52° + 422 - 9, and 3z%

+ 328 - 1022 — z + 3.

92. Find the L c. m. of

apx® + (ag + bp) x + bg, and aqac2 - (ep - bg) = = bp.

Also of (=* - zy); (x’ -y ) and (zy +47),
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93. Solve the equations - s
T~20 224+ 6a x4+ 2
O3 =7 ~T1
z-1 z+1 3 2
e R s

(D) 4/ +4 +4/22 + 6 = 4/3x + 34
(xv) #%(y - 1) + 3y(a? - 1) = 4/2® + 3y and 2% = 5
94. Form the equation whose roots are 2, 3 and — 2 + -3
96. Simplify a ~ (@ ~m) —{ = (= {—a~ (~m~{- (m=-a)D}}
96. Resolve a% + b*® into its component factors.
97. If 4., G. and H. be the arith., geom, and harm. means
between two quantities ¢ and b, then will
H (H-a)(H-b)
a° 1+ - yap) .
98. Find the time between two successive transits of the minute_
hand over the hour-hand of a common clock.

99, The opposite sides of a rectangle are each increased by a
units in lenfth, and the other two sides decreased by b units,
and the area is found to be unaltered; but if these changes in
the sides had been respectively ¢ and d units, the area would
have been diminished by e square units. Find the sides and
examine the nature of the problem when ad = be, and be + ¢ = cd
' z = a) . r—2a+bd

100. Given <z— = sTara to find .x.

-b

101. Divide 5z° - 3z%+ 1 by «? = 2z + 3 by Horner's method,
exhibiting both-the complete remainder, and the continuation
of the quotient in descending powers of z. :

102. Find the G. C. M. of 2% + zy% — 3% + 3y* - 9z + 9y ~ 2%,
and z% + 2zy? + 2% + 4zy - 5y°+ 2z — 2y — 33%, and examine what
the result becomes when y = 1.

103, If @ oc 4/b and ¢® oc b° shew that ac oc b2

104. Resolve a*® + m!? into four elementary factors.
m-(p-g? PP-(q-m)? ¢-(m-p)

+ —+ 5 to
m+q)-p* " (mtp) - @+ -w
its simplest form. :
'106. Given z“f'l + 47 = 80 to find z.

105, Reduce
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107. If = be real, prove 4hat 2% — 8z + 22 can never be less
than 6. :

108. If a oc d% b% oc d* and ¢® oc inversely as d, shew that the
product abc varies as if each of the three varied directly as d.

109. Shew that the sum of n consecutive odd numbets begin-
ning with 2m + 1 exceeds the sum of the first n odd numbers
beginning with unity by twice the product of ;m and =.

110. If the roots of the equation ax®+ bx +¢ =0 are in the

. ¥ (m+mn)?
ratio m:n, shew that — = ——+~,

ac mn

a* (b2 - ¢%) + bt (c?—a?) + ¢t (a®-0%)

111. Prove that E BT (c= @)+ E(a D)

(a+b)(d + ) +¢) )

- 112. Every square number is either divisible by 3 or becomes
so by the addition of 2, and the product of any three consecutive
integers, the middle one of which is odd, is divisible by 24,

113. Prove that{n (n+ )P - {(n—-1) n}2 = 4nb..
(ab + 1) (22 + 1) z+1
(@y+1) (@ +1) ~ y+1
l1+a 1+5b

:c=1_aan y=_1—b

114. Find the value of

when

115. Divide synthetically 7z% + 21z%y + 352%2 + 35a%?
+ 21zy* + Ty by x +y, and the result by z2 + xy + 32

116. Employ the method of detached coefficients to find the
G. C. M. of 18z*+ 92% — 1722 ~ 4x + 4, and 82% + 42% ~ 622 —
z+ 1. 3 )

117, Resolve the quanties given ic the last question into their
elementary factors. :

118. Reduce to a single fraction

3 7 3 1 1-z
1-2¢ T8(-n '8 A+~ 10 ¥
119. Is the following expression an identity or an equation

5a 3a : '
x+7 < __é>+a:c=(:c+5a) (z-3a) + 113 ?
If a = 1, how then?
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ac

120. If ¢, b and ¢ be in H. progression then will —— a+b Tate
q c lsob " db+c cta a+bd
and —— also e in H. progression an Ty and ——

will be in 4. progression.

121. If a oc b and ¢ oc d then will ad oc be.

- 122. If there are two circles each of radius 3, and four others of
radii 4,'5, 6, and T respectively, shew that they can all be
made into a single circle of radius 12, assuming that the area of

" a circle varies as the square of its radins.

123. Given the first term of an .. series= 11, and that the sum
of the first 3 terms = the sum of the first 9 terms, to find the
series.

124, Given any two terms of a G. series to construct it.

125. Find the G. series whose 1st term =3, 5th term = 1§,
and sum of first five terms = 254

126. Prove that the latter half of 22 terms of an /. series ic
one-third of the sum of 3n terms of the same series.

127. If §' denote the sum of n terms of the series 1 +5 +9 + &c.
and §, denote the sum to (n— 1) or ton terms of the series
8+ 7+ 11 + &c., prove that §; + §, = (5, — §,)%

128. Find the 7th, the 10th and the general term in the

expansion of (1 + :c‘z)_%'
. 129. Form the equa.’aon whose roots are 1,- 1, 2, -2 and
344 -2,

130. Assummg that — 1,1and 1 are three roots of the equation
x6 + 2zt — 32% Z 3224 2z 4 1 = 0 to find the other two roots..

131. Find what quantity mist be added to each term .of the
ratio @ : bin order to make it four times as great as the ratio ¢ : d.

b 42
132. Shew that (2 ‘\/3) Ve
4z = 29 e

133. Given 2‘: + gz i 32 -3 g tofind z,y,2 in positive 1nf;egers.'
. L . T _ i
134, Find the value of the vanishing fraction T oY)
when z = y.

135, The sum of two nrmbers i 45, and their , ¢. m, is 168,

what are the numbers ?
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i 5(x+1)(z—3)§ 1 (z+3)(x-5)
136. Given 5 § (235 @ oa) ST (5 + )@ - 6)
2(x+5)(x—7) 92
1576 (z-8) - bes o fnd =
. 4L at=4
1317. Given nyxz yyz _xs
138. Prove that the fraction ¢ on belng converted into a
decimal will continually produce, successively in order, the

digits 0,1,2 . . . . 9 inclusive with the exception of 8.

2 to find the values of x and ¥.

139, Prove that the roots of ax? — bx = a%x — ab are rational.
. 140. Solve the equation (a + z)(b + x) = nab.
141. Find the value of z in the equation 1 + 4/ = 6z.
142. Given y/z + 4z = 1 = yz + 1 to find =.
143. Solve with respect to z, y and z the equations
a® b P

144. If a number be multiplied by 4, and the same number
reversed be multiplied by 5, the sum of the products is exactly
divisible by 9.

Prove this, and infer the general proposition of which it is a
particular case.

145. Simplify (a +8) (b+c)-(a+1) (c+1) - (a+¢c) (b-1).

146. Find, without actually multiplying, the product of

iad 9 t -+ 3
9~y + into )

147. Find, without actually di'viding, the quotlent of (ax +by)?
+ (cx + dy)? + (ay - bz)? + (cy — dz)? by a? + 42

148. Extract the square root of a® (2%+4) - 2a (z + 2)+ 4a%r + 1
by inspection.

149. Find the G. C. M. of o® + 02 -2 + Zab, and a? - b% - ¢ +
2bc by factoring.

150. Divide synthetically 4z# + 52% + 1 by 2® + 22 — 1 obtain-
ing the exact remainder, and also four terms of the remainder
expressed in descending powers of z,

1
151. Expand Tz in ascending powers of .
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o a b a b
152, Simplify <m+ LL_—ZJ> X (a_-b ——aTb\)

163 Divide | — P\ py (S ¢
- Divige \a+¢c b+c o b+c  a+c

154. Reduce to a single fraction in its lowest terms
3(z - 2) 1 1 1
(x - 1)(w—3)— z-1 (z—Z)—x— 3
155. Prove that
@Ey+l+2)(zy+1+2)+ (z-y)2z (@E+DE+1)
ZBP + 1 - 2% — 3P S E@-DE-1)
166. Find the conditions necessary in order that the equations
42? + bz + ¢ =0 and a'z? + bz + ¢, = 0 may have
- (1) One root common.
(1) Roots equal in magnitude, but of contrary signs.
z+1 2z-1 3x+4 5z-6
2 38 4 3
(z-D@E+4) @G+2)(2-2)
=+3) 1-z

157, Solve the equation

158. Given to find the value

of z.
159. Find the value of z in the equation
1+ 2z 1+z+v1+2x
1-2z —r J1Zaz
160 Find z in the equatxon
(zx-1)2(n-1)%+4n
(= + 1)2(n=1)"+ 4n”
and shew that if » be positive and x real, the value of the left
hand members always lies between n and 1
161. Find the 4., G. and H. means between # and .
162. If H. be the harmonic mean between o and b, prove
that it is also the H. mean between (H — a) and (H ~b)
163, Find the 37th term-of the series 6 + 3¢ + 4I + &c., and
also the sum of the sums of the first 31 terms and 42 terms.
164. Find the sum of n terms of the series 3% + 2 + 1% + &e.
165, Find the sum of n terms of the series 1 -0:4+0: 16 =
0:64 + &c., and also the difference between the sum to 1nﬁmty
and the sum to n terms.
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166. There are p arithmetical series, each continued to n terms ;
their first terms are the natural numbers 1, 2, 3, &c., and their
common differences are the successive odd numbers 1, 3, 5, &e.
Prove that the sum of all of them is the same ag if there were
n such series each continued to p terms.

167. Find the continued product of x — y/zy +y, = +4/zy + ¥
and 2% — xy + y%

168. Find the value of ¥ (2% — By)% +z (2%+ 3y)‘21 whenz=5
and y = 8. ’

169. Extract the 4th root of 16a* — 960% + 216a%? — 216ab® +
81b%.

170. If a : b :: ¢: d shew that

1 1 1 1 1 /a b
T 5 T wd (‘4“?
z+3 4z +5 3z+3 ;|
T+ lv :4z+4 * 3z + 1 giving the
rule and -reason for each step of the operation.
172. Solve with respect to x the equation

‘ +d

2
171. Solve the equation

z Tz b o atd
a+1. ab+a z+y-1
173. When ze= —— ‘and y = itg-
ab+1an y' prena reducegc_,_y+1 to its

lowest terms.

474 Shew that 2(x - 9)(z - 2) + 2(y - 2) (¥ — ) + 2(z ~ :c)
(2 ~ y) can be resolved into the sum of three squares.

175. Divide a* + b* - ¢* - 2¢%2 + 4abc* by (a+b)%- 2
.,176. Find the G. C. M. of 2% — 1 and 29 + 2% + £® + 27 4~
224+ 22% + 2+ 2 4+ 1.

2x + 3 x+ 2 -7
177. Reduce — ; - .
(:c+5)(a:+1) Py (% + 5)(x —1) toa

simple quantity.
atby -1 a-by_1
178. Reduce —— + ———-—=—: to a simple quantit;
a-by "1 a+by—1 Ple qhantiy.
179. If four positive quantities be in .4. Progression, the sum:
of the extremes is equal to the sum of the means; but if in G.

or H. Progression the former sum is the greater. Required’
proof, \
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180, Shew that in an ascending .4. series if the leéast term be
the common difference, the sum of (27 - 1) terms is » times the
groategt term.

a x
_181. Solve with respect to  the equation — Tt — = T
i
182. Given 39. +2° = 3104 to find the values of z,

188. Find the value of = in the equation
T+ a z-a b+ b -z

z-a zt+a bez  biz

184, Givep z + 4/ {z% + 4/ %+ 96} = 11 to find the values of =,

185, Find a number of two digits, such that when divided by
the difference of the digits, the quotient is 21 ; and when divided
by the sum of the digits and the quotient increased by 17,
the digits are inverted.

186, Two horses . and B, trot twice round a course two miles
long. B passes the post the first time 2’ before /4, but in the
gecond round .4 increases and B slackens his pace by 2 miles
per hour, and .4 does the round in 2’ less than B, Find their
rates and which horse wins. '

187. With any five consecutive integers, the continued pro-
duct of the first, middle, and last, added to the cubes of the other
two is equal to the product of the middle number by the sum of
the squares of the middle three. Required proof.

188. Prove that z* + y* + (x + y)* = 2(2% + 2y +yH%

189. Multiply 2® + 3 + z% + zy? by z° - y* ~ 2%y + 2.

190. Find the value of ax? — } z* when z = (a+b)% 1 (6~ b)i_

191. Divide az® + 2czyz + by’ + az’(y + 2) + b(z +.2) +
2¢xy (z + ¥) by = + y + z, synthetically. '

192. What is the quotient of z¥ ~ 1 divided by =™ - 1,

193. Simplify 1 - {1 - (1 -2)} + 2z~ (3 = 6x) + 2 ~ (- 4+ 5z).

194. Express a(b + c)3+ b(c + @)} + c(a +0)* ~ {(a = b)(a - ¢)
(G +e)y+ (b~ e)b ~a)(c+a) + (c = a)(o=b)(a+b)} in its simy-
‘plest form.

/195t Express in the simplest form the sum of
Grc—a)x+(cta-dy+(a+b=c)z
(c+ta=-dz+(a+b=-c)y+(+c=~a)s
@rb-cx+(brc-a)y+(cta=5)s

3
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196. Find the product of (z®+ 6x% + 123+ 83%) by -
(z* - 6x% + 12zy? — 8y®) also of (a + 1 = 1)(a>bay =1

197. Find the value of (a+b+c)(b+c-a)(c+a-b)(a+b~c)
Algo the product of (z%+ 1 +27}) by (2*~1+ ).
" 198. Divide (2z% - 3z% + 4a¥y? - 5z + 6y%) by 62%7; and
also (z* + 4z +3) by (x* + 2z + 1). .

199. Find by inspection the quotient of (8z — %) + (=" -1¥y)

and of (z% - apa® + a*px — d¥) + (z - a).
200, Find by factoring the G. C. M. of
l (1) z* -3z - 4, 2% - 2z - 8 and z* + z —~ 20.
(1) 3z% 4 42% - 3r ~ 4 and 2% - 72248
() (=™ + a™)(@™ - o) and (2" + o) (z™— ™).
201, Find the I, c. m. of
@) 2%~ az - 2d% z* + ¢z? and @a® - a®
(1) z8 - 2% = % + a’y and 2% + ax? - zy? - ay?
202. Find the value of
(@+b-c)l—d¢ (b+c--a)2 (c+u-b)?-
(@T b= (c+d)?F T royin (a+d)2 o+ (crayi— (b+d)9
z* + y? — 2%+ 2zy
=yt -24+ 22

203. Reduce to its lowest terms.

@ +ah  a(a-b), 2ab.
b—b“, (a+b0)b " a2lp?

ax -
205. Reduqe( +——> (a— o ) + <a+a:+a z)
L - etz \a—z a+zx

to a simple quantity.

204. Simplify the expression ———

+ 20 z + 2b 4ab
when z = ———

2 T3 -% a+b
207. Find by i.nspectlon the square roots of
(1) xt— 42848z + 4
() 4x*" — 4258 4 Igen
a? b o2 a ¢ b

(III)F+CT+¢1,T"ZT—ZT+27

206. Find the value of

208. If ¢%7 + bz + be + b? be a perfect square, shew thaf
1 ¢ ‘
w T



MISCELLANEOUS EXERCISES. 267

209. Solve with respect to z the equations
- (1) maz + emn = nx + am?
8-z 2x-11 x-2
N S

210. Find: the values of x in the equations

Tz +1 80 /x — } ,
® 63-3z -3 :r—%;

() a? - 2ax - 2bz — 3u® + 10ab ~ 3b%2= 0
211. Find the values of z, y and z which satisfy the equations
T - ay ar+y
® b 1= c
Wz +zy+y*=3Tandz+y="1.
212, Solve the simultaneous equation
2(@+y)=al+b%; z (y+2)=b2+c?; y(z+x) = ¥+ a?
212. The difference between the ages of 4 and B is twice as
great as the difference between the ages of B and C, and the
sum of the ages of .4 and B is half as much again as the age
of-C; six years ago it was only ome-third more. Find their
ages,
214, Sum the following series:
(1) 13 +3 + 4} to 12 terms.
(1) 1% + 2§ + 3.8 to n terms.
(1) 4/2 + 34/3 + 24/2 to infinity.
215, I ay.a5.05..008, = al‘z then will
- a, -1

=Ty Required proof.

@y Fay + a5k ..., a

216, Given (z + B)(x + 1) = 4y/22 + 1 (= ~ 1) to find =.

217, Find the value of z in the equation .

Bz - 4)(Bz - 1)(1 - 227) = 4.

218. Find to 4n, 4n + 1, 4n + 2 and 4n + 3 terms the sum of

the following series: .
14+14+2-243+4+4-8+5+16+ &c.

219. The number of matchesin the side of a certainrectangular
bunich i > 10 but < 20, while the number in the end is < 10.
When the digit expressing the number in the end is written to
the left of the expression for the number in the side, the number
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g0.formed is to the whole number of matches in the bunch a8 a
certain number a is to 2; but if this digit is written to the
right of the expression for the number in the side, the number
thus formed is the whole number of matches as ¢« ~ 10 : 4,
Also a second bunch similar in form to the first, and con-
taining as many matches in its perimeter as there are matches
in the first bunch, contains four times as many matches as the
the first bunch. Find the whole number of matches in the
bunch, ' .

220, Shew that, in the preceding problem, if the last condi-
tion had not been given, the solution found above would have
been the only integral solution of the problem. - ‘

221. A person travels by railway from Stratford to Toronto and
back. In coming down he finds that when he travels by express he
is as many hours on the way as his fare is cents per mile, but when
he travels by the accommodation train he is half as many hours
on the way as there are units in the square of the number of
cents in his fare per mile, the fare being the same by hoth trains.
In returning, the express by which he travels goes slower than
the express by which he came down by an average (including
stoppages in both cases) of as many miles per hour as there are
cents in his fare per mile, the fare being the same as in coming
down. He now calculates that if the fare had varied as the
speed of the trains, he would have gained a cent a mile by taking
the accommodation train to Toronto-—the fare on the express to
Toronto remaining the same——and in returning he would have
gained as many cents as there were miles in the average speed
(including stoppages) of the train. Find the distance from
Toronto to Stratford, and the fare between them,

222, Given /2% + 25 {2%(x% + 9) (ya®+ 25 - 1) ~ 45} = 52 + 225
to find the values of z.

223. Two persons engage to dig a trench 100 yds. long for
$100, but one end being more difficult to dig than the other
it is agreed that the one digging the harder end shall receivé
$1-25 per yard, while the other receives but $0-75 per yard,
At the termination of the job it is found that they each regeive
$50. How many yds. did each dig ?

Shew algebraically that this problem is impossible,
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224. A square and a rectangle are (1) equal in area, (11) equal
in'perimeger. The number of square inches in the area of the
square is m times the number of linear units in its perimeter, and
the number of square units in the area of the rectangle is n
times the number of linear urits in its perimeter. TFind the
length of the sides of the rectangle.

* 225. Two boys find upon trial that the distances to which
they can respectively throw a stone are in proportion to their
ages, and that the throw of the elder is 24 feet longer than that
of the younger. After the lapse of a year they try again with
the same stone and find that the elder can throw it but 22 feet
farther than the younger, and that the gain of each is in the
same ratio to the age of the other. Also the H. mean between
their ages at the latter trial is equal to the quotient obtained by
dividing the length of the longest throw made, by the difference
between ‘the 4. mean of the lst-throws and that of the 2nd
throws ; and if the antecedent of the ratio compounded of the ratio
of the throw of one to his age in the first instance and the ratio of
hig gain to the age of the other on the second trial, be multi-
plied by} of the product of their ages on the second trial the
fatio of which the resulting ratio is the duplicate, will be the
the same as the ratio compounded of the ratio of the throw of
one to his age at the first trial, and the reciprocal of the ratio of
his gain to the age of the other at the second trial. Tind their
ages and the distance to which they throw the stone.
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ANSWERS TO EXERCISES.

Exercise IV.

0 2. 18 3. 14 4, 2
3 6. 0 7. 48 8. 16
48 10. 0O 11. 24 12. 2700
5< 6 15. each=0 16. 6 >5 17. each = 10
each=2 19. 2 20, 44 21. 19
. =112 23. -3 - 24. 22 25. 8
IExErcISE V.
. 43a. ) 2. —26al”.
19w+ b~ o). 4. 2%a(z - yz)‘}.
272 — 13y + 23. 6. 16(x +y)+ 282 - 20abe.
. 6(a+b)r —19(c + d)y - 23(d % f)=.
. 16a%% 7 + 120%%7 - 13027 a? - 17a%0 %22,

Exercise VI,

. 3a+3c; a+3c; 4a+ 4b - Te, 2. 8ab - Tay + 13cd.
. = 2T ~T(a +b)~1207y~20. 4. 20 - 2b.

Sxy + 14ab + 17. 6. 54 8a—~5b+8¢c.
. 6ab +6zy—5cd - m+ 16¢. 8. 17 - 25m*z + 20zxy.
. 1%
Jmtnt, 10. 184/a~8Y/3+144/4 + 68/a + 195/c.

. 202y ~ 10ay + 24/x + 258y, '
1
. A(ax + by - c2)* + 12 F 0 + 16z ~ ).

Exercisg VII.

catbtrctm43praty. o, 2. - 32z - B¢?

LT+ 4n2 42 (2~ y). 4. 1022 - a% 4 1

- 60+ 15b+5ab—3mPn+5x +y. 6. 64z —5ya+y + 18
A =204 3742y, 8. BYratay - yz +am ~Ta%y + a2y — m’.
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Exererse VIII.

. 6%z - 11z3° + 11a2® + 42y + 20m,
. 1da — 14c — 13y/a ~ b2 + 4a3” + m?

2¢d - 3(a + B)Yz* — y.

Ty
. d(zy + 97— 20 + 1adet - 14ym,
. 16 + T4/8 -~ 23y - 9y/a ~ b,

. 6m —2¢c—1le ~ 25z + 12y + abed.

‘Exrrorgn IX.

. 14-m=Bc-€. 2. 2a-2b-2c. 3. z-5a—-2
6+m. 5. 1la~3c-5d+m. 6. 2a%—cZ—m?.
2 . 8. Ba+Tz+3mi+ 22% 9. 8a%be - 2m.
e+l "11. a - 85 - 6. 12, ~ a =5am -3¢ ~17
Exercise X.

. (@=b) + (c=d) = (e=m) = (f+7) = (3-0) + (w + 2)
L(a=bre)-(dtre—m)—(f+r+8)+@+wtx)
@-bte-d)y-(e~-m+fEr)~(s~Vv~W-2T)

(a-b+te~d-e+m)-(f+r+s-v-w-2x)

Aa—(b=o)}-{d+ (e—m)}~-{f+(r+}+{v+(w+z)}
A@-D+ce}-{(dre)-m}- {(f+r)+s}+{(v+w)+:r}
Ja—(@b-ctd)}-{e~(m-f-1)}-{s-(vrwta)}
@-bro)y-di-{e~m+f)+ri-{(s~v-w)~-z}
Aqa-(p-c)y-d}-{e~(m ~f)+r}-{s-(@+w)~z}
fo-bre~@re-m)}-{frr+s-(v+uwta)}
A@=bte-d)y~etm}-{(fir+s—v)-w-x}
cemb-e)—d=(e-m)}-{fH(r+s)~v-(w+ D)}

Exzroise XI.

. 34~-3b; 4o + 4P —4z%; 3p%x - dhp% - 3cpt.

bzm +m%p +a? = .‘?m:cz bz? — 3m%a? + bmPxt +-miat,

. 7 +dz + oy ~ 4bx + 4zy — act ~ 3%y ~ may.

a’m = an < Bacp + Bacq ~ cEm + c*n. -
oy e Td.om
L -



2792 ANSWERS TO EXERCISES.

a b c d
6. M+ —— = —— b —,
Yz zy=z xyz Y= .
6a m 3p

7. amz = axy = a*c~abc + ay - + - :
y-oe-adctoy 2a-¢ 2a-~c 2a~c¢

8. 3bed = Babd + 3 ) 2 3m  4p
. 8bcd =~ 3a +3fm,.g.3fn,..m.,.5'?_,__5_2:_.7

Exsrcise XII

. Bam + (1 + 9a)x + (3 + 15a ~ 2m)y.
(G +Fm)a+ (2m+3a)r + Bz -4+ m+ 3a)y.
. B(2a -z ~bc)+2(b - 2¢c) - 3m.
. (2¢ + m)x ~ (3am ~ 2¢ + a)xy + (3a — 2cm ~ b - f)y?.
3(e4+brc)-(Bm~e)aly ~{c+2(1+3a)m}x—c(2~0a)z.

6. {11(a+b)m+3(cy+a)ly—{3(a -=b +c)+ 2(a+3)c}xy +
3(m + a)c - 2acp.

O O DO ks

Exgreise XIIIL

L. ot — 40+ Ta?y?- Gayroyt ; ¢ —ath ~ 2a%b %4 202b8+ 2abt— b5,

2. 2d°m® + 10a%m?zy - 3omx?y? - 92%°; 9atzrt ~ 3a%x® - 3a’z
= 90%z5 + 3azx* + 3ax?,

3. &%+ m®; 20t - 20y ~ 20% + 40%y® + 20222y - 2axy? - 2azyt
+ 2y%,

S 722 + 52+ 28 a8 - a2,
- 40°07 + 4a2b3 ~ 1Tab% - 1255,
g20% — a?c? + 2abc? - b2c2,
ab ~ 6a*h? = 10a%° — 6a?bt + bS.
. 32% + 4aba? - 6a2D%x - 46%%; at + 2% - 42% + 5z - 3.
.28 4 226 4+ 32% + 222 + 1, )

10. 6y8 — 5x2y® - 6yt + 21z%9° + aty? + 16xt; oM+ 4 grpm
+ a™o" + pmEn,

11. 30a® - Ba* - 207a® = 178a? + 78a + 72.

12. a®2? + a(b + c)zy+ bey?; a?™+l - g +1pn L G - g g+ 1P
+b2n‘?—bn-pcp. »

13. ™2 a2cP + a2g" — a™md + ¢Pmd - miG" + aPx = Pro Q'

14. a5 - 2a%z + 3a’2? ~ 3022° + 2axt — 25,

15. {6ac (2c - m) ~ 3bc (2c ~ 12a + 3b - m) =~ 9b(2a ~ m) }m
+{ 20m (c + 3b) + 4ac(c~- 3b) + 2be(e + 3b) ~ bm(c + 3b)} x.
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Exprcise XIV.
. Bbc; 6x%y; 3a; -xys’
. = 2bem; ~ax?; 9may,; 3zt
3b%e 17bz  3ary b3
“Bay T 1m0 Bt 0 lea?

[ g

Exercse XV,
3y? 27be . Sry 2m

[4 4z c [

3y 11 2z Ty
“Ba ™ oay T Ba  Bow
‘3. 4a2+m-§2(—1 + S;n:zy
abe a?c? 4ay  ba?
T dmay 3m:vy+ﬁ 22y

Exercise XVIL
z=y; a®+ 2ab 4+ B
m? + 2mx + 27
. 9z% - 10z® + 52° - 30x
a? + 4ab + b%; 2B+ xy + 1
x4+ 22 + 22— 4x = 11
a’ - atm ~ am* + m®
7. lea+a®—d+ &e.; a+a®+a+ &e.; 1~ 2m + 2m? - 2m*
+&e.; and 1 - 3z + Tz? - 102° + 17z% - &c
8. 20% - 6am + 4m®.
9. 2a% - 3ab® + 5b°
10. e+ b+¢
11. 3623 - 272ty ~ 162y® + 1247
12. 2a™ = 3b

A

Exerose XVIL
1, af - Gay + 9y ; 90 + 12az+ 42?; 9xY% - 42xy + 49; 4a’z®
« 120zt + 92 ; 4a® + 12a2ay® + Pulzly?
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2. a® — 9x?; 4a? — 9y?; 9a%b? — x?y?; 4mt — 9x?yS.

3. 9a? — 42%y%; 40%-49; 9 = z%; 4 + 20ay + 25a%y?; Ya*
- 24ax?y® + 162%yS,

4. x° + 53 - 66; 9a% + 9a - 10 2% — 13x 4 36; z? - 4x - 31}
% - 3z% 2.

5. ab+ afx + ate? + @’z + a?x* +axt + 26 5 @ —atx+o'e? - alx?
+azt - 2% ; m* — ma + m2a? - ma® + at; ¢t + 2t is not div. by
c¢+z. (See Theorem xm) )

6. a!%—azy+atx?y’-a’ Y+ abatyt — a2 yt+ atafyS —alzxTy"
+azty® —axy® + 27009 a*m® +aTm7r + afmbr? 4 aTmbe? +
atm*rt + amr? + a’m?ré 4+ amr” + 7% @® + mPs? is pot div. by
a — ms (see Theorem x1) ; ¢+ a?yz + ay?z? + Y325

T.x2+4;2+8; 22-1; 3a®xr —a.

Exercise XVIIL

1. a® - 2ab + b% - c%?; a® ~ b2 + 2bc — c?; a% ~ b2 - 2bc — 2.

2. 16 — 9a% + 12ac — 4c?; 4a? — 2% + Gm?z ~ 9m?*; 4z2y? — 40
+ 12ay - 9y2.

3. 4a? — 12ac +9¢% - 4a? + 122y —~ 9y ; a? + Gad + 94?2 — 4¢2
— 16cm — 16m?2.

4. 90% — 6am? +m* - 4 + 4zy - 2%y?; 4a* ~ 12a22? + 922 1
—2y? — gt

5. 37ab — 10a? - 260 - 36

6. T5a® ~ 12axy + 23z%y2

7. 1l-gl28

8. an-l — gn-lym-1

Exereise XIX,

. (@=m)(a® +am+m?)
(a+c)(a* —a’c + a®c? ~ ac® + ¢t)
. Not resolvable,
- (@) (e~ 0%) (a+b) (a=Db) (a?-=ab +b?) (a%tab +b?)
- (@a—-z) (@ +ax + 2% (a5 + aP2d + 6)
- 6. (a=b)(a'®+a% + atbZ+aTh+ abbt 4 aPbS + g2h6 + a7 4 a2b®
+abd 4 p1o

1. (& + m*z%)(a + mx)(a - mzx)

m»pwsxbr—o



8.
9.
10.
11,
1.
13.
14,
15.
+ B (at — a%e? + e (a8 —atct + c®) (a6 —atc + ¢l6)

16. (2 + m%)(ab* - a®m® + m‘“)

1. (@+c)(a—c)(a?+ %) (a? - ac + c?)(a® + ac + c?)(at — a%Z +ct)
(a5 — @3+ ¢8) (a5 + a¥c® + ¢0) (3%~ abcb + ¢12) (alf— a%c® +¢'®)
(@'* +a%0+c18)(a36 —a18¢18 +36)

18. (m'84c16)(mP—m8cT10+c52)(m26 —m48c48 + ¢96)

19. (@ +m®)(a¥? —alOm? + adm* — aSmb + atm® ~ ¢Zm’° + m1%)

20. (am — p).(a®m? + amp + p?) (aSmb + &3m®p? + p®) (altm!® +
(%ngps +p18)(aS4mbt 4 a2 Tm2Tp27 4 pi4)
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(2a 4+ x)(16a* - 8a%z + 4a%2? - 2az® + z%)

(9 +463)(3 + 2¢)(3 = 2¢)

(8m=2c) (81lm*+54m’c 4 36m%ic? + 24mcd+ 16c%)

(at+z) (a¥—a’z + ats® ~ 032% + a?zt—az® + 26)(alt - a2 + 214)
(a*+m*) (al6 — ¥t + a®m® — atml? +m16)

(e® +x8)(c18 —cfz®+276)

(@ m?) (z¥=xSm?+ ztmt —22mb +m?) (z20 -2} 0m10 4 m20)
(@—c)(a+e)(a®+cB)(at+ ct)(a? + c?) (a® + ac + ¢?) (a? - ac

Exgrcise XX.

l.a=-2z
2. 140% - 432% ~ 4oz
3. 34/3 4 64/6 + 24/5 — 84/z — 4/2 — 40z? + a%r? - Bakx
4. ac‘)'m + aczp+q -_ amzm—p -_ zmi—q
ot 56 + xh
5, al-lagh-2pqgn-8g%_gh-423.4 gh-0gp4_ —
' a+z
6. (z—-17)(z + 3)
7.1+1+1+1+1+ &c., to infinity, =oc
8. (@ - z)(a+ ) (6% + ax + 2%) (a® - ax + z%) (ab -l-’a“’x‘" +zf)
(ab —a%z® + x8) '
9. x?m?(a’x - 2p)®
10, - 894
11, x6 — 22% + 1 and af - 40%? — 8a%b® — 17ab* ~ 1205
12, 2f— gz 4+ b )
13. (624 m®y (a6 + m16)(ad + m®)(at +mt)(d?+ m?)(atm)(a - m)
14, @1t — p2e 15. ¢ 16. 2a(a® + 3b%) 17. 2a(a ='m)



276 ANSWERS, T0 EXERCISES.
. Exeroise XXI.
1. 6abm 4. T+ 2 7. z2-19
2. 3a*m?* 6. d’(a - x) 8. af(x - 1)
3. xy 6. m*(a® ~ m?) 9. x~1
Exzercise XXII.
Lx+2 5. a-2b 9. a2
2. x-2 6. a-b 10. 4(a-b)?
3.a-x 7. Bx?~3x+ 4 11. a®+a? - 52 + 3
4. 2+ 4 8. ab - by 12. a?+ 2ab - 2b2
Exerose XXIII.
1. 12a%b%%?° 6. 36a” —36a6b — 36ab5 + 3657
2. 12a%%%:2 7. 2%~ 1022 + 21z
3. (2%~ 2y ~ 2y + y¥)? 8. a* - a® ~ gx® 4 28
4. 23Tyt etytatogy b 9 gt 1065+ 3547 — 50a +24
5. 4" — 4t — 423 4 427 10. 60(a’® +a% - a®bZ~ 2a7h3~

2a8b%+20%b8 4 20%7 + a?t

- ab?® — p10)-
Exercise XXIV.
a-b 0 a% - ab + b y x + 2y + 3y*
zy B L PR ey
2a+m - m? a~b a-b
TaE 10. b e ey 18, 5———o
3a*+m a?+ ab + b ¢+ ab + b3
[4 ad + b3 at 4 m?
= 11. FF ‘19, <
a’h at+ a’m mt c+d
— 12. —————  gp, — 1%
T 1 m+ 2p
ac* a? + m? . z4a
a+c 13. at 21. ;
. T+
azy? 7 22?4+ 32 -5
T dirmtayratyt? 14, 11 22 Tz _5
-3 — bx r—-4
15, —— 23, 2tm
z z+3 22~ 0% + Zam — m2:
1 2z + 3 8 gtk :
16. 24, o CeEtEE
atm z -4 a'S—qgliydy g8y8 g2 1% 6
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Exsercisg XXV.

! 2¢%% ~ axy + 3 - 2a 6 2zy(z + m)
. ax o z+2m

A+ 2b(3a? + b%)
et T Tarh

3¢z + 9 — yx ~ 3y - 3a% + 30 2m?
3 z+3 8. Fm
4 3ax - 3ay - 2a - y* 2azx

I S Fra

3¢*z = ay? —~ 2zy* + am + mx

5. a+zx
Exercise XXVI.
, l.4m-4 + % 4. 5m?%+ 5mp+ 5p%+ —mjjp—
2x? 1
2.a+2z+ = 5 a- 3
3.x+y+x2—xy-+y2-yfg:—f 6.1+5a—b—(m%-9
Exeroise XXVIIL.

acdm  bldm  bctm  bedz

L bedm 7 bedm ' bedm® bedm
Yy . am by

2. mzy’' may' mzy
5 8bxy  3d’zy  6abm
Yt 12abxy? 12abzy’ 12abzy

(1+m)yz (1-m)y. ~ Cz(at -9 z+y
b TowE 1o F @A) a@ P
6 6z% + 6zy 8x + 2y 2z — Buy + 3y¢

2(_.,:2 41/2)’ 2(2:2_:,]2)1 2(1;‘4 __'yZ)
—-- 18a%m  l6a*<4a‘z? . 6m + Smx
* gafm(2 +x) 6aEm(2+z) 6a*m(2+ %)
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3uz® -3¢ 4z°~4x 32°+3

ANSWERS TO EXERCISES.

3z% + 222 = 32 - 2

© 3@ - 1) 3(z%1) 3(z2-1) 2P
6a® ~ 6a%b

3% 1)

2a a-b

4am +3m— 2bc

Exerciss XXVIII.

' — 6. 0
! 2bm
5 m2y+3_a:ywﬂa-2b v m?~ 2mp—p*
T ay? syl Comiopt
4ab 14~12a
3 8% — a? 8. 1- 4a?
‘ 332z + 63x? 9 1
' 63 ‘24z
2+ zy? +9° 2z
5, LE A 0. 22
(z+y) b
Exeroise XXIX.
. 3z? @ +a?m+am? + m3
‘ 5a - my
9. 2 v 4azr — 4x2
. . 3
3 2¢—2b 8 2% 11z + 28
T 3y . zz
4 3z%-3 am
“2arab O T
u(a—b - 2)2
P il P G}
x 2a
Exeroise XXX,
.Y dnd
z¢ a+b
a+z
2. p 4. 30% - 60’ 302y - Gux

6@ -’ 6@ - 5% 4P g p

11. 0

2ac — 2be

" @b +bc+ac+ b?
14z — 2028

T= et 1 ot

T+ e
"zt d

2+ 4z ~ 21
qu+88
at4a?+l

13. —
a..

11

12.

14. 1
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7,1 g, 20 = 3 9.1 ob
' S . Y
Exercisg XXXI,
f5a - 56 45— 18z + 18a 9 1
* 10a +§ 9b " %0a+ 202 - 12 T ey
Ta— 2z 4a df + ¢
20— . 6. ——= 10. ———
21 1+ 4a? df —¢
e n-a Wegmism
. 63 — 36z 8
" 30z-10 ¢
Exercise XXXII,
1. 48 8. 41 15. 8 22, 80
2.5 9. 3 16. 9 23. 4
3. 105 10, 175 17. 120 24. 0
4. 255 1. 9 18. — 10 25. 4
, ' : c—-b
5,19 - 12, 4. . 19. 4 - 26. —
- ‘ 3b(b+c).
6 1 13. 5 20, 15 M,
- 1la
7.1 28 =Y
. 16% 14. 12 21. 8 . m_G
29 6a? 0 20ab. + b%c +.5ac — 15abe
‘ 40%b+2a-ab - b? ’ 15b + abe — 10¢
bd. 10¢ — 4ab* be(b-a
31. M 32, ———— 3 .—(—2 )z
bd 4 ad.+ be 3b +4a ab—a®-b
2 b%+ 19ab — 4a? - 5 L 36 ab
" 2a+8b-2 35. 2(2b - 1) ‘at+b
31, 478, 35, 200 39, }
TEeI * 650 ~ 994 © 3
180 + 395 — 35¢ 3ab — ac.~ a2b?

C Y%a 41. a?+3ab-b2=c -0
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1
2.
3
4.
7.
20.

21.
22.

ANSWERS TOQ EXERCISES.

Exercise XXXIII.

. 80; 17 5. 12; 18; 24 9. 56 18. 14

21; 42 6. $560 10. 14 14. 23

. $52'50 7. 30 11. 26 15. 384%
64 8. 163 12. 102 16. $3; 12,7
26% miles 18. 134%% hours 19. 1803 ; 1689

A =9$2542; B=$2422; C = $2436
Music $0-55-3; ; drawing $0-32%
70 vol. Science; 210 vol. Travels; 210 vol. Biography;

315 vol. History ; 630 vol. General Literature.

23.
24.

25.

26.
27.
28.
29.
30. 9
32.

34.

36.
31.
38.
39.
40.
42.
43.

46.

48.

1.
4.

Niagara river, 34} miles ; Rideaun canal, 130¢ miles,
235 days.
ntae~c n—a+e
y T
@) lh 5¢m.; (i) 12 h, 82 m.; (ur) 12h. 164 m
$155 and $220
191} days.
A, $3594 50; B, $1055:57% ; C, $1795:03 ; D, $743-89%

-5y days. 31. 68
$8142-855 © 33, 72 lbs.
ai
$11100 35. 5 feet

11 times, viz.: 1 h. 5%m.; 2 h, 1051 m,; 3 h. 164 m.; &ec.
90% and 55

A’s = $808-42 & ; B's = $538-941¢; C's = $1212.635;

820 miles; 15 m. per h. down; 10 m. and 12 m. per h. up,
5; $9000 41. 18

A's = $657-14%; B's $731'426; O's = $711-428

2575 44, g and mEn 45. 15 and 45
a na ma
36 weeks, - 47, —— —
1+m+n 1+7n+7z i and T+m+n
ang amg a anp .
R an
ng + mq + np’ ng+mg+ np ng + mq + np 49. 189

Exsrcise XXXI1V.
T=2;y=8  2.2=5;y=6  3.2=20§;y=5}
T=459=10 b5 z=T;9=3 6, %=24;y=30



. 1o,

T.x=2M4¢;y=330;8 x=12;y=0 9. 2=3;y=6
2a + 3b b5a = 2b an —bm dm~3n
a::“l‘g_)y_ 19 m=myy=m
2ac - b? ac — 2b2 a+b b-a?
12'z=,3ab I;y~= 3ab 13. =z = 22 ;Y= Sa
amc(a + ¢ + m) acm(2¢ ~— m)
14"7:=1n.c+ma.—ac+cz;:'/= cm + am - ac + 2
mq + bn bn + mgq
15'I=aq+bn;y=ab—bm
16, 2=8;y=38.
M z=8;y=9
a(c®p - a* - ¢ c(a?p - ¢t - a?)
18. z= Z— a2 A & af
19.2=9;y=1
ab ab
0. == -5 Y5255
Exerese XXXV,
l.z=1l;y=2;2=3 2.2=2;9y=0;2z=3
3.x=1;y=22;2=~3 4. xz=4;y=1; z=~2
b.x=1§;y=-2;2=2;v==1} 6. z=2;y=3;2=4
T 2=1f;y=4;2=¢
5m 4+ 16n — 3b 115+ Tm=8n 23b + 4n - 13m
8.z~ 76 py= 76 i z= 6
3 ¢8 —b% +a?h 2bc —~a? - bB-bct+ a¥e
9. z= ¥ racz YT T 0 FT Tt g el
10, v=2;z=5;y=6; z=10
1. zsb+c-a;y=a+c-b; z=a+b-c¢
'{vag‘)'—am+an—m am-—n-i—ap-—an‘ am—ap+an~p
12. = = 2 —a—1 1Y T3l 1 FT T e a-1
Exnrose XXXVI.
1. 4and 2
ab
2.5—+—cand.n-c—v

ANSWERS T0 EXERCISES, 281
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. $15 and $0-40
. 125-8 yds. long and 40-% yds. wide.
12 and 15
. 84 and 60
32 and 16
. =T; =% and - 5%

9. 380 sulphur; 620 charcoal; and 3000 saltpetre.
10. 16; 24; and 32
11. 40%# shillings, or 441 ten cent pieces.
12. 29 lines and 32 letters, 13. 8
14. 116 ten and 280 twenty-five cent pieces.

¢

@D6-D
16. 5 inside and 9 outside passengers; $41 and $24
17. 36 18, 432
(c-a)p (a~b)p

b Ty
20. $81, $41, $11, $21, $11 and $6

0 =X M oW

16.

19.

Exerose XXXVIL
1. 8af; 90%°6; 18m%; 3ab%?®; 1; 1; 3a?zy®
. al?; -128aM4b7 M — 1a%h%%; 2?6 ; —32mBpl0y1s
3. 1; asxlayuz%; 27‘13:,/9; _27431/9; Bla*y”; 81a4y12

1)

Exgrcise XXXVIIL

1. a? = 9a%h + 36a7b* — 84a8b® + 126a°b% - 126a4h5 + 844%6
= 36a2b7 + 9ab® - b?

2. ¢t + 4’y + 6¢%r% + 4ca® + 2t

3. 210 - 1029y + 450°y”~ 12027y® + 210x5y% ~ 25225y5 + 210246
- 120a%7 + 452%® ~ 10zy® +y1° -

4. a +11e!%n + 55a¥m?® + 16508m® + 330a7mt + 462a6m5 +
462a°mb + 330a*m™ 4+ 165a°m® + 55aZm® + 11lam?0 + i

5. 16 — 32a + 24a% — 848 + a*

6. 8 — 15z% + 903 — 270x? + 405z = 243

7. 64aS + 576a° + 2160a* + 43200° + 48604% + 29164 + 729

8. 243 — 810m + 1080m2 ~ T20m® + 240m* ~ 32m5



9.
10.
11.
12.
i3.
14,
15.

© ANSWERS To EXERCISES. 983

243a5 - 810aty + 1080a%? — 712002 + 240ay* - 32y°

8% - 60b% + 150bc% — 125¢°

81zt — 4322% + 864x%y® - T68zy® + 256y¢

a®b® + 15a%b%c + 90a%b32 + 270a?b?cS + 406abct + 243¢6

8a%c® - 12a%cixyz + 6acxiy’z? ~ x¥y3:®

a® + 3a?h + 3ab® + b® — 3a®c - 6abc — 3b%¢ + 3ac? + 3bc? - c?
16a% — 32a% - 32a% + 240?b? + 48a%bc + 24a%c* ~ 8ab® ~ 244d%c

Z 24abe® - 8ac® + bt + 4bSc + 6b%? + 4bc + ¢t

16.

32a® + 160a%h + 320a%? + 320a%® + 160ab* + 3255 — 240a%c

2 960a%hc — 1440a2b% — 960abdc — 240b% + T20a%% + 2160a%hc?
+ 2160ab%c? + 120b%% — 1080a%° — 2160abc® ~ 10806%° + 810act
+ 810bc* — 243c°

11.
18.

1+ 4z + 222 — 82° — 5zt + 8z% + 2z6 — da’ + z°
a’ — 5ath + 10a%% ~ 10a%® + 5ab* — b5 + 10a*c — 40a%c

+ 60a%? — 40ab® + 10b%c + 40a%? —~ 120a%bc® + 120ab%® ~ 40b%?
+80a%® ~ 160abc® + 80b%c? + 80act — 80bc* + 32¢°

SO O W bk

Exercise XXXIX.

. 44 2x - 11322 ~ 323 4+ 9zt
. 2%+ 22° - 2% - 22° + 26
. 4x® - 1228 + T2t + 320 + {26

1 —a+ 4}a® - 4% + 5a* — 4af + af
1+ 2z~ 22% + Sa* + §a’ — 42 — 27 + &8
40? ~ 4a%x + 9a%x? - 40P + 4072t

. 1+ 2bx + (B — 2c)x? — 2bea® + cPxt
8.

0% — 2abz - (2ac - b9)a?+ (2ad + 2bc)a®— (26d — )2t - 2edas

+ d%x8 :

9.

1= 20+ a2+ 26%%(1 - @) — 26°2%(1 — @) + (2%~ 2ad* +b¥)zt

< 2b%P5 + (20744 + c6)ab — 2c%d%7 + dBa?

10,
11.
+c8
i2. .
13. 4 ~ 122 + 252% — 2628 + 81zt — 6x% + Hab ~ lz7 + {x?
14,

ab +.6a%h + 15ah? + 204%* + 16a%b* + 6abS + b®
a® = 8a’c + 28aSc? — 56alc? + T0atct — 58aPc’ +28a%c — 8ac?

atzt — 8absS + 24a%2% — 3%az + 16

1 - 4z + 327 + 82® — 9z + 628 ~ 4z + 2°
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Exercise XL.
1. +a%; +xy; + 2am?; 4 8a; # lla*y*
2. — 3a; 4a%y®; Sax® ; — 2a%%z.
4a 12x%° 8ut
3. i »it Toaz t 25ms
daty?  2a%zyt Tab®
4 Tm 5 Tebe b T amEyT
2a 2a%x* 3m2z? a?m?
5. £33 3y YU w4yt
Exsrose XLI.
1. 2¢+3b; a~-2x; 2ax-"Tc 9. a* - 4uc + 42
2, 3am + bzy ; 4ax?— b%c? 10. 1 -y + 3y* + 2¢°
3, 227+ 3z -1 11, 242+ 3az + 2%
4, 7t yt-1 12, z? + y?
5.a+b-c 13. a*=b% + %~ d?
6. 3a*+2a +5 14. 1 -}z + 2% — }x?
x
T.e+btct+d 15, 3% 4 - -»Z»
8. 2% - 3z% + 3zy% - ¢ 4
Exrreoise XLIL
1, 2z +3 4. a*~2a+1 7. 22 =z +1
2. 6%+ 2a- 4 5. 2az - 'Thz* 8.a+b+c+d+e
3.1-2u 6. 2z% - 3azx + 4a? ’
Exercise XLIII.
1 2 5 13 4 44 E ™o
1. a*; a%; a*; a?b%c; a¥b¥%c¥ agb:ﬂ’cs; anbncn
2. Ya; §85 V5 Jab®; Yabe ; Yo ; 4/ (@SB%) ; Y (@S mTyY;
LT Ry '

3. 2abm~1; 2a-1; Bam~1; mig-1c-2; fabme-%; 3d

_70%7"%; PR P Pl L (ab”cirf")-:lr ;

3a

4

(am- 1)%

* See Art, 142.

?

a

1
2

m

Gt

1
2

(4

1.,

or
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: 2 1 3 2 1 3
at’ b2’ aimic ’ Sa.'la:zy, alp2et ’Za"'m"‘.z:‘ly""’
4 5

3ulc lm,:l: 2(ab)% (,ng)gfxs

1 ZLL S(acm,):f m\ 8- 303”12 i 1 aB
5. g ~_Lb—‘\’—’ (F) LRy ; ab3 03’”'%) <a> P pes

o b mn
a.?‘bé ' <£>

5 ‘ég 1
6. §a'®; a ¥ —=
4o
3 3
¢S -}
.55 ¢
a?’

8. al 7h2 608
ey s 78;
9, T (1 - ¢+ nt + P’f} y4ra‘q l) qrdn+ 18,

10, a3~ 403} 4 6ab — e dad”
11. ] + ozt +;1:'3l
‘12. Szg-.tia:}y 116 :c%y"%z%+ 2_1/'123‘ - y'% -2 .1:3z‘%--y"%z3
18, 27y -
14. a"é -a%b'%+ agb'% - b'%
15, 275 - - o
16, -2ab s 302 -30+20 1360t ot v Fowioat 4o
17, aﬁ' +1-aF
18, 2 - 229 4 3 - 2:;"’“ ya73
19, x‘-‘%y - a:lﬁy 1
20, zg - Zz:%y‘l;+ 3y%f
ExBroise .XLIV.

L 4‘};343 ;16* ( ) (1(,9 i s<—‘176>}
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2. (@) of; < )* (4 d; 9annd ; 6anys)? (a )'i’

IN-Y /8 N\-k (1 \-% 1 \-}, 1 -}
2% w29/ \8a®) 7\ 9qabp® i\ 6daty® }
i 561 X ]
(”’4)%5 (81)&5 (-1*6‘)%; (16a‘*)J4 ; (81a3b4)"‘ and (256338?/12)3{
o (A (L) (LY (LY (25
. (4 ;<3> "<4u4b5 i E{) :(m) ;
b /117649\=} [/ 25\-} L
(81) *; ( 2096 ) ;(;zyg) 2;(a3)d; W23, (8a6b9)’3‘;
(uscs)%. 106483y (L \k,. 262144 1 /a%ys
P\ 125 / '\729/ ’\40353607 / '\ 29

4. V33 TS T3 416, ()1 (ﬁ)%

8at

e

5_2__1)'0,3’ 1 — 48— 3(68—
g VBabs op Y85 5 V1e; Y20, w4

18m?

00
6. Y108 ; ¥8a; Y18; #alc, ( > (972?3)&5 (@t -prgtyt
— — 1 1
V. 8Y6; 9v2; 245 21Y12; /21 ; —;(a"m“)e
am(m®—a®+ a.”ma)'f'

b em
6(¢ + ) V{Ba(e +a)}; b?ﬂ/n; oy (a®x)

2’ (a~z)?
~ers b+ 2)(c + 2)¢Y

9. 3Y/3 is the greater; 24/11 is the greatest, and 3421 the
least. -

10. 504/2; 4y/3 + 24/15.

11, 847 - ¥3; (3ab2+2a2-i';)w7c
12, (2uPb™ + 3a%" — )Y aBhs

13. 1542 60y/2; 70y15; 24%17750
14. 4Y32; 280f/a; 2y10aa; W15
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.‘i5. J!y (asbecﬂzﬁyizS)T]Y; z 3 ¥ y%
16, 44/6 + 612 ~ 1615 - 1235 ; 34/30 +4/6 ~ 24-84/5
1T 34/6 ;5 f5v14; 3/10; #4130
4

3axr

—— — 1
19. 10; 24/3 ~ £'%/5038848 + "%/064467; = V(@™ i)

18, 48/648217; %%/2000; §4/96 ; N

20. ~295 1 - 42; 2505; - vibw
24/10 + 64/3 + 24/15 + 94/2 ;
3. Ay (a5 - 2y3y; VLT VBT IS 05,

34
144/6 +8y/ 21+ Ty 22 + 4y 7Y
—28
22. 3¢/ 3 + 34z .a - 24/am +m 3042 + 24 /15 + 304/3 + 36410
H
3-x a~-m H -19
93, ¢ - A\/F—- ¢ -2z -1
z+1
24, 24/3+ 4/30 — 3¥2  264/3 - 274/6 + 5145 — 136 .
12 ! 92
136 - 34/3 + 254/6 — 144/2
73
Exgroise XLV.
L 1+y5 5. /62 9. ya1-1
2. {7 =5 6. WT+414 10, atb+ya-~b

"8, 34126 + %1/2 7.% (v +v2) 1L %—(455+43)

4. 422-1 8. 5-3y2 12. §(b% + yaP =b%)

Exrroige XLVIL

LA1B -2 2. 420445 s 44+Hs 44842
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1. 8)=3; Za+(4b+q/c)x/-j

ANSWERS TO EXERCISES.

Exercisg XLVII.
9.~ 44/~ 1 — 1042

('*/57*' 1/7+x/1_l)1/?1 10. /3 -4/ -5
34423, 11 342 4 4= 2; 342
50 12, T+ 34/-2
—29- 66 13. 1+ -2
2= 455 L 14,2 — 4/~ 3
- 3BT 414~ 1 -1 15, a*4 bt
a’= 2a4/-a-a
Exercisg XLVIII.
1. 4 8. 4 15. 81
b
2.6 9 % 15, 2029
b-c¢
da
3. 49 10, 72 4 17. 1§

WJa bZedq 24+ b —a\?
Yaxda N Tda e ( 2¢ ) -t
5 71 1q, T 2eb

i 2 oz 19. 2a
a azb? a (m?+ 1)
6 — 13, ——— ——
(Wa-1)? (a-b)?
N (a-1)3
Tikv-3 Wog—
Exzroise XLIX.
. 20 <
L3 6.£5/-1 1Lt V3
2. 1} To+2 12. +(d—b—1>£
"\ 3au-c¢
3.43 8. 16, 13, 3(“21)¢
3 +a?
4. ia_ 9 ia,\/a2+l M
o \/20-
6. +32 10. t4/2ab-b% 15, t 92

-2
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Exeroise L.
I.50r-9 8. 10 or -8 16, 15 0r - 14

2. 90r-1 9. 144/1~4a? 17. lor-12
3. 10or—2 10. Tor-17} 18. 0 or + 24/15 -8
4. 30r-15 1I1. 40r- 1% 19. lor— £ .
5. 50r-53 12. 20, \/ bHY bre
. Bor-53 4or3 1 3~ 2a 2f 2
6.30r1§ 13.3o0r} 21 mor-a
b 2(aE + b8y
7. 4%7or} 14, —or-- 22. a_"ji@fﬂ
¢ - Vab
16. 4orlorg (-344/~"1)or0.
Exercise LI
I.5or-5% 6:13or—3} 1l +4/9d®+08%=
2.150r =14 7. lor—+f 12. 3 or - 8
i c b
3. 50r-4f 8 or-— 13. (5 + 4/25 — 4n?)
— yJma NJmn
4, 250r 1 9. § (4+4/61) 14. morvm ¥on
1 2 N
5 Tor-17¢ 10. 2—_—'\/—30r:/—3_—2 15. 1 (a1 4/a? - 4)
16. 2 or - 2y
Exsrcise LIL.
La*+9x+14=0

S

~32% -6 +8z=0
3. 28 =132+ 362 =0
26 = 625 ~ 22z% 4 17428 —1032?% — 600x + 700 =0

4,

5. 16 = 2025 + 154zt — 59023 4+ 1189z — 1190z + 456 = 0
6. % — 145 + T6x* — 2062® + 283x% —~ 140x = 0.

T. 4 (3+4/ =15) 10. Oor2 44/~ 1

8. 3or~1 . 11, Oor5or—2
9 =101 6y ~5 12. 0or 20r=1]
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13. ¢ = 2. 14, c:cz-l-b:c+a‘-0

15, p*-2q; PP~ 4g; Fp (WP 2= 4Q); - ;(p’—q)«/p“-‘iq

Exercise LIII.

1. 64 o0r 4 2.8lor1l
3. 42 or +4/10 4. 9 or ¥/ 1681
5. 10 or - 2 6. + 4 or + }4/-62
7.3or§/m 8. 40r~1
9, 20r-3 10. 4 or T}
11. 60 or 235 12. 4o0r1l
1. 1,000 44/ =1 14. B or - 2%
16, 30r 44 =23 16. 3 or 2
19. 1,1o0r-2 18. +i-\/i-—4bix
-2 ¥ doa?
19. L (b £ /b% = 3ab) 20. 4or-5
a1, i«/—l;—l;i\/%aw?@ 15 4(144 T3) H(-144/ 5
22. 3,2,0r1 23.0o0r2++43
24. 4, 50r - 1 - 25, i
at+b-2¢
26. 1%, 1, 0r 2 27. (§fb - Ja)®
28. 2, h,0r } (9 £v/-31) 29. 4,9, 0r } (- 33F4/=67)
30. 1 ¢+ \/iv_e; 31. —(11 {(\/l_-l-—_uz—l)(\/l-—a.%l)}%

32. 6,-1,0r 3 (5434 ~3)

33. 14/ 8% +b* —dac-b i\/—s a2+2b2—4ac$2bvgaiﬁz—4dc
4da -

34. ta \/L(1+1/5)_

35. 4, +§v2or-§ 14y~ 14
36. 3a-1 ~

t'ﬁl_ a)(9a. 1)
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L F@ LV INor Gy = 1)

38, 1(9 + \/2712475) or %((9 + \/15 izﬁ5‘3))
89, £4/-1

40,1815 34 \/ 51+ 10 4/~3}

4L & (T4 - 4T)

— -2 44/ ~2
.42, 1 ahfbe, - q, or-; (344/5) 43.~%or ity -2

4 Qi -19) or iy - 1D)
45, i\/3“ i—_a~/a’+2a+_9_ where a = 4/3 =4/5

Exeroise LIV,
Lx=T;y=2
.x=13; y=8
z=bHor4; y=4orb
z=8orT7;y=-Tor-8
rz=+50r+8;y=+8o0r+h
.T=+8orE3 4~ 1; y=+3o0rtBy-1
z=1240r10; y=~y4 or 4
.z=Tor—-YTl§; y=4or-5}4
.xZ=1lord3; y=13%or-3
.Z=30r~1;y=lor-3
=32, 9=2 ’
.xz=3256o0rl; y=1or 256
.z=20r-46; y=3o0rls
.x=50r—9}; ¥=.3 or~6}
.xz=50rf;y=30r~1}
.z=2 4,00 3Fy21; y=4, 2,0r3 1421
sx=8orlys; y=38or—q%
.x=3TorFLly2; y=t4dort.} 42
.x=16;y=15
20, z=4or8; y=8qr4

I I I e R X
S W W AT; ORI N D O R Ok O
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21. x=3orlor2ivi—3§; y=10r30r2¥\/:—3_§

22. z=20rb; y=>5or2.

23. x =30r—~2 oré(l i«/::i_l_);y'-ZOr—?,or%(—1iV—3l)

24, x=3o0r4; y=4or3. ]

95. z=20r4or} (-13Fy31T); y=4or2or(-1314370)
26, z=46; y=14. ’

7. x=3or~15; y = 6 or 4}

28 x:";—(li¢3) or%(li W3);y= %(1 T v/3)

mo
or—2(1+»}m/3)

29. z=%+38o0r¥8; y=15

30, z=+2o0r4+3;y=+3o0rt2

31.z=+46; F4%; +78/3; or T 604/ 3; y=1+ 3 or 4393

3. z=5;y=1"

33. x=8o0r 152 F644/6; ¥y=4o0r40 1642

8. z=t3ort %(7_+\/§) or + %(2+«/2_2—); y=12or
3 3(T-4/23) or + §(+/22 - 2)

35,2 =4 (1944 105) or 3(~13 44/ =87); y = (3 +4/105)
or L(3 44/~ 87.) .

36. x=1or§/4; y=0 or }¥/4

3T o=ty -lort i{y3+ 43 +y¥B=1}; y=t4/—1or
+3W3+3Y9+43Y9 - 1}

38. z=4,-2,0r 1 +14/33; y=2,~4or=14 4433

T 18 44/551

39. z=9,4,0r 7 T13%4 -5l

3 Y=4,9, 017‘__2

40. =3 JYb(ya+t2 tya—2); y-+ b (W T 2% Va=3), where.

'\/7-7
a+ 2

ll':l

b=
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4l z=aor-datl)y=-¢a oriaéa/“—_(-m—_l)
2. x=tadt2; y=+ay (~1142)

43. =144 {17(® -9 £34/ 9 - 16a® + 2a8 } ;
y=-1r {6a3—3j;q/9—15a3+2a6}

m+a m-a J—
44, z= —iy= —2—,Wherem=i«/(i2v 2a*+2b* - 3a%)

45. x =+ ) (Ja2 - ARt 3P y=4} (W - ETYE+3cD)
a? + 4/3a* - 2b*

where ¢% =

46. c=+qleort Vi(-114-19);

y=+yl5ors\ 31 t 4/-19)

. z=lorlty -4; y=i460ri\/2i4vii
48.2%=144/ =97, 144 — 1,52 +4/2410 or 4 £ 4/10
P = elty=97, =1+~ 1,46 F /2410 or 2 F 410

Exeroisg LV.

1. 12 and 7 2. 10and 7 3. 52 and 40 rods
4. 17and 8or-8 and =17 5. 12 and 4 6. $90
7. 16 8. 862 9. 75; $3-20
10. 6 and 4 11. 10 and 14, or 84 and - 60
12, 3(1 +4/5) and 1(3 + 4/5) 13."4 yds. and 5 yds
14. 4 and } 15. 8 16. 3h. 23m
17. 144 miles and 180 miles 18. 16
19. 36 20. Coffee 121c., Sugar 25¢
21. B. 30 days, C. 36 days 22.10x10x 5

23, 15 m.; .4, 15 m. per hour; B, 10 m. per hour
24.°}1 4/5 and 3 (1 4£4/5) 25. Bacchus gh. and Silenus 3h

. ) Exsroise LVI.
1.1:d . 2. 1:¢e 3.x4+T:x+1 4, The former

be ~ :
5, The latter 6. P -fM.oC 8.b:atd



294 ANSWERS 10 BXERCISHS.

13.

O T W

10.
11.
14.
16.
18.

Exsrowse LVIL.
be - ud

b Te+d 4, +{6and+4 5. 6
2p 2p . io. & :
- — . 8: 0. $300 and $350
—2 and o 9.8:1% | $, $
33 14, 20n% : m?p ie. e¥a ~¢)
Exgrcise LVIIL
® =1y 8. % dz=tywy
36 6 349 2 g 5x? 9945
T 15+y IR A AT e Yoy e
IZ
y=be 10. 143
Exgrose LIX.
. 2883} n (n + 62) 2. ~ 1628; n(6n - 206)
- 238; 4(2m +p) + 3(2m +p)? 4, - 29}
. B60; 83; 3n -1 6. —1T; - 132; 8 - 5n
. 134; 211k; P (5 + 20) 8. 3+104 +18+ 25} +33
.9-6-21-36~51-¢66 :
~1+11% +24% + 36% + 49%+62§-+74% + 8734100
2701 : 12. 2n -1
at? 15. 39a; a(2t - 1)
+14,£10, 46,42 17. + 14, 10,4 6, + 2
1,8,5 7,909,153, 1 19. $1-00-54; 22. 11 .

23.

26.

S

12,

2)5,8,11,14,17,20,23,26,29,32,35 24. 11,10, 9,8, 7, 6, 5
n
b=c+2t 28.2-(27—71) 29: +1,43, 15
80. 2;4,6and 8, 0r8, 6,4 and 3

Exercise LX.

. 729; 1092 2. 256 ; 511 3. 18%; 36%
- 61445 — 4095 b - 123 ~ by 6. — 43 1088
-4 8, 1} 9. 4% 10. 423 11, 433

§ 13. 385 14. 8531 15, 3(3" ~ 1) °
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ait+P _ gP
16,30 {1= (=" 17 62(L+42) 18—
19. 1+ 24+ 4+4-+1%
20; 2+6+18+54+ 162 +486+ 1458 + 4374 +13122
21. 9+3+1+3+% 22,4, 24; 144 and 864
23.75; 10; 90 and 40 or - 15, 30, — 60 and 120
24. $180, $90 and $45, or $375, — $300 and $240

25, 2, 4, 8,12 and 16  29. 5, 10, and 20; or 462, — 23} ahd 113
80. 248 —
Exercise LXI.
1. (I) 113'9 111') %"11‘1 %’) %n ly—li—ili
() 35 6 7o 1o o 'fLﬁ L3
{ur) - i; LeLbhhh 10’;‘12‘
@v) -~ 237 ‘H‘; -2, 14, 1§, 1.) 34, 34, and 4t
QF: .sf; $3 Loy T Liy = 13; R
m-hH-b-hH-h =, tand
2. (1)2+2—§T+2§+2§+3
(w) 5+ 58 +55+64 +17
(m) 11 + 63+ 4% + 3% +3
av)2i + 109+2151+2%3§+3’}'
(M 6-=2-§~Fr~1 13
3. &) f,and rean B 185 1y and =,
5. 1y and 4 6. 2 and 1}
v ab . ab 8 __1_
"NMa-6b'b6(2~n)+a(n-1) Tom
9. 61;6; 6% 10. 5% ; 6; 48% 13, Half of the middle term
14, 18 and 2 15, 14 or % 16. 20 and 10

17. 90} and 4

Exsrcige LXIL

1. 120 2. (1) 1680; (i) 20160; (ur) 40320

3. 360360 4, 1367yrs. 222 days 5.n=6

6. Loss = $25465000 when the money is not paid till the end of
the period:-

Loss = $22536215 when the $5000 is paid down and placed

at interest for the whole period
T.2=6 .8 3634108800 ; 39916800 ; 1680 1729728
9, 2520; 778377600 ; 420 10. n =12
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Exerowe LXIII.

1. 120, 252; 45 2. 3003; 6435; 435 3. 792. 4. a=9

5. 439824 ; 52360 6. 30164400

7. 362880 or 181440 according as B, A, C and C, A, B are
regarded as giving A different or the the same neighbours

8.n=17 9. 15 and 6

10. (n~1lor} L'n_-i (See Ans. 7) 11. 637 12. 511

Exsroise LXIV.

1. 1 =3z + 622~ 10% + Izt - &

2. 1 - 2x + 322~ 42% + 52t ~ &

3. 1+ 2z 4 42% + 82® + 162* + &e

4. 1+5x+18 224 35 254 25 24 4 &

5.1 - 6z + 2722 - 108z% + 405z ~ &c

6. 1+ 10z + 60x% + 2802® + 1120zt + &c

T. 1+ 4% + 102% + 202° + 35a% + &c

8. 1 -2z - 22?2 — 42® - 102* - &¢

9. 1-%z+§a®— 4% 2%+ Lilat - &e
10. 1 - 3z - yi92® = 3452 ~ 18 dsuzt - &c
11. 1 + §z - g4a® + 1852 — 158052t + &e
12. 1+ 2 + 3822 + BAa® + 32824 + &o
13. &% + 3a72% + 6a~zt + 1047026 + 154628 + &o
14, @~ @ %2® + @626 — 0239 4 g lug12 _ g
15. @+ 2a-dat + 0%t & 408z + 5oSph +&e

$ 4 _16 6 .28 9 10 12
16. a —%a\’x“—ga]}z -3 a JB;; -y 3r - &e

- -5 -2 22 - <
17. a3~4a 36.7: + 100" 3 z*—20a331'z'6+35a%0-x‘3-—&c

.JG. . 4, -1 ST
18. «71 + 3 a 85 +%— a 175;5'%4.%‘1 a‘%x ;,i + -41575 (l_]fg.’c'?-} &ec
-~ ‘% 5
19. 0 dm” 4 I R +5 a'Laﬁm“-}x+ 19 g%

-28 -14
30 5yn 352

m_lfil a:g +

20. a¥ +3 a0 = B abeb 4 1§ g By 2 aP 2y go
- —32 ;
2l.ad + jad b 4 7 o} b2 + i a bz 4 B a8 bzt g



9

10.

11.

12.
13.
117,

19.

L= (22

- (=D

< (-1

8.11....(6+3 10472
(=D (———-————( r)> z"and - -, .- 2

4.1. "-3r '8
‘(_l)r( TX3"( )> nd_[—g:z:ﬂ

ANSWERS TO EXERCISES.

Exercise LXYV.
3.4.5....(2+7)

r
4.

z' and 2125

5.6..

r
)> z" and — 56z°

L\D

.5.8.. (37'— 1)>

r’.xaf &lld-,l—z—s-a:

48

and ~ — z%

G0 A 9009
T
256

LXZ"

T x 3" 729

L gL andag-6axb

. (_1)r<6.1.4....(5r—11)

fr 7 d 63
7 x 107 & T Aant- 50000 °
(r+1) 27 2" and 160z*

5.9....(3+2r) 385
- 15 2r - 8
(~-1) ( [F x3° )z and 216:

8
—a”"%z'%", amdaz—sa,sﬁ =4

; and 52% 2%
1024 14, 128 15. 0 16. 4096
The 4th term = 32 18, The 4th = the 5th = 4.

19702483
13th term 20. 9th = 1th = —- 0. o

Exeroise LXVL

l.2<56 2. x> 12 3.zc3
4, 25~10 6.z>aandgb 9.z=6
U
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11.

13.
‘15.
17.
18.

19.

20.
22.

23.
24.

25.
26.

ANSWERS TO EXERCISES.

Exgromsg LXVIL

n 2. -3—;- 3.1 4. 1§ 5. -2
2+ b a 3___@
i — . 9. -
EEBE TD o -8
Exercise LXVIIL
x =10, 23, 36, 49, &c
=%y=1  2.),. 3 g 13, 18, &c

=26,19,120r 5

= 2, 43, 84, 125, &c

z =12, 55, 98, &c
y = 6, 28, 60, &c
x = 5, 165, 325, &c

4. z=3andy=1
6.z=2andy=3
8. z=bandy=4

10, z=11andy=4
.’EZZ, 6’ 10, 14, &e

T
. §y= 1, 13, 25, 37, &e

y =1, 100, 199, &c

z=2y=3,2=4 4. z=11,y=38,2=2

45 16. 54

He pays 8 guineas and receives back 7 half-crowns

z = 2n and y = n?— 1 where 7 may be assumed at pleasure =
any integral number; and it will be found that 2® + 3?
is a square

nt 41 )

Y where # and y may be agsumed at pleasire

y = 3, 20, 37, 54, &c

x =

and it will be found that 2% - 42 i3 a square

98. 21. 109.

No two fractions with denominators 10 and 15 added to=
gether will make %%. Prove this.

The problem is impossibleé Prove this.

3,6,9, 12 or 15 £5 notes; 81, 62, 43, 24 or 6 £1 notes;
16, 32, 48, 64 or 80 crown-pieees,

22 and 3; 16 and 9; 10 and 15; or 4 and 21

8, 15and 6; 7,8and 9; or 11, 1 and 12
28. 2" x (2"* 1~ 1) where » may bo assumed = to any integral
number,
417

29.

30. 1 at $50, 9 at $30, and 90 at $2.
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MisceLLANEOUS EXEROISES.

i7-41a a
1'T 3. a+d 4.6— 5. x=1,y=5,2=9
— 1y
6. 3¥3 K t144-1 I 2"+142™"; 2’-a m}+a§
V2 _
12. 72? = 3zy + 4y? 13. g™+ + P oabe
14 4zt +yP 4 J oty o+ b% 4 20302 aBa®; g™t B 4 Z™yT g ayP
+yPra
15. 4 (89 = 17 4/15)
12z% + 1 4x2+2z + 1 L b
1329 1 s Tlesio1 18. z =~{a; (11) z has no pos-
sible roats  (ur) z= 12 4 4/269.
2abc 2abc 2abc
-20. T cvrbe—ab ¥7 be—ac+ab’”” “ab +ac - bc

21, 1. 23. (@P+aby/2 +b2)(a® ~ ab /2 + b?) ; (a? +ab 4/3+0b%)
o? — aby/3 + b?%)

24. yﬁ 25. G.C. M. =z - dy; l.c.m. = z* + da% = 27z%?

~ 34y + 56y* 4

26. §,=naor §,=0 or ¢ according asr = + 1 or~1,and n
an even or odd number , )

27. 4-9s per day  29. (1) 205934L; (1) 5%+ 41§ +4 + &e
(1) 9, 6, 4, 23, &c ‘

30. 110 x 50 31. (1) z* + 22%y + 32%° + 22® + ¥%;

59z% — 100z + 23
() Tz5 — 1428 + T2? + 33z —~ 32 e e B
(u) ™ - 14 g™ -8 4z™-6 4 2™ -1 4+ §e., rthterm = z ™ - 2 +
B2 (D5 + 3 (W) V2T Fl+yiz-1 38 150 @
| 34.1184040 35.2°-2+3z°2 86 lor} (-144/-3)
a bZ

A OR S e S L Al s
(@) x=0,10,40r-2;y=0,10~2or 4

38 3&11(13% 39. 3 +j§-7+~13r+‘3-+136'+'36«1+}

40. An identity

4L Oort (L43/=17) 42.ab+bctac v

B i+ fay -+ (p-m) 2+ (n-9) g, o1
192 - §ay ~ Joyt= (m +p)z + (2 + Qy
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z+ 7
4. — 45 (Di=aord; () x =% 46. z =1 3 or
L8 y=tdort il y3; 2=+ 200 T3 4T a® (b +1)?

48.

50.
63.
55.

60.

62.

G4.
65.

68.

81.
84.

81.

2. z~-a 73,

.U =

6561z1* — 256x°%y®

8; ~3; 5 . . E
z% ~ 222 + 3x7F 49, 107} ; 8157 + by ; 60%
A zZ+r+1
Any series having 7 =2 51. 1 52, —5—
z=3a—~bor3b-a 54 z=15; y=120
9
zt+ 4z + 35 2% - 4xy” + 3y°
3 3
e+’ <1 s |2 - b)
JJa® +3b%
% gt — BY
(@ +36% (11 jof = b
Aa®* + 30°
. T 58. 4a,% ba 59. (4at-'7 a%); (12¢*-a)

GRS b)? 30z — 23 z (2% + 1)*
T=g@spy Y= (@) 8L e ey aad
_a?-9z + 34 r 1y L
1 b— 292105 O v St i oEt

(1) 2™~ 3x™ Y7 4 2y (11) 22 _ g% 2P0 4 9ghg™ 4 b2
42% + 82% 4 16x + 32 ; 5a? b°— 3abt 6Y. 3,4, 5,6,0r 1
. 4507a — 3166
30 71, (1) o* —5a® + 2542 — 138a + 790 “TF#iba-4
() xt + 227 + 3 + 222 4 378,
36x% + 18z + 29
T lext-s8l

3 1 :
< ezt Yt 64z ~ 167yt + 36z%y— 729yg
.2 =34/3; y=242

Mz

4 b Iy
I c1 1220 (0 4/ 0%+ 4a% - 4ad
13y4 13%Y 80z=%1;2= )

2a (a = b)

Pyl
az:—b; 82. 2= (a4 b))z —c 83. axb+ bz + ezl
T~ a

Tiap 85 a%+pz+p® 86, A (2 - 52? - 26 + 120)
b-1 L]
88.%+7 9.By4in 2 Bin3 snd Cin

a+1

4 hours 91, z224+z-3

92.

1) 28y =z

-apga’® + (ag* "+ bpq ~ ap®) x* . (apg + bp* ~ bg?) z = bpg
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93. (1) Ua; (m) +4/T; () 6or-12; (v) x = 1 or £ 4/15,
¥ =50rk
. Z 2 %
94, zt-2%-N2?-112+42=0 95. m 96. (at+aby2+b)
(at = a®B%4/2 + b%)

afed = e = be b(cd-e-ad
98. 1A 5&m 99. z = <bc-tui ); Y < (bc-ad. ) ;
Problem indeterminate.

100. 3 (a-+b) 101 5% 4+ 1007 + Bz = 23 — o 0o 10

. : i - 2z +3

or 52 + 1022 + 5z — 23 — 61z - 5222 4 19273 + &

102. z —y; ify=1the G. C. M. is2* + 42 - 5

104, (& + amy/2 + m?) (a®-am 4/2 + m?) (a* + a® m? /3 + m%)
(m* — a* m? 4/3 + m?)

105. 1 106, 3

114. 0 115 Tz?+ Tay+Ty? 116, 2% 4z -1

117. (2z-1) (z + 1) (3z+2) (3z~2) and (2x-1) (z+1)
(25 F1) (22~ 1)

1+z+a? . X .
18, —mm——— 119. An indeterminate equation ;

-zttt
1-z-at+a an identity

123. 11,9, 7,5, &c  125. 3-2+ 4~ %+ 35 ~ &e

2618 12 391391 -18 2.5.8...(3r-1) -
. —_— v oy ——— : (-1) x —————
128 G561~ i~Teeaszs® 3 CUIX T @
129. %6 — 625 + 6x* + 302% - 512% - 24x + 44 =0
4bc —ad

130. § (-3445)" 18l ————

n+1
‘133. x=2,y=3,2z=4 134. o

135. 21 and 24 136. 1 14/19 137, 2 ="10,y =8

140. } {+4/4nab + (2=5)% - (a+b)} 141 hor} 142, 343
" a2 2 ]

W o2t e VU aeae © @i
3,3
145. b2-1. 146 %+z7. 147, a? 4 b3 4 ¢2 4 &

148, f{a (= +2)~1}. 149. a+b —c.
32~ dz -1
. - ——— e -3l 4 4t b T3 = 112t e &
150, 4= e y— ; 42— 3x a:
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151 1+r—-ad-at+ a8 +27 ~x% =20 + &¢
at + 2a2h% + b* i
prarr @-1)(-2)(~-3)

156. 1. They must have a common measure; 1. The coeffi-
cients of z must be=but of opposite signs,and the coefficients of z?
must be =, and also those of =" must be =

157. 25 158. 143243  159. + /3,010

1+P 2
TTCPEmIn (s
161, 4. M.=13%; G. M.=1; H M. =3} 163. 0; 217

25 3m-1

S-gmT 165 - - R D
167, =t + 2%y + 168. 43 169. 2¢ ~3b.  171. 5.

152,

160. z 55 VPr —1) (n-P)

164.

b (a+b) a
R SR . (= DY 4 2
172. ¢ or o h 173'a+ab+1 175, (= Db)Y +¢
14z - 42% + 14 2 («® - b%)
176. o+ 1 171, Zx 5 '(?4_—1')' 178. TERR

181. + 4/B(2 ¢ -b) 182, 64 or & H/7857  183. +4/ab
184. 5or6dd, 185, 42
- 186. A's rate 1st round is 10 miles per hour, 2nd round 12
miles per hour ; B's rate, 1T miles per hour first round, and 10
miles per hour second. Neither wins :
189, zf +xty?—x?yt—yS  190. %  191. ax’+ 2cyx 4 byt
192, 2™ + 1 193, x + 4 194. 12abc
195. (e+b+¢) (x+y+2) 196. 28 - 1224y + 48x%* — 6446 ;
a’ + b? 197, 26%0% + 20%% + 20%% — ot - bt~ b 2241 422
198. fa’yP—fay 1+ F—faly+ Bt 22— 2+ 3
199. 8z% + da¥y + 2% 2t + (1 - plas + a?
1200, -4 2*~1; a® ~ ¥ where p is the G. C. M. of m
and n . ’ :
201, ez’ - 2gfat - as® 4 202 zt — R gig? o a?y?
2d THy+2 T 3a
a+btctd 208. T-y+tz 4. e+ b
at
WEF ) 206. 2 207, 2%~ 2% — 2 5 227 —TEM

202. 1+

205.

a b c
b T "7
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209. —; 6or} 210, 2-140r-049; 3a=bor3b-a

21 ac+b c—-ab 3
l.z = T 2 y-mz,a:—ﬂ,or&y— or 4

be ac ab .

N2 w=ty=i—-, 2=+~ 213 4,15, B,31; C, 24

214, 117; §{n (R+ 1) +4-(2)"; 3W2+24/3 216. 51247
217. 0, 1, o (4 4 1 /754). '

218. 2n(4n+ 1) +5(1-16™); (2n+1)(4n + 1) +4{1 - (=52)4* *1};
(“n +3)(2n+1) + (1 -47*1); 2 (n + 1)(4n + 3) +

i {1 - (_ 2)4n+3}
219. 72 221. 90 miles, $2-70

222. x=0,0r 3 \/101/5—'70) org \/10429 46)01+3«/—

224, 1 —(m + 4/mE—n?) and—(m F/mE = nd)

I 4('m'i JmZ — mn) and 4 (m F /m* — mn)
225. Ages at first trial = 11 and 15
Throws at first trial = 66 and 90 feet,
And at second trial = 74 and 96 feet.

THE END.”™ ~



