

$\mathbb{R} \mathbb{P} \cap \mathbb{R}$

ON THE

SUPPLY OF WATEP,

OF THE

CITY OF OTTAWA.

BY GEORGE H. PERRY, C: E. YICE-PRESIDENT ASSOCLATION OF PROVINCLLI LAND SURVEYORS AND HMSTITUTE OF CIVIL ENGINEERS OF CANADA,

OTTAWA CITY:
PRINTED AT THE " TRIBUNE" BOOK PRANTING ESTABLISLIXERET',
1861.

Engineer's Office,

Ottawa, May 10, 1861.
" Sin,

I bave to hand you the accompanying Report on the Drainage, Macadamization, and Water Supply of the City.

From the necessarily large amount of figures inwolved, it occupied more time printing than was anticipated. An enumeration of the Plans, Sections and Drawings accompanying this Report, will be found therein.

There are also, copies of four Plans ordered by the Committee, viz.: one Plan of the City by Royal Engineers, date 1831; tro ditto, by P. L. S. Mc Dermott, dated 1845 and 1851, and one by J. S. Dennis, P.L.S., dated 1859.
I have the honor to be Sir,
Your obedient servant,
GEORGE.H. PERRY, C.E.

Jas. Skead, Esq.,
Alderman, \&c.,
Chairman of Water Works Committee.

REPORT.

The Geographical position of the City of Ottawa has fitted it to fulth the conditions of the high destiny awaiting the capital of the, as yet, undeveloped British American Empire. Situated at the confluence of two of the most important tributaries of the Ottawa River, on a commanding position of that stream, the day is not distant when the commerce of hall a cuatinent must be concentrated in the port of this city. The staple trade of the Provance already centres there, and the development of the immense manufacturing power and mineral resources of the valley of its noble river can be safely predicated upon as accessories to that importance in commercial affairs it is destined to accomplish, and whose establishment can hardly be called a work of time. The natural beauty and advantages of the site on whob the city has been bult, attracts alike the aitention of the statesman, the soldier, the merchant, the manufacturer, the man of science, as well as the sentimental lofer of the picturesque. The City was founded about the year 1827, by the construction of a military necessity-the Rideau Canal-the cause of which this City has been the effect-has no doubt bad much to do in its selection as the future capital of British North America.

The City of Ottawa is seated on bold limestone cliffs rising abruptly from the shores of that great River from whichiss name is derived. Its limits are defined on the East by the river Rideau, to that point at which the line which dirides Lots E and F , in Concession C and $\mathrm{D}_{\text {g }}$ in the Township of Nepean, leaves that river. This line forms its southern boundary, and passes across lot No. 40 in the same Township, to the line dividing it from Fot 39 . It then turns northpardly along that
line to the line dividing Concession A and the first Concessions and in Concession A, embracing the whole of the broken Lot No. 39, to the Ottawa River, including all the islands to the southerly end of the Union Bridge. Thence following the course of the Ottama, in the centre of the channel, to the western branch of the waters of the river Ridean, and thence up stream to the point before named, where the dividing line between E and F leaves the River.

This area, so enclosed, contains $1774 \cdot 0 \cdot 14$ acres, and the islands $36 \cdot 0.20$ acres, about one-third of which is partially built over.

It was incorporated as a town on the 28th of July, 1847, by Acts 10 and 11 Vic., cap. 43.

It could not be expected that a City which dates its existence from thirty-five years ago, should be in every respect as well prepared to rective the honours awaiting her as the Seat of the Government of the British dependencies in North America, as other cities whose matured age has given them the benefit of greater and more substantial improrement. Still, as a general rule, the adrantages enjoyed naturally are such as in a great measure to compensate tor the want of those artificial addrtions which a dense population and a large commerce requires. The increasing demands of the constantly accumulating population, and the necessity existing for preparing the City for the high position it has been selected to occupy, has called for some general and comprehenswe measure by which the extent of the improrements needed could be ascertained and their actual cost accurately defined. The first step towards obtaining this necessary knowledge was that of having an actual survey of the City prepared in the most careful and elaborate manner, and this bad become the more imperative because no actual plan of the City existed. It is true there were a goodly number of paper plans (i. e., lines of projection defining lot boundaries) in existence, but such a topographical plan as was actually necessary to define things as they are, had never been made. Well aware of the necessity by previous professional experience, of baving
this omission supplied in the year 1859; I addressed a communi-. cation to E. McGillivray, Esq., the Mayor of this City, pointing out what I thought sliould be done in a matter of this importance.
As it was late in the stason, (towards the close of September,) I did not press the matter on the Council, because it was not a proper time to commence a survey of the description required.. Although the subject was brought before the Council several thenes, no action was taken thereon till the mouth of August, 1860, when a contract for a survey of the City with a view to its. Drainage, Macadanization, and a Supply of W^{\top} ater, was accorded to me. This survey had been rendered maperatively necessary. by an application being made to Parliament for an Act to legalizea survey of a portion of the City, (late Ordnance property) by J. S. Dennis, Esq., P. L. S., of which notace will be taken in the proper piace, as well as for the purposes before mentioned. Fully alive to the importance of the great work cominitted to my charge, and having determined that it should be done to the best of my professional power and ability, I did not wait for the contracts to be signed, but at once proceeded with the preliminary, operations. I had decided on a Trigonometrical survey of the City, because it possesses many advantages over any other method, as it reduces the possibiity of error to a minimum, and furnishes so many mechanical checks on its Tlieoretical and Calculated elements, that no idea of an error of any consequence could be entertained. The City supplies twenty-fire Trigonometrical points, and the shores of the north site of the Ottawa River and islands in the same, fourteen, making a total of thirty-aine stations, a series of eight observations on the average at each station, from which every point in sight was taken, furnished a mass of data from which the frame-work of Triangles for feld use and proof were constructed, and on which the detail work was based. The extreme accuracy of this method may be illustrated by stating that the greatest difference between the calculated distance and that actually measered never exceeded a decimal of one-fenth of one foot in two thousand feet, and the calculations carried through the whole series of Trian eles from West by North-east and South, to the same line again, would olose tot be same decimal.

This network of Triangles formed, as before stated, the base of operations on which the details were founded, and the position of those details were ascertained by actual measuremeat of lines run between pouts on the various lines connecting each Trigonometrical station, thus necessitating the measurement of those lines and compelling an actual check to be placed on the calculated distances. Off lines, so chained, the positions of houses and all other details, were fixed also by actual measurement, and that operation has been performed on every Structure, Fence, House or Lot, in the City, as it stood up to 1st November, 1860. The true position of all details having been ascertained, lines of Levels were run through all the streets then open, and contour lines, beginning at the highest point of the hill immediately to North of the Episcopal Cemetery, along the edge of the Rideau River, to that pont at which the City boundary leaves, it on the South, to the head of the Bay at the Chaudiere. The survey was then laid down on a scale of 66 feet to one inch, and it covers 300 sq. feet of drawing paper. The sections of the streets cover 560 square feet of the same material, and have numbers representing the heights marked on all the ordinates.

The plans would have been finished at an earlier date, but a portion of surface contained between high and low water, at the foot of the clifts, of the utmost importance to the City at a future day, as furnishing sites for wharves, etc., could not be accurately got at till a few days ago.

The datum for all the sections is the sill of the lowest lock (guard lock) on the Ridean Canal, and the records of the rise and fall of the waters in the Ottawa River, which has been kept for a series of years by the officers of the Ordnance Department, will be available for determining actual high and low water.

OBJECTS WHICH THE SURVEY HAS ACCOMPLISHED.
The very accurate Topographical survey of the City now laid before you demonstrates the necessity which existed for a measure of this description. A glance at it will suffice to point out the difierence between the actual alignment of the streets and the
theoretical straight lines so prominent on all bitherto existing plans, while the disposition of the houses and structures shows a departure from the principles on which the streets are supposed to have been originally projected. In many cases the actual encroachnent of houses and fences on the streets is planly visible, but till this survey was completed, no remedy could be either devised or carried into effect.

Through the kindness of Colonel Coffin, I have been able to comply with the direction of the Water Works Committee, and have copied a plan placed at my disposal by that gentleman, made by J. S. Dennis, P.L.S., and sought to be legalized during the present session of Parliament.

I would recommend that measures be taken by the Courcill to establish the alignment of the streets, by, in the first place, having the survey now subnitted legalized, and, secondly, by having proper boundary marks of cast iron placed at the intersection of every street, to the lines between which, the front of all houses should in future be restricted, and not eren as much as a moulding should be allowed to project beyond. In the meantime, it would be advisable to allow such frame or other wooden houses as are now on the street to remain till removed by decay or otherwise. This, of course, only applies to cases where the houses are only three or four feet over the line and where the encroachment has not been recent. In placing the cast-iron boundary marks, they should be located on the outer edge of the sidewalk so as to be alike free from the obstruction of projecting house fronts and from the danger of being built over. In comparing the results of our survey with that made by Mr. Dennis, a deviation of some feet is apparent at the lower end of Cumberland Street, commencing on the West side of that street at tha junction of St. Patrick's Street and running to the intersection of Catheart Street.

Taking all the circumstances of the case into consideration, I am of opinion that the interests of the Clity will be best served by having a consultation between parties selected to act for the Corporation and the Crown Lands Department, or whomsoever they may delegate, for the purpose of settling the
alignment of the streets, and that the lines so determined on may be legalized; at the same time, such questions affecting private property as may be involved therein, can be quietly settled. But the great problem which this survey has solved, is that affecting those improvements demanded by the altered circumstances of the City. Foremost amongst them is the primary one on which they must be based-

THE DRAINAGE OF THE CITY.

Ottawa may be described as siluated on bold limestone cliffs sloping towards the Eastward, till, at a point where King Street intersects Rideau Street, it attains its maximum of depression, at an elevation of 70 feet abore low water in the Ottawa River. It ascends from that point to the summit of the ridge of sand hills immediately overhanging the Rideau River, when it attains a maximum elevation of 114 feet above low water. It woll thus be seen that the axis of depression takes the line of King Street, and governs the natural drainage of the whole City. The true principle involved in the consideration of the plan by which such an extensive system of drainage compelling the construction of expensive works, should be conducted, is that of making all the natural resources of the surface contour available. In pursuance of this purpose I would recommend the adoption of the natural depression mentioned as the best site for the main sewer of that system of drains which must pervade the City. Starting from a point on Hugh Street, 200 feet, to the south of the present Crown Timber Office, the direction of the main sewer will follow the line of Albert Street to the Basin at the Rideau Canal, under the botton of which it passes at a sufficient depth for security, and following the course of the present By-wash down Mosgrove Street to its junction with Rideaú Street, thence to the junction of King Sireet, along that street to the foot of Catbrart Street, and up that street to the intersection of Dillhousie Sireet, the line of which latter street it foilows, crossing MeFay 'Street and through the grounds of John McKinon, Esq., to the final outlet into the Ottawa. Into this main sewer
the whole drainage of the City will be passed, except that portion to the westward of the Concession line between B and C, Wellington Street, and the area between it and the River, together with the district known as Le Breton's Flats, those portions finding their natural outlet through the ravine at the latter place.

The superficial area on which the City of Ottawa stands is equal to 1829:0.19 acres, divided into five Wards, namely :

| Ottawa Ward contains, | $228 \cdot 1 \cdot 32$ | acres. |
| :--- | :--- | :--- | :--- |
| By Ward do., | $202 \cdot 0.35$ | " |
| St. George's Ward contains, | $484 \cdot 1 \cdot 25$ | " |
| Wellington Ward do., | $652 \cdot 2 \cdot 03$ | " |
| Victoria Ward do., | $261 \cdot 2 \cdot 14$ | ". |

There is thus a total area of $1810 \cdot 0 \cdot 34$ acres and $18.3 \cdot 25$ of Fater within the City Limits, from which the natural drainage has to be conducted; and if to this is added the sewage furnished by a population of 90,500 souls, or at the rate of 50 persons to the acre, we have a total quantity of $430,925,282$ cubic feet per annum, equal to nearly 819 per minute, to pass through the artificial outlets which must be provided to meet the exigencies of the case.

The method usually pursued in providing for similar contingencies is to assume that the rain fall over the whole area is equal to 39 inches per annum, and of this quantity 24 inches has to be disposed of as superfluous, the remaining 15 inches being (as ordinarily assumed) disposed of by evaporation. Thas rule is not of universal application, nor can it hold good amidst a dense population, simply because the area of Pondage is diminished, and therefore while two feet may be the average contribution of rural districts to the rivers and streams, that furnished by cities and towns must more nearly approach. three feet. In well drained cities, very little is absorbed by evaporation, and the true rule which should be adopted is to adjust the area of the sewers to dispose of the whole quantity, plus the sewerage contribution of the whole population, and in addition, to provide for contingencies
arising from sudden discharges owing to atmospheric aberation: In considering this subject, I have supposed that such a circumstance would occur as a rain fall of two inches in 24 hours, andhave adapted the sewers so as to accommodate that quantity as fast as delivered. The mainsewers as described, will be of the lengths and dimensions as follows: From Hugh Street to Basin 2,900 feet; Basin to Lock on Bywash, 845 feet; Lock to Rideau Street, 500 feet; Rideau to intersection of King Street, 1,900 feet; equal to 6,145 feet, with an arerage outfall of 35.23 feet per mile. The area drained by this portion of the sewer equals $893 \cdot 0 \cdot 52$ acres, and with the population as assumed (50 souls to an acre), the sewerage would equal 155 feet per minute, while the natural drainage would be 237 feet per minute. The dimensions of this part of the main drain $2^{\prime} .6^{\prime \prime} \times 3^{\prime} \cdot 6^{\prime \prime}$ will discharge with a depth in the drain of $2^{\prime} .3^{\prime \prime}=1536$ cubie feet per minute. For the proposed length of main, the accompanying sketch, plan No. 1, will show the design.

From the point where King Street intersects Rideau Street, to the font of Catheart Street, a distance of 2,680 leet, an enlargement of the sectional area is requisite. Because the rate of fall per mile is reduced, while the superficial area is increased to $1180 \cdot 3 \cdot 07$ acres, the outfall being only equal to 14.43 ft . per mile. The section of this drain shews an area of 3.6×5.0, and with a depth of 2.6 head in drain, the discharge is equal to $2352 \cdot 35$ cubic feet per minute. The sewerage due to the population is equal to 205 cubic feet per minute, and area 293 cubic feet, equal to 498 cubic feet per minute. Sketch plan No. 2 gives the design for this portion of the main sewer.

From the intersection of Cathcart and Dalhousie Streets, the main sewer, to its final embouchure at low water in the river, has a total length of 3,217 feet. The average outfall is 14 feet per mile, the capacity of the main drain has been enlarged to $4, \cdot 0^{\prime \prime}$ a $5^{\prime} .6^{\prime \prime}$, as the superficial area has also considerably increased, the drainage from an area of $1322 \cdot 1 \cdot 11$ acres, and sewerage from corresponding population, equals a gross amount of 787 cubicfeet per miaute.

From the cliffs below Mr. McKinnon's house to a point below low water mark, it will be necessary to build the sewer down an incline of 40 feet in 100 , and as the diseharge of sewage from so large a population mnst necessarily be offensive, it will be requisite to construct that part of the sewer with especial care; it should be set in cement, and carried down to a point below the surface of low water.

One of the great objects gained by delivering the sewerage of the City at the pint indicated, will be that of having it carried away at onee by the current; the evil arising from allowing it to gyrate for weeks in the various eddies sure to be encountered at any other point are aroided, and in a sanitary point of view, the importance of removing the filth of a large city cannot be aver-rated.

The capacity of the last portion of the main drain will be equal to the discharge of 3071.20 cubic feet per minute.

The rain fall due to the whole area to be drained, would only reach 356 cubic feet per minute, while a population of 65,000 souls, at an average of 30 gallons sewerage matter per head per daf, would furnish 431 cubic feet, making a total of 787 cubic feet per minute, or $\frac{1}{4}$ the copacity of the sewer.

STREET DRAINAGE.

The main sewer forming the natural axis of the surface drainage, the leading street drains are lateral to it, consequently the greatest length attained by any of these drains will not much exceed 3,000 feet, all the paraliel streets will thus have the smaller drains, as the disposition of the surface compels draining in the direction of the greatest outfall, the intersection of the lateral streets cutting up those parallel to King Street, into small blocks. Assuming a length of 4,000 feet as the greatest to be drained contimously, and the width of street 66 feet, and of lots on both sides 99 feet, $=264$ feet, which sum multiplied by 4,000 , will give an area $1,056,000$ square feet area, at 50 souls to the acre, the population would equal 1,210 , rain fall of 39 inches would give a discharge of $6 \frac{1}{2}$
cubic feet per minute; sewerage at 30 gallons per head per diem, equal $4 \frac{1}{2}$ cubic feet per minute, thus giving a total of 11 cubic feet per minute to be disposed of. The dimensions of the longer street drans being equal to 2 feet by 3 feet, with a depth of water equal to 2 feet, will discharge with a fall of 10 feet per mile 599 cubic feet per minute. For the cross drains, a mucb: smaller size will suffice, the dimensions according to drawing, will be $1^{\prime} .6^{\prime \prime} \propto 2^{\prime} .4^{\prime \prime}$.

The form adopted for the sewers is that commonly known as egg-shaped, because it combines the advantages of great strength and resistance to vertical pressure, as well as allowing the utnost scouring capacity, and consequently preventing the deposit of sediment. It is advisable to build the main sewer in stone to the springug of the upper arch, the baitom and sides of the sewer to that point being composed of.single brick, Jying as shewn in drawings. The upper areh or crown of the drain being of double brick.

The smaller sewers, street drains, manholes being built of brick set in cement; all the brick work should be set in cement. Gutter drains and house drains should be earthenware pipes, 6 inches in diameter. The gutter drains should be put in at 500 feet apart or to suit the blocks into which the city is divided. The manboles in the main sewer are to be 1,000 feet apart, and should serve as gutter sewers also.

Before closing my observations on this subject of drainage, x. would wish to enforce the necessity which exists for one uniform and comprehensive system as necessary to the sanitory condition of an increasing population, as it is imperatively demanded for the success and preservation of the works requisite to insure commercial intercourse.

The drainage of that part of the City innown as the Lower, Town is naturally defective, and the attempts which bave been: made to improve it are failures, because no proper outfall has been established for the desultory and ineffective measures underpaken. For the upper partion of this division of the City, an ous-.

Tall might be had by draining into the Rideau River, but all eastward of Dalhousie Street is under the influence of that stream at high water, and drainage to any beneficial extent could not be secured. The condition of the Rideau River itself is such as to ignore the idea of any attempted drainage in that direction, which could only result in converting it into an immense cess-pool. As the portion of the City lying along that river is little better than a swamp, and northward of Rideau Street it is the most densely populated portion of the City, the condition of its inbabitants can be surmised, but it requres actual experience to appreciate the discomfort endured in wet weather from its almost unLnown depth of mud, and the effluvia arising from its frequent stagnant pnols of water. The fearful prevalence of the smallpox during the last season is one of the many evils of a similar description due as much to the unhealthiness of a locality without effcient drainage, as to the epidemical characier of the disease. The funds of the Corporation have been wasted from time to time in desultory efforts at drainage, ridiculous in design, and totally inapplicable to the purposes intended, as well as utterly useless in the prospects of any general system hereafter to be adopted. So absurd is the manner in which the drains hitherto constructed in this city, have been designed and built, that a system of open sewers would be far preferable for all useful purposes. It could only arise from gross ignorance of the effects produced by the concentration of the sewerage of a densely populated neighborhood that drains built of loose stone covered with cedar, and without sufficient outfall would be allowed to be constructed at all, as the inevitable result must bave been to destroy the cellarage of the City in a little while, and to convert the houses mito recepticles for the worst kind of miasmas. In addition, the designs for those drains are the worst possible, a rectangular form being best adapted for silting up by the deposit of the heavier material held in suspension by the sewerage water, and it is only stating a wellknown fact to assert that nearly all those drains at present constructed are now silting up to a considerable extent. The conclusion which must be forced on the public mind is that a general system of drainage must be adopted ; that the first step in that di-
rection must be taken by constructing a main sewer, and that it will be more economical to undertake those improvements demanded by the altered condition of this City simutaneously, so that the laying of the pipes for water supply can be accomplished while the sewerage excavation is refilling, and the surplus being emploged to grade the streets, the macadamization may be completed immediately after.

Street paving and macadamization.

The next subject for consideration will be the Improvement of the Streets and Highways of the City. It is a well known rule that good roads are as necessary to trade and commerce as good markets, and it might be added that one of these conditions generally makes the other. At the basis, of any system of street improvement, the thorough drainage must lie, because it is ridiculous to witness the efforts mate to macadamize in what is literally a sea of mud, and the available assets of the Corporation are expended in fruitless endeavours to construct roads through a morass, from the surface of which they disappear the first wet day. The condition of some of our leading streets is proof positive of tiiis matter. It is a great mistake to suppose that a quantity of broken shale thrown over a thoroughfare is the proper method of construction. Jt is a mere perversion of terms to call such a proceeding macadamization. This at best is but squandering uselessly funds which judiciously employed would be a beneficial investment for the City. As remarked before, the first operation must be the provision for thorough drainage; the road bed should be then graded and suled. Whis last operation consists in covering it with stiff clay to a depth of diree inches; over that a layer of small boulders from three to five inches in diameter, should be placed, and the broken stone for macadamization to a depth of eighteen inches in the centre, sloping to twelve inches at the gutter, should be taid. The roud bed should be cast higher in the centre, at the rate of twelve inches in fifty feet, so as to allow a slope for the surface water to run ofl freely. Adrantage should
be taken of the inclination of the surface to construct the side draing with such an inclination to the nearest gutter drain as to prevent the possibility of overflowing; and the macadamization should follow the contour of the transverse section of the road bed, which outline should be carefully preserved in all subsequent repairs. The material used in construction should be hard stone; the limestone of this neighbourbood is too soft and friable, filled with sbale, easily disintegrated by atmospheric action, and crushed into plastic mud by a few days' traffic. The Nepean Sandstone appears to be a hard and curable material, and, if of the value asserted in the Commissioners of Puolic Works' Report, might be rendered available for the required purpose; but I should not like to recommend its use till after fair trial. But the common Syesite or Gneiss is incomparably the best material, and would be the cheapest, because the most durable. Still, macadamization is inadmissable where a large trafic exists, and other methods must be resorted to. The experience of all cities is against the adoption of macadamization as applied to great leading thoroughfares, and efforts have been made in many places to find a substitute in Asphalt, Wood Paving, Brick, and even Cast Tron, as a remedy for the inconvenience arising from clouds of dust or unlimited quantities of fine mud. After fair and sufficient trial, each of those experiments were discarded in turn as fallures, and the common stone block pavements of those road-makers of the anctent world-the old Romans-resorted to as the nearest approach to perfection, thus illustrating the sage observation of the wise king, that "there is nothing new under the sun." The method followed by the ancient conquerors of the civilized world, after a lapse of two thousand years, commands our admiration, because they appear to have viewed their Public Works as being built for the benefit of their successors, and therefore took every precaution to make them as imperishable as the material of which they were constructed. The use of wheel carriages not being as extensive as in our day, there was no necessity for observing the rules which govern modern road-making in so far as the inclination was concerned; but great care was observed in the construction. Although the grades might be inadmissable, still the structure
was without fault. It was in all respects a raised causeway; regularly graded, the bottom of the road bed formed of boulders varying from six to eight inches in diameter; over this was laid a bed of concrete, in which the rough blocks were firmly embedded. At this day, when portions of roads so constructed have to be removed for railway cuttings, the only method available is blasting, precisely in the same manner as of rock in situ, and portions of it come away, or are displaced, which must again be drilled and blasted before they are manageable.Modern practice in this matter of formation, has been modified for two reasons:--In the first place, the expense of setting in concrete would be very great; secondly, because the extensive use of wheel carriages, the consequeat economy of animal power allowing heavier loads than the ancients ever dreamed of, by the limitation to easy rates of inclination, involve an amount of wear and degradation by actual mechanical means, which the ancient roads had not to encounter, and compelling the comparatively frequent renewal of the modern ones. Those reasons rendered it necessary to substitute for the concrete some less adhesive material, so that the repairs needed might be accomplished without interfering with the integrity of the whole surface, and at the same time an efficient road bed in which the blocks would sit firmly, could be obtained. The usual method of building such roads at present is to place over the clay soling six inches of coarse sand, and on this to lay blocks of stone one foot in depth at least, and of as regular a shape as possible. In some cities those blocks are usually cut to a perfect cube of one foot; but my own experience does not lead to the conclusion that such a course is at all necessary. My specification for the construction of such a roadway would run thus: "The road bed to be "regularly formed as usual with an inclination from the centre, " of one foot in 25 , soling of three inches in stiff clay, smoothly "and fairly laid, six inches of coarse gravel spread over the "soling, and the stone blocks to be evenly and neatly laid in "same; one row through the centre of the width to be paved, " to be laid first-the outer rows on each side, next laid, so as to "act as curb stones, and the remainder of the block to be laid
"between, beginning from the centre and each side, so as to " leave one row as keystones. Care should be taken to keep the "upper surface as close to the sectional contour as possible, and " the true grade of the road on Longitudinal section, should be " preserved." The superficial area of such blocks should not be greater ihan two feet square, larger stones being liable to get out of position and to mjure the general structure.

I would recommend that from Union Bridge, through Duke, George, Wellington, and Rideau Streets to Rideau Bridge, this style of road making be adopted for a wiath of 20 feet in the centre of the road, as shewn in drawing No. 7. From the intert section of Sussex Street, to foot of Bridge at New Edinburgh, a similar construction is desirable. The remainder of those streets should lee macadamized with broken gneiss, and good gutters formed at the sides. The cost involved in this measure, alıhough necessarily great, will not be useless, because a roadway properly constructed after the proposed design, will last for many years, and will noly require partial repairs. The difference of cost between it and the miserable attempt at macadamization resorted to at present, is so small as to make it a matter of yery little importance in the consideration of this subject. I would propose that the remainder of the thoroughfares of the City should be macadamized with broken gneiss; but in no case should the native linestone be used. The constraction of gutters as shown on Section No. 10, is necessary; they should be formed of stones set edgewise. Curb stone, next street, should ne at least 2 feet deep; and great care should be taken in the construction to build the gutter with all the attributes of an merted arch. I would also recommend that flagged sidewalks be substituted in all the main thoroughfares for the present wooden apologies; and in all others, that gravel sidewalks be built, as shown in drawing No. 10 . Those walks should be formed in the usual way of preparing a macadamized road : the bottom should be composed of boulders to a depth of six inches, over this coarse gravel should be placed and levelled, while the whole should be blinded with fine sand. At the outer edge a heavy curb-stone shouid be placed, on edge of not less thon two fee: in depth by eight inches in spidth. The
sidewalk should have a surface inclination towards the gutter of siz unches in twelve feet. The cost will not be much greater than the present nuisances, and the advantages in comfort and a sanatory point of view, beyond all comparison. The great objects to be attained by a comprehensive measure of this description, are cleanliness, facility for traffic, and positive freedom from the calamities of annual epidemics, and with a proper supply of water, comparative immunity from fire.

The plans proposed for effecting those objects are in accordance with the natural facilities afforded by the situation of the City, and therefore at the minimum of cost the disposition of the main sewer enables three-fourths of its length to be constantly flushed by the waste of the Canal ; and the By-wash, instead of being a source of disease and a nuisance to the low-lying portions of the City, will be made available as a medium of cleanliness. The smaller sectional area of the main drain westward of the Canal, its great outfall, and the facilities which it affords for ordinary flushing operations, renders the consideration of artificial means to that end of only secondary importance. The Longitudinal sections of the streets will show that every advantage has been taken of the natural surface to prevent expensive excavation, and the best and most effective system of macadamization has been recommended as in the end the most economical.

I look upon the opening of Wellington Street and the erection of a new bridge as a substitute for the existing one, (known as Sappers Bridge) to be absolutely necessary. This would involve a large amount of excavation from the end of Elgin Street to the foot of the new bridge, and would necessitate the levelling of the whole area between Wellington and Sparks Street, at the point of junction. This Bridge should bave sizty feet of width between the roadways, and according to sketch shown in No. 9, should be one bundred feet spaa. It should be an Iron Lattice Bridge with Stone Abutments and Wing Walls.-Sketch No. 11 shows the plan proposed to adapt it to to Sparks and Weilington Streets. I would also advise the exoction of a new Bridge, according to design in sketela

No. 8, across the Rideau at the foot of Rideau Street.-instead of passing on the site of the present Bridge, it would be advisable to pass the new structure over the foot of the Island, and elevate it considerably: it should be of three spans of 180 feet each. I would also recommend a similar Bridge to be erected at the foot of St. Andrew's Street, passing on to the large 1sland in the Rideau, and across that to the Eastern channel, over which a single span will carry it to the eastern shore. The erection of the Bridge at the foot of Rideau Street will involve some excavation on the end of that street, which is provided for in the estimates, and will bave the effect of lessening the ascent. The reason for the bridge at Park Street is to allow ready access to the Wharf and Railway Station. It is a mistaken notion to suppose that confining the traffic of a county to a certain street in its market town is recessarily the best means of extending or rendering such traffic beneficial to the interests of all concerned.

The Report on Water Supply for the City has been prepared for some time, but from causes beyond my control, has not been submitted to the Council. It is now incorporated in this general measure, because it is in reality a part of it, and the construction of the necessary works can be effected more economically in conjunction than separately. One very heavy item of expense in laying the water pipes (viz., the cost of excavation,) can be altogether avoided by laying them during the progress of the drainage. I bare to direct tne attention of the Council to the fact that no answer to the application to the Government for the location of the Reservoir on Barrack Hill has been received, although three months have elapsed since the date of such application. It would be advisable that the Council take immediate action in this matter, and also in procuring a grant of the reserved lots West of Pooley's Bridge, as the site of the proposed Water Works.

SUPPLY OF WATER.

The last, but not the least, of those measures demanded for the health, convenience, and comfort, of the inhabitants, and by the altered circumstances and prospects of this City, is the supply of a suffient quantity of water for all purposes of domestic economy, cleanliness, ornament, or as an agent in the preservation of property from the ravages of fire.The consideration of the means whereby this want could be supplied has been deferred till now, because, without a thoroughly efficient system of Drainage, an abundant supply of water would be a mistake of the first magnitude, having the effect of converting a morass into a quagmire, and adding largely to the natural evils which affect the low-lying portions of the City. But while the consideration of the means whereby this desirable objeet could be attained, has naturally followed the more immediately important measure of Drainage, it does not necessarily postpone the execution of the requisite works when the time arrives for putting the whole plan irto actual operation. As intimated betore, all those works should be carried on similtaneously, as well from their actual connection as parts of the same system as from motives of economy, because by so doing the saving of at least $\$ 70,000$ will be cffected in excaration for laying the water pipes.

The position of the City of Ottawa naturally confines the consideration of a water supply within the limits of the simple application of natural motive power for that end. Seated on bold limestone cliffs, commanding the plains to the East and South, separated from the West and Nurth by a large River, the question of a supply by gravitation-if the means existed for such a measure -would present features of no ordinary difficulty. But the very reasons which militate against the application of the best and simplest of all powers for ministering to the necessities of mankind in this particular, enables the desired end to be attained by the application of machinery.

The City of Ottawa is founded on a delta formed by the junction of the Rideau River, the River Ottawa, and the boundary line which joins both Rivers on the south side of the City, defining its limits, thus forming a scalene Triangle, of which the longest side is that bounded by the Ottawa River. A short distance below the point at which the Southern boundary of the City leaves that River, its Folume is precipitated over a limestone ledge, forming the cele-
brated and beautiful Chaudiere Falls, which furnishes an inex: haustible supply of motive power, as well as abundance of pure water.

The Rideau River occupies the apex of the Triangle on which the City is built. It comes from the southward and dashes over the cliffs from a height of 50 feet, to its junction with the man river. It forms at this point a most magnificent cascade, strongly resembling at a distance a beautiful white curtain : hence its name. Its waters-derived from numberless marshes and swamps, subject tó frequent freshets from a clay surface highly charged with decomposed vegetable substances-is totally unfit for storage or distribution to supply the wants of a large population. It is also insignificant in volume, and its motive power within rasonable distance is absorbed by manufactories. In the consideration of a subject of such magnitude as the supply of water to an increasing population, four elements are necessary to the success of the measure-Practicability, Quality, Quantity, and Cost. From the peculiar circumstances of this case, the question of practicability is reduced to the very simple ore of applying the motive power furnished by the Chaudiere Falls to the purpose of pumping the water supplied by the River to a Reservoir for distribution.

The difference of level between the lowest water above the Falls and the same pitch below, is about 40 feet, while the same difference between the level of extreme high water at both places is reduced to 24 feet; in other words, extreme bigh water ahove the Falls rises to a height of 8 feet above the lowest summer level-below it, to a height of 24 feet. This singular difference is due to the width of the River being reduced from over $1 \frac{1}{2}$ miles to 2600 feet, and also from the vast volume of water passed into this romparativelp narrow channel by the Gatineau, Rideau, Blanche, La Lievre, and North and South Nation Rivers, as well :as the closing of the Chenaux Cartier, at Hawkesbury.

It is evident, then, that an immense amount of motive power is concentrated at the Chaudiere Falls, and its application to the desired purposes is one of mère mechanical skill and detail.

The range of cliffs on which Ottama is founded leaves the waters of that river at the bead of Wellington Street, turning sharply to the south, and continuing marked and distinct to the point at which they are crossed by the line forming the City limits, between lots 89 and 40 . From the foot of these cliff a large tract intervenes be-
tween them and the river. This is known as Le Breton's Flats, and with the islands adjacent constitute the manufacturing portion of the City. A large portion of this District is under the level of the waters at the head of the Chaudiere, from which it is separated by a ridge of limestone rock of no great elevation, through the eastern end of which the high floods of the Ottawa occasionally find their way to the lower level.

Indeed, this ridge is hardly 15 feet above the low water level of the Ottawa at the Bay, and gives additional proofs that before the limestone ledge which forms the Chaudiere Falls was degraded to its present height, the river fiowed over the whole of the Flats. From the head of the Bay, where the Concession Line \mathbf{B} and \mathbf{C} now touches the water, a ravine extends up to the foot of the cliffs at Pooley's Bridge, covered at high water to a depth of 10 or $i 1$ feet; and its course to the extreme east corner of the Bay at the head of the falls is ciearly defined. During occasional Hoods, the waters of the Ottawa find their way through this ravine, but in no great volume.

The course of the Ravine from the head of the Bay is nearly south. It turns sharply at right-angles, to the Eastward, before it reaches Pooley's Bridge, and again assumes a southerly direction to the Bay at the head of the Chaudiere. It is with its eastern Ttaverse we have to do, as between its southern bank and the junction of Duke and Queen Streets an open space reserved by Government for public purposes, furnishes an admirable site for the erection of the buildings and machinery necessary to make the natural motive power supplied by the river available. An excavation of 2000 feet in length through Queen Street to the foot of the Bay at bead of the Chaudiere falls, forming at once a mill lead and conduit for supply will enable advantage to be taken of the actual fall necessary for motive power, without fear of back water or any of these contingencies which might arise from the peculiar character of the river. At the same time, this disposition obviates the necessity for ex cavating a tailrace by using that portion of the Ravine lying between Pooley's Bridge and the lower Bay for a purpose to which it is especially adapted.

A further consideration of the question of practicability resolves itself into the application of the necessary machinery and pumping apparatus to the motive power, and the location of a reservoir for storage purposes. Having provided for the aecessary motor, the
question of lifting the supply of water to the requisite height ret solves itselî into one of simple Mechanics. I propose to erect two vertical iron water wheels, of 20 feet diameter, working on the gravitation principle, and 15 feet in width; four pumps, of four feet stroke each, with the necessary connections, air vessels, \&c., and a rising main pipe of 18 inches diameter, leading to a reservoir placed at or near the site of the Mlitary Hospital on Barrack Hill. The length of this main will be about 3,600 feet. The reservoir should be a parallelogram 250 feet by 200 feet, of a depth of 30 fect; and in its construction the only real difficulty in carrying out this portion of the general design will be encountered. As before stated, Ottawa is seated on cliffs of Trenton limestone-unfortunately not on the superior beds, but on the lower strata of that formation; and, as is well known, from up ceaval or other disturbances, such beds are broken, and traversed by fisures of every description, as well as filled with alternate layers of soft shale, the chance of finding a perfectly tight and sound bottom for a reservoir is small indeed. It follows as a matter of necessity that such a structure must be carefully constructed in all its parts, not the least important of which must, in this case, be the bottom. It will be necessary, therefore, to excavate over the whole of that area to a depth of at least 10 feet, and regularly build from that depth upwards. As I advise that this reservoir should have 30 feet of water therein, and as that height should stand above the present level of the surface, some idea of the magnitude of the proposed structure can be formed; and when its cost is set down at $\$ 169,173$, it is as small a sum as could be predicated upon with any chance of rendering it a serviceable structure for its intended purpose. To elevate a column of water 160 feet high and 18 inches in diameter, will require an engine of 58 borse power. To meet that; we have a pair of water wheels of 20 feet diameter by 15 feet wide, each furnishing 145 horse nower -a force capable of elevating the whole contents of the cistern in 24 bours to its proper height. Once placed there the question of distribution is one of mere detail, as its position would dominate by nearly 40 feet all other points in the city. Assuming the size of the reservoir as $250 \Perp 200$ feet, and allowing the gross area to be $=50$, 」 000 sq. feet, we hare to deduct from its sturage capacity the space occupied by its circumscribing walls, which will leave an area of $36,000 \mathrm{sq}$. feet, at 30 feet depth, equal to a capacity of $1,000,000$ cubic feet, or about $7,000,000$ gals. As the pumps, when working to their greatest useful effort, should deliver 75 gals. of water each at 或
stroke, and as they will make 12 strokes per minute, or 900 gals. dea livered per minute, it would require 130 hours to fill the reservoir with a single pump, working a pair, the same object could be attained in less than 80 hours. At a velocity of 90 feet per minute, the power required would be equal to that of 58 horses, reckoning the dynamic unit at $33,000 \mathrm{lbs}$. each horse power. With a velocity of 5 feet per second, and 16 feet of effective fall, each wheel would be equal to nearly 145 horse power. Having demonstrated the perfect practicability of the projected supply; the next consideration is the quality of the water and its adaptibility to domestic purposes. The River Ottawa furnishes án unfailing supply of pure water, unchanged in quality by freshets; and preserving its purity for a long period, deriving its source from and traversing a region of crystalline rocks; it is singularly free from taint by decayed vegetable matter, while the large and extensive lakes it traverses act as natual filtors for the deposit of any sediment it may have held in solution. It thus reaches the City so pure that the question of infiltration need not be entertained. Personal experfence has demonstrated its palatable and healthy qualities, as well as its thorough applicability to all domestic purposes, while the aid of the chemist enables us to perceive and appreciate the reasons of its superior qualities. In colour it is of a pale yellow amber, and its chemical composition is as follows:

Carbonate of Lime,	-	-	-	-	0.2480
", \quad Magnesia,	-	-	-	-	-6696
Silicia, -	-	-	-	-	-

0.6116

As none of the sewerage of the City will be discharged into the River above the falls, the water can be taken from the Bay, and with a little precaution, without the intervention of a supply pipe, from the mill-lead at the wheel-house.
The next question for consideration is that of quantity. A supply of 30 gallons per head per diem for a population of 25,000 , would equal 750,000 gallons. Allowing 250,000 gallons more for the use of the Parliament Building and for the City, to be employed for purposes of cleanliness or embellishment, we have a total of
$1,000,000$ (one million) gallons per diem to be supplied, giving the Reservoir a storage capacity for seven days. A single pump will deliver over one and one quarter million gallons in 24 hours, and as there is provision made for four pumps, casualties arising can be provided against and a constant supply kept up. But it is a question deserving the serious attention of the Corporation, whether it would not be advisable to obtain by purchase or otherwise a site for another Reservoir of similar capacity. Such site is avalable on the Sherwood property. I would earnestly advise the City authorities to obtain the site marked on the accompauying plan, on which the relative positions of the Reservoirs, Wheel-houses Mill-lead, and rising Main, are marked. It would be as well to observe that the proposed working power could be made available to its fullest extent, so that the question of quantity to be supplied is not of any seri us consideration: with the power at hand it would be a mere affair of expense.

The last element necessary to the success of this great measure is that of cost, and it cannot be said to be a very heavy matter when the prospective and peculiar position of the City is to be taken into consideration. Its greatest item, as before stated, is the construction of the Reservoir, but that is an unavoidable outlay it would be impossible to dispense with. I have made the calculations on an increase of population to 25,000 , and with an additional Reservoir the works will be capable of supplying water to double that number at least. I have estimated what I know to be ample sums for the construction of those works, and I hold tenders from mechanical Engineers in this City who are prepared to contract for the machinery and water pipes at the prices given by me. The advantage of having all the machinery constructed in this City is sufficiently obvious, and sho ld not be overlooked, as it is one of the benefits likely to arise from an extensive measure of this kind, calculated to develop the manufac'uring capabilities of this City, and to establish amongst us that mechanical superiority which our material resources demand, and which the progress of events assuredly requires.

The Estimates for the completion of this measure will be found appended, and it behoves the people of this City to see what the actual demand on their resources will be in connection therewith. As before stated, they are amply sufficient to meet the requirements of the design placed before the Council, and are not in excess of the demand. It is a subject of serious consideration for the people of
this City, that it be prepared to take the high position awaiting it, and that no mistaken economy will interfere to prevent the inauguration of measures imperatively demanded by the exigencies of this case. With the example before us of the cities of Gieat Bitain and the continent of Europe, the founders of those new seats of empire on the American continent, have an incitement and a precedent to guide them in adopting a different mode of procedure. Now is the time to establish an efficient system of improvements calculated to promote the comfort and sanitory condition of the people and facilitate the development of the commercial and manufacturing interests of the country.

COST OF CONSTRUCTION, AND DESCRIPTION OF WORKS.
The leading thoroughfare through the City is from Union Bridge to the Bridge over the Rideau River at the foot of Rideau Street. From East end of Suspension Bridge to West end of Bridge over Mill leads and Lumber Slide channels,-a distance of 332 feet,-this street must be paved twenty feet wide in the centre with blocks of gneiss laid on six inches of sand. The remainder of the width, forty-sir feet, should be macadamized. The substratum being rock, will not require any of the conditions demanded by other streets; and the situation of this portion of the City bring on an island, no necessity exists for taking its drainage into consideration. The length of the Bridge connecting it with Bridge Street, is 480 feet. It is a wooden structure built on stone piers with an average width of 18 feet, and should be replaced by a wider structure ; in fact, all those bridges should be 40 to 60 feet wide, but as it is in good repair, it does not seem necessary to include a new structure in the Estimates. From East end of Bridge to junction of Duke and Bridge Street, a distance of 460 feet , with a width of 60 feet, the paving, as described, being 20 feet wide; two flagged sidewalks of 12 feet each; macadamization of 16 feet. Duke Street has a length of 872 feet and a width of 60 feet, to junction of Queen Street; Queen Street from Duke Street to foot of Pooley's Bridge, 220 ft . length, 60 ft . width. Within 32 ft . of the East end of Pooley's Bridge, a bouse used as a blacksmith's shop appears by the boundaries to be on this street. Pooley's Bridge, a wooden structure 145 feet long and 24 feet wide; it is built on bents,
and is in moderately good repair. The roadway is about 30 feet above the bed of the Ravine over which the Bridge crosses. I would advise that this Rarine be filled with the debris coming from the excavatiou of the cliffs, a culvert of three feet diameter placed in the centre of the Ravine, and the surface levelled southward for 200 feet.

A street called Perkins Street is shown on some of the City maps as running from this point southward to Broad Street, neither of those streets are open, but the line of the Ravine through which Perkins Street runs, is the key of the drainage of the Flats and all that surface contained west of Concession B and C which cannot be effected by the main sewer. The area of this surface will be $34 \cdot 3 \cdot 3 \cdot 15$ acres, discharge from which will be 94 cubic feet per min., and from 17,000 inhabitants, 60 c. f. : total- 154 cubic feet. It is proposed to drain through this street iuto a sewer 2×3, and an outfall of ten fect per mile will give its discharging capacity, at a depth of two feet in drains, as 599 cubic feet per minute. This sewer is to reach to the head of the Bay, where a sluice is to be constructed to secure ample flushing power and an embankment drawn across the head of this Ravine.

Immediately adjoining the North East corner of this Bridge, a house has been built within the last three years.-Existing boundaries show this house to be on Queen Street, prevons to its junction with George's Street; but it is for the Council to ascertain what authority placed those boundary stones in position, or of what value they may be. As the house now stands, it is a nuisance, simply because it compels a turn at right angles on a steep descent, and must be remored either by purchase or other means, before the thoroughfare can be fairly said to be open. The house stands 65 feet from the end of the Bridge, and it leaves the approach thereto only 62 feet wide. From the Bridge to George Street, a distance of 65 feet-from thence to end of Wellington Street, 785 feet, the average width of the present street is 42 feet, but it must be widened to 66 feet at least. Wellington Street has open e length of 3680 feet, measuring from Dr. Hill's house to East side of line of intersection of Elgin Street and from thence to foot of proposed Bridge ovep

Canal and River 400 feet to be opened. The average width is 96 feet, of which 20 feet is to be paved and 52 feet macada; mized. Flagged sidewalks for the whole length are advisable, and I propose to raise the present surface of the street between Bank and Hugh Streets, on the arerage twelve inches. A similar elevation will be necessary between Metcalfe and Elgin Streets. From the Eastern side of the latter street it is proposed to excavate, as shown on Section No. 1, to head of proposed Bridge, and to adapt that Bridge to suit the traffic between both sides of the City, through Sparks Street and Wellington Street, The grade, as shown on Section, will give an inclination of 6.7 in 100 feet, the length of the structure constituting the Bridge will be 260 feet, and the embankment or filling to foot of present Sappers' Bridge shows an inclination of 5.5 feet in 100.The cost of this structure, with a Bridge span of 100 feet of Iron, Abutments of stone, Wing Walls, etc., etc., and filling, has been estimated. The total Iength is 320 feet. The iength of Rideau Street from present gate at foot of Sappers' Bridge to end of $_{\text {on }}$ Rideau St., is 6125 ft .; width 96 ft ., and 66 at lower end. Several obstructions occur in this street. On the West side of Nelson St., North of Rideau, at the junction, a portion of the fence of a lot owned by Mr. A. McGibney, appears to be on the street, and from, that point the true alignment of the street has been intruded on by houses and fences. It is proposed to pave 20 feet of the width of this street, macadamize 52 feet, and flag silewalks to junction of King Street. From the end of Rideau Street to present Rideau Bridge, a distance of 460 feet, the roadway must be widened and excavated, as shown in Section No. 1. A new bridge should be thrown across the River at this point, elevated considerably above the level of the present Bridge, so as to reduce the ascent. The cost of this is also estimated. This excavation should extend from the head of the Bridge to Wirtemberg Street, and the rate of meclination should be $4.7^{\prime \prime \prime}$ in 100 feet. The present surface should be excavated to an average depth of $2^{\prime} .6^{\prime \prime}$ from Cobourg to Gloucester Street, and filled from thence to King Street, an average depth of 18 inches, from that street to Ottawa Street, a filling of the same depth will be requirec. This is shown on Street Section No. 1.

The cost of all those improvements will be shown in the following details, and I am convinced are amply sufficient for the purpose.

DESCRIPTION OF STREETS TO BE MMPROVED.
Sussex Strieet.
This street joins Rideau Street nearly at its north-western termination and runs for a distanee of 2937 feet in a northerly direction, to a point at which it is intersected by Bolton Street, opposite the site of the Soap Manufactory. Its width is 66 feet, and it is the most westerly of the streets of Lower Town parallel with the anticlinal axis of the Oity at King Street. As far as its drannage will be concerned, it may be said to be adapted to the purpose of a catchment drain, or rather a series of such drains of stin' 1 length, its natural outlets being the lateral streets east of King Street. It is the naturai highway to what must become the future port of this City, and the Railway Terminus; as a consequence a thoroughfare of great importance, and must be paved and improved as provided for in the Estimates. In connection with this subject of Paving, I would recommend that all street crossings be paved with blocks similar to that recommended for street paving. The sidewalks should be flagred. The plan proposed will not materially interfere with the present level of the streets or its alignment. The proposed sewer will be at an average depth of tên feet below the surface of the street, affording ample drainage, and its dimensions should be $1^{\prime} .6^{\prime \prime} \times 2^{\prime} .6^{\prime \prime}$, as shown in drawings, with earthenware pipes of six inches diameter inserted opposite each house and at each gutter trap. Such traps should not be less than 500 feet apart; and should be constructed to suit the climate. The existing grades of this street will not be materially interfered with.

Metcalfe Street.

Metcalfe Street runs from the north end of Sussex Street in an easterly direction to the Rideau River. Its total length is 2,590 feet and its width 60 feet. At the Eastern end it will require heavy filling, but this operation can be cheaply effected by the spoil of the main sewer which crosses it under Dalhousie Street. It is proposed to pave, macadamize, and flag the sidewalks of this street. From its limited area its drainage will be effected by the small sized sewer. It is hardly built upon, and its principal importance is derived from the Railway Terminus being at present located at its southern
end. It is the second outlet the city possesses in an Easterly direction.

McKay Street.

This street is 870 feet long and 60 feet wide. It joins Metcalfe Street on its Northern side and terminates at the cliffs over the Ottawa River. It appears to be the extreme Northern termination of Lower Town, is not properly opened, and can hardly become of sufficient importance to make it a subject of special care. There is provision for macadamizing and supplying it with gratel sidewalks: Its draining will only require the smaller sewers.

Baird Street.
Baird Street extends from the norta end of Carleton Street, in a westerly direction, to the Ottawa River. It is only open to Anglesea Square-a length of 797 feet, with a width of 60 . The calculations for macadamizing and improving this street will be found in the proper place. Its drainage will be effected by the small sewer.

Redpoth Street
Extends from 'the undivided space on the west bank of the Rideau, between King and Carleton Streets, to the south end of Anglesea Square. A house stands nearly in the middle of this street, which must be removed. The length of this street is 1387 feet, width 66 feet. It is contemplated to macadamize and drain it as proposed. For cost, see the estimate. Its small superficial area will only require the small drain.

MoTaggant Street.

The Ottawa and Prescott Railway occupies the centre of McTaggart Street. Both sides of this street must be improved. Its width of 66 feet will permit 20 feet of clear space being left to the Railway, which will leave 23 feet to each side of the street availabe for roadway. Its length from the Bridge to Terminus of Railway on Metcalf Street, is 2080 feet. Its western end towards the rivel is not opened. The side-walks on this street will be 10 feet wide. There should be a good, substantial posit and rail fence placed along the Railway, separating it from the street on each side. As the main drain nearly bisects this street, its sewage will only require one -of the smaller drains to discharge it.

Boteler Strect.
Boteler Street starts from the west bank of the Rideau, and runs to the cliffs over the Ottarfa, intersecting King, Carleton, Dalhousie
and Metcalf Streets. Its western end, beyond the latter street, is not opened. Its length to Metcalf Street is 2266 , with a width of 66 feet. Between Dalhousie and Metcalf Strects a good deal of filling will be required, and can be easily obtained by depositing the spoil from the main sewer where necessary. Provision is made in the estimates for macadamizing and improving this street. Sewerage of the smaller class, as it has the same relation to the main sewer as McTaggart Street.

Bolton Street.

Bolton Street, from the open space on the west bank of the Rideau to its point of intersection at the junction of Susser and Metcalf Streets, measures 2582 feet in length, by 66 feet in width. It intersects King, Carleton and Dalhousie Streets, and will be improved as proposed in estimates. Its drainage will be effected by the smaller sized sewers.

Cathcast Street,
From the west bank of the Rideau to the point of intersection with Sussex Street, measures 2638 feet, by a width of 66 feet. Its alignment is interfered with by houses being built on the street, as can be seen by reference to plan. Its southern side appears to be the boundary of the late Ordnance property in the city. Provision has been made for the improvement of this strest by macadamization. Its drainage will be effected by the main sewer, which passes for 1100 feet along its lower end, and by the smaller sized drains above and below the part where that sewer leaves Eing Street. This street intersects King, Cumberlanáa, passes along the south end of Cathcart Square, and intersects Dalhousie and Sussex Streets. Its upper end, beyond the latter street, is not open.

Eolton Street.

This is the second street of the same name in this end of the city. It is the first on the late Ordnance property, and extends from King to Sussex Streets-a distance of 2400 feet. Its present width is 62 feet, although it appears to have been originally laid out much wider. There are strong reasons for supposing that the original boundaries of this street have been removed within a very short time, and the alignment of the street altered thereby. It is also alleged that the lot boundaries or lines are also altered; but from whatever cause it has arisen, the alignment of the street-especially on the North side-has not been preserved. If these houses on the south side are built on the original line, the true alignment of the street is preserved on that side; but it is evident on the north side
this is not the case. The boundary stone on the north-west corner of this street has been (as alleged) removed $2 \frac{1}{2}$ or 3 feet eastward of its original position, and four feet southward. There is also a house at the north-east corner of this street, at its junction with King Street, which is nearly 10 feet on the street, and also on King Street.
The improvements contemplated in this street are comprised in its macadamization and drainage: for the first a provision is made in the estimates, and for the latter a sewer of $\&$ a 83 feet will be amply sufficient.

St. Andrew's Street.

From Sussex street to King street, a distance of 2178 feet, St. Andrew's street, with a main width of 62 feet, is in every respect similar to Bolton street, with the exception that the actual alignment of the street has been preserved. The singular appearance of the block bounded on the south by Rideau street, on the east by King street, on the west by Sussex street; and on the north by Cathcart street, cannot fail to attract attention, as much from the diversity of the widths of the streets as want of uniformity in the dimensions of the lots. The frequent complaints made of changes in boundaries, and the uneasiness felt by the owners of the property thereon, as well as the extraordinary appearance it presents, leads to the conviction that some great blunder had been perpetrated in the original surveys. The only way in which any dispute which may arise from this state of things can be settled is by reference to original plans, if such exist, or by compromise, in which public and private interests will be conserved by matual concessions.

Provision has been made in the estimates for improving this street by macadamizing it and by draining. This latter object will be effected by a sewer of the dimensions of 2 feet by 3 feet.

Park Street.

Park street is merely a continuation of St. Andrew's street, from King street to the Rideau River. It is 1871 feet in length, with a width of 62 feet. It is to be macadamized, and drained by a sewer 2 feet by 3 feet. I have proposed to erect a bridge from the end of this street to the Island in the Rideau, and make a road over it, with another bridge over the eastern channel-ihus adding another outlet to the Lower Town.

Ohurch Street.
Ohurch street, from King street to Sussex street, measures 2188
feet. Its width is 62 feet, and it requires to be macadamized and drained. The necessary provision is made in the estimate. The sewerage will be 2 by 3 feet.

St. Patrich Street.

From its intersection of King street, St. Patrick street measures to Sussex street 2183 feet, with a width of 62 feet. It is similar to all the streets before enumerated in physical aspect, but presents a more densely populated neighborhood. It is generally in a wretched condition, in consequence of the want of drainage-an evil which affects the whole district under consideration. Provision is made in the estimate for the necessary improvements. The drainage will require a sewer of 2×3 feet.

Ottava Street.

Ottawa street is a prolongation of St. Patrick's street, from King street to the Rideau. Its length is 2820 feet, and width 66 feet. It furnishes presumptive evidence of the conclusion arrived at when describing St. Andrew's street, and induces the suspicion that those streets had been originally laid out at a width of 66 feet. The population on this street is sparse, and it presents all the features of a suburban street. The estimates detail the cost of its improvements. It will require a sewer of $2 x 3$ feet.

Munray Street.

From Sussex to King streets, a distance of 2183 feet, Murray street measures 66 feet in width. It intersects ${ }^{\circ}$ Dalhousie and Cumberland streets, and will not require much surface change. It is to be macadamized and drained. For the latter operation, a sewer 2 feet by 3 will be requisite.

Olarence Street.

Clarence street measures 2183 feet in length, from Sussex street to King street. It is 63 feet wide and will require the usual improvements. Its drainage demands a sewer of $2 凶 3$ feet. Parry street is a continuation of this,street, and from King street to west side of Anglesea Square is 1363 feet long, and $64 \frac{1}{2}$ wide. It will require similar improvements, and a drain $2 \Perp 3$ feet, as it is in a neighborbood of no great elevation above King street.

Fork Strect.

From its junction with Sussex street to King street, York street measures 2180 feet, with a width of 132 feet. It will require the
improvements detailed in estimates, and the capacity of its sewers must be equal to a drain of 2×3 feet.

Some of the lots on the lower end of this street appear to be in a confused state; and it is alleged that they are more complicated by recent surveys.

George's Street.

George's street is 1690 feet in length; It extends from Sussex street to Cumberland street, and has a width of 125 feet. It intersects Dalhousie street, and is disfigured by an Engine House which stands in the centre, opposite Mosgrove street. The waste water of the Rideau Canal is carried down this street in an open channel some 10 or 12 feet wide to Dalhousie street, where it is passed under a bridge and through several lots into York street, near its junction with King street. George street requires a drain of 2 feet by 3 feet for its sewerage.

Dalhousie Sirreet.

From Rideau street to McKay street, Dalhousie measures 4213 feet, with an average width of 58 feet. Its course nearly north and south, and parallel to Sussex street, being situated on the slope of that hill to which Sussex street may be said to act as a catchment drain. The improvement of Dalhousie street is by no means a diffcult task, as alk the lateral drains between King sireet and Sussex street have sewers of comparatively large area; and as those streets intersect Dalhousie street, all portions of it south of Cathcart street will only require a drain of 1.6×2.6 feet. North of Cathcart street, the remainder of Dalhousie is occupied with the main sewer.

The contemplated improvement in addition is macadamization.

Cumberland Street.

Cumberland street measures, from Rideau street to Cathcart Square, 2614 , with a width of 58 feet. Its general outline is level, as it lies nearly at the foot of that elevation of which Dalhousie street occupies the slope, and Sussex street the crest. Its drainage from Rideau street to York will be effected by 2 drain of 2 \& 3 feet. From that to its termination at Cathcart Square, drains of 1.6 m 2.6 feet will be sufficient. It is to be macadamized and improved as provided in the estimates.

King Street.
The anticlinal axis between the cliffs overbanging the Ottawa, and the range of sand hills above the Rideau River, from the western
bank of that river a short distance above the Falls, holds a southerly course to Rideau street. Along the bottom of this valley Bing street has been laid out; but the range of heights bordering it on the east sweeps around to the westward, and are prolonged till merged in the cliffs overhanging Le Briton's Flats, below the junction of Maria street with Concession B C. King street, from its junction with Rideau street to the banks of the Rideau River, measures 3926 feet, with a width of 132 feet. Its improvements will consist in macadamization and drainage. This last will be effected by the main sewer to the junction of Cathcart street, and from that point by a sewer 1.6×2.6 feet.

This street commands the drainage of the whole city; and particularly that portion of it contained between Rideau street and the delta formed by it and the Rideau and Ottawa Rivers.

The whole of the district within these lines require effective drainage, because the lower and more densely populated portions are without sufficient outfall. It is a curious fact, that the low lying portions of every city are always most densely peopled-as if miasmatic influence possessed attractions which were irresistable.Whatever may ba the cause of this strange anomaly, it is certain that the fact to be dealt with is one of the utmost importance in a sanitary point of view; and that is, the effective drainage and improvement of this part of the city cannot with safuty be postponed any longer, and the construction of this main sewer should be underyndertaken as soon as possible-because every month is adding to the accumulation of filth in and about those low lying districts, and the state of the streets and thoroughfares is a disgrace to any community. No remedy short of thorough and effective drainage will suffice to rectify this state of matters.

Oarleton Street.

Carleton street may be said to leave Cumberland street at the junction of Catheart street, forming with the latter the east and south sides of Cathcart square. Its length to Metcalf street is 1820 feet, with a width of 66 feet. Its improvements consist in macadam. ization and drainage. For the latter, a drain of $2 \star 3$ feet will be required.

St. Paul Street.

St. Paul street extends from the east bank of the Rideau Canal to Nicholas street-a length of 912 feet, by 58 feet in width. It is to be macadamized and drained. The semer should be $1^{\prime}: 6^{\prime \prime} \mathrm{ft}^{\prime} 4^{\prime} 7^{\prime} .6^{\prime \prime}$

Besserer Street.

Besserer street, from the east side of Nicholas street to the bluff over the Rideau River, measures 5300 feet in length, by 58 feet in width. It intersects Ottawa, Cumberland, King, Nelson, Gloucester, Chapel, Agusta, Cobourg, Charlotte and Wurtemburg streets. Its natural outfall is towards King street, although from the intersection of that street it is located on a plain at a considerable elevation above it. To grade this street properly there will be a good deal of cutting and filling, which is provided for in the estimates. Its drainage can be effected by sewers of $1.6 \Perp 2.6$ feet.

Daly Street.

From Nicholas to bluff over the Rideau, Daly street will measure 4880 feet. From its position on the crest of the plain on which Besserer street is situated, the improvements of Daly street will be much easier effected. It intersects the same streets as Besserer, and its drainage will demand the same sized sewers, 1.6×2.6 feet.

Stewart Street.
Stewart street measures, from Ottawa street, 4680 feet to bluff over Rideau. It is 56 feet wide, and in every respect similar to Daly street

Wilbrod Street
Wilbrod street measures, from Ottawa street, 4160 feet; is 58 feet swide, and similar to Stewart street.

Theodore Street.

Theodore street, from junction of Nicholas street and Gloucester Road to bluffs over the Rideau, measures 4440 feet; is 66 feet wide, :and similar to Wilbrod street in improvements. The population of these streets are very much scattered, but they cannot fail attracting inhabitants as other parts of the city becomes filled up. The size of sewers for this street will be 1.6×2.6.

Gloucester Road.

The Gloucester Road runs from the junction of Nicholas and Theodore streets to the City limits, a length of 2985 feet, with a width of 45 feet. It should be well macadamized, and drained by open water-tables or side-drains running into the ravine at the dam near the City limits. The road bed should be raised at this point, for which provision is made.

Nelson Street.
Nelson street, from Rideau street to Ottawa street, measures 1523 feet; is 58 feet wide, and requires macadamization and drainage. Its outfall is in direction of Ottawa street, and it is intersected by Parry street. A drain of 1.6×2.6 feet will suffice for this street.

Gloucester Street.

From Rideau to Ottawa streets, a distance of 1526 feet, Gloucester street is 65 feet wide. Its improvements consist in thorough drainage and macadamization. It is governed by the same law that prescribes the size of drains for Nelson street.

Chapel Street, Augusta Street, Cobourg Street, Charlotte Street, and Wurtemberg Street are not yet opened. It is not necessary taking them into account, because they belong to the same general design, and are governed by the same laws as to improvements and drainage outfall. In fact, the cost of a rod of macadamization or drainage in any of these streets east of King street will accurately measure the cost in the next street, and in every street so situated.

Streets South of Rideau.

The peculiarity of surface which maies King street the anticlinal axis of the City of Ottawa where that axis changes at the juncion of Rideau street, compels a similar natural division of the streets extending laterally from Rideau street, parallel to and beyond King street, so that the distinction into south of Rideau street may be understood as a natural rather than an arbitrary division, especially when the same streets are named on both sides of that thoroughfare.

From the eastern end of Rideau street to the point at which King street intersects, the natural drainage of the great plain on which the streets parallel to Rideau street are located, is to be found donn these streets through the lateral streets. Beginning at the extreme eastern end of Rideau street, we have Augusta street to the south, extending from Theodore street, and intersects Wilbrod, Stewart, Daly and Besserer streets. Its length, 1374; width, 66 feet.Drainage demands a sewer 2 feet by 3 feet.

Chapel Street.

From Rideau to Theodore streets, length 1872 feet; width 66 feet; requires to be macadamized and drained. Sewers 2 n 3 feet,

Gloucester Street.
From Rideau to Theodore street, length 1367 feet; width 65 feet; to be macadamized and drained. Sewers 2×3 feet.

Nelson Street.
Length 1372 feet; width 58 feet. Improvements similar in every respect.

King Street:
Length 1374 feet; width 66 feet. Improvements similar.
Cumberland street.
Length, from Rideau to Theodore street, 1365 feet; width 58 feet. Improvements, macadamization and drainage. Sewers 2 m 3 feet.

Ottarac Sireet.
Rideau to Theociore street, the length of Ottawa street would be 1383 feet. Improvements, macadamization and drainage. Sewers to be 2×3 feet.

Nicholas Street.

From Rideau street to junction of Theodore street and Gloucester road, Nicholas street mèasures 1384 feet, and is 58 feet wide. Improvements, macadamization and drainage. Sewers $2 \ltimes 3$ feet.

The excavation or filling for these streets is amply provided for in the estimates.

> Mosgrove Street.

Mosgrove street is some 400 feet in length from St. Paul to Ridenu streets, and 198 feet to the north of the latter street: It is 60 feet wide, and should be macadamized and drained. Sewers 1.6×2.6.

Little Sussex Street.
Little Sussex street, from St. Paul street to Rideau street; measures 367 feet in length by 33 feet in width. It should be macadamized and drained. Sewers 1.6 A 2.6.

William Street.
From Rideau to George streets 198 feet long, 38 feet wide. Macadamized and drained. Sewers 1.6×2.6. An extension of this street is desirable, from the north side of George street to the south side of York street.

Sparts Street.

Sparks street, from the Sapper's Bridge to George's street, measures 4158 feet in length, 58 feet wide. Between O'Counor and

Bank streets the grading will require to be raised; and from Bay street to George's street a heary rock excavation will be necessary to open the street. Both of these measures are provided for in the estimates. As Sparks street occupies the side of a hill, its natural drainage outfall is in the direction of the lateral streets, southward, or towards the upper length of the main sewer. As it will, therefore, be drained through Elgin, Metcalf, O'Connor, Bank, Hugh, Sally and Bay streets, a sewer of the smaller dimensions will suffice for its necessities-1.6 $\times 2.6$.

Queen Street.
The length of Queen street now open is equal to 2962 feet, with a width of 58 feet. Jt will require considerable improvement. As it is parallel to the main sewer, its drainage will be delivered through the lateral streetsintersecting it, and the dimensions of its sewer will be 1.6×2.6.

Maria Street.

From the east side of Concession B and C, at the junction of the Richmond Road to the limits of the Canal property, a distance of 4960 feet, Maria street is only partially opened. Its widh varies from 30 to 66 feet; and as it is paraliel to the main sewer, its drainage will bo delivered through the lateral streets. This limits its sewer to an area of 1.6×2.6. Its other improvements consist of macadamization.

Biddy'Street.

The length of Biddy stroct now open from Concession B C to Bank street, is 2458 feet; its width is 35 feet. As the property is not laid out in town lots, its improvements must be confined for the present to macadamization. Its drainage outfall is towards Bank street, and its sewerage will demand a drain 2 is 3 .

Centre Street.

The length of Centre street now open is 4195 , by 35 feet wide. It is in every respect similar to Biddy street, and will require a corresponding system of improvement and drainage.

Elgin Street.
From Wellington to Queen streets, Elgin street measures 530 feet by a width of $\check{\check{6}}$ feet. As it will carry a portion of the drainage of Sparks street, it will be necessary to construct its sewers with a view to that object; and, therefore, from its junction with Sparks street its sewers will be 2×3.

Metcalfe Street.

This street, from Wellington to Maria streets, measures 1330 feel; by a main width of 60 feet. It will require heary grading to pass it over the low ground between it and Maria street. Its improvements have been provided for-a large portion of its filling being derived from the spoil of the main drain. Its sewerage-as it will take a portion of Sparks street, and also a portion of that collected at and beyond Maria street-will be equal to a sewer $2 \infty 3$.

O'Connor Street

Is in every respect similar to Metcalfe street. Its length is 1820 feet, width 61 feet. Its drainage and general improvments will be similar.

Bank Street.

Extending from the City limits to Wellington street, a distance of 3050 feet, Bank street does not possess a natural outfall for drainage, but an artificial inclination can be had without any extra expense, because its ground surface is comparatively level. It is designed to conduct its drainage into the main sewer; and as it will be the recipiont of the drainage of a large area, the size of its sewers will be 2×3. The northern end will also be of the same dimensions.

There is a remarkable deflexion in the line of this street, commencing at Maria street and extendiug to Queen street. It will be necessary to widen this street; its present width below Maria street not being over 35 feet.

Hugh Street.

From Wellington to Maria streets, a distance of 1296 feet, Hugh street presents a width of 58 feet. It crosses the head of the main sewer of the City at where Albert street is projected to intersect; and its improvements are simply macadamization and drainage. As it is intended to carry the same area of drainage as other lateral streets, the capacity of its sewers must be of the dimensions of 2×3.

Sally Sireet

Extends from Sparks street to Maria street. Its improvements will be macadamization and drainage. Its outfall will be towards the projected line of Albert street, through which a drain of 2×3 feet will carry its waters into the main sewer. Its length is 1028 feet; width 60 feet.

Bay Street.
Bay street, from Wellington to Maria steeets, measures 1276, by 58 feet wide. It will follow the conditions of Sally street, as far as its improvements are concerned, the drainage outfall from intersection of Queen street lying through Albert street. Its drain may be 2 A 3 .

Richmond Road.

From City limits to Concession B C, at junction of Maria street, the length of Richmond Road is 3337 feet ; its width is 66 feet. It us the Concession line between A and the Eirst Concession, in the 'Township of Nepean; and from the line dividing Lots 39 and 40 , it forms the City boundary to its junction with the line dividing 38 and 39. It will require to be opened at the easterly end, where heavy rock cutting is necessary. Its drainage will be effected by Broad street, into Perkins street, and down the ravine into the proposed tailrace, below the present site of Pooley's Bridge. It will require a drain $2 凶 3$ feet.

Albert Street.

That portion of Albert street between B C and the Richmond Road finds its outlet for draining through the latter thoroughfare. It is 1010 feet in length, and 58 feet in width. It will require a drain of 1.6×2.6.

Victoria Terrace.
Victoria Terrace extends from Richmond Road at its junction with Broad street, to Pooley's Bridge. It measures 2000 feet, by $5 S$ feet in width. It requires only the usual improvements, and a drain of 1.6×2.6. The outfall will be to Perkins street.

George's Street.
George's street, from the end of Pooley's Bridge, is 780 leet long, by 45 feet wide. At present it is formed by escarping the cliffs undur which it runs, and forming the road by partly embanking. It requires to be widened, and its improvements are included in the estimates for the main thoroughfare. Its drainage area is limited, and need not have a sewer larger than 1.6×12.6.

Concession B C.
This line crosses the City limits at the line dividing E and F from Lot Forty. It holds a northerly course till its junction with the Richmond Road and Maria street, where it may be said to terminate
at present on the edge of the cliff. Its length is 2770 feet, width 45 feet. The contemplated improvements consist in simply macadamizing this road. Its drainage outlet will be through Bank street, along the City limits. But as this portion of the City has not been laid out in streets, a consideration of its details are unnecessary, especially if any future contemplated extension of the City limits should include Lot 39 in the first Concession, its natural drainage would be in that direction to Richmond Road, through Perkins street to the ravine where the tailrace for the proposed water-works will discharge.

Wellington Strcet.

Occupying the slope of the Government Reserves called the Barrack Hill, on its southern faca, and the cliffs on which the Episcopal Church stands, on the northern face, the drainage of Wellington street is governed by its peculiar location and its natural outfall, which is towards the river, at the upper end of this street; and its drainage should be delivered into the Ottama nearly on the line of Concession B and C. Its length and width will not materially affect the question of drainage, because its fall is so great that a drain of 2×3 is more than ample.

The streets to the northward of it will be drained partly into it and partly into Victoria street, which will find an outlet through John strect in's the Ottawa River. The whole of this drainage will be-Victoria street, 1220 feet; John street, 327 feet; about 200 feet of Hugh, Sally, and Bank streets will be drained into Victoria strect, and the balance into Wellington street. The dimensions of the drain for Victoria street will be 2×3 feet. The imprevements on Victoria street will consist in excavating the eastern end, and raisiug it to a uniform grade from Hugh to Bank streets.

Le Britton's Flats.

With the exception of Queen and Duke streets, none of the thoroughfares are more than partially open. In this distance its drainage is governed by the outfall through Duke street to the river. Queen street is the proposed line of the Conduit for Water Works, and provision has been made in the estimates for improving all these sireets.

The various Islands need not be taken into consideration, because they have drainage outfall in every direction.

Io closing this description of the strects, it is crident that a thorough and comprohensive system of drainage is a first necessity, -that this system should follow the natural contour of the surface, and that it should be rendered as effective as possible by the capacity of the sewers and the outfall given thereto. I have so arranged that the drains will be at a minimum depth of ten feet below the surface of the street, thereby allowing fully a six foot cellar, and providing amply for outfall from house sinks, drains, \&c. I would advise the adoption of cffective sewer-traps in all street sewers, so arranged as to prevent gravel, sand, or other surface material, finding its way into the sewers. And, in conclusion, I think the necessity for commencing the main sewer during the present season is sufficiently apparent, and called for by the circumstances in which the city is placed. It is a mistaken idea to suppose that the desultory and miserable efforts herctofore made can be persisted in-too much money has been already wasted by this means, and the experience of last season points to the evils likely to be entailed on our increasing population by inaltention to the first rules of social life.

ESTIMATE OF COST OF DRAINAGE.

Cathcart to Dalhousie, and Dalhousie to Low Water of the Ottawa.

2777 feet Masonry, at $\$ 6.50 \ldots \ldots$| . |
| :---: |
| 1805050 |
| 50 |

2777 do Brickwork, $3.00 \ldots \ldots . . .$.
1165 do Clay Excavation, 1.50............ 174750

1612 do Rock do 13.00............ 2095600
440 do Masonry, $6.50 . \ldots . .$. 286000

440 do Brickwork, $\quad 3.00 \ldots$. . 132000
440 do Rocls Excavation, 13.00 572000
\$13298500
McKay Street.
Drain 1.6 к 2.6.
Including refilling, and connections for house and street drainage.
840 feet of Sewer, at $\$ 1.25 \ldots \ldots . . .$.
840 do Rock Excavation, 2.00.............. 168000
273000
Metcalfe Street.
Sewer 1.6 2.6. Including refilling and connections, \&c.
2590 feet of Sewer, at $\$ 1.25$.
2590 do Rock Excavation, $2.00 \ldots . . .$.
841750
Carried forward....................... \$14413250

Brought forward.:...................... $\$ 14413250$
Baird Sireet.
Sewer 1.6녀‥6.

Sewer 1.6m2.6.
2532 feet of Sewer, at $\$ 1.25 \ldots \ldots$.
2532 do Excavation, 50 c................. 126600
448100
Catheart Street.
Sewer 1.6×2.6.
1473 feet of Sewer; at $\$ 1.25 \ldots \ldots \ldots .$. . $\$ 184125$
1473 do Excavation, $50 \mathrm{c}$.
257775
Bolton Street.
Sewer 2ヵ3.
2400 feet of Sewer, at $\$ 2.25 \ldots$. . $\$ 540000$
2400 do Excavation, 50c............... 120000
660000
Corried forbara
\$169081 25
Brought forward $\$ 189081$ 20
St Andrew's Street.Sower 2 w 3.
2187 do Excavation, 50c................ 109360
601425

Park Street.Sewer 2 m ?
1871 feet of Sewer, at $\$ 2.25$ $\$ 420975$
1871 do Excavation, 50c. 93650
514525Church Street.Sewer 2×3.
2188 feet of Sewer, at $\$ 2.25$ $\$ 492300$
2188 do Excavation, 50c 109400601700St. Patrick Street.Sower 2 \& 3 .
2183 feet of Sewer, at $\$ 2.25$ \$4911 75
2183 do Excavation, 50c. 109150

Ottawa Street.Sewer 2×3.
2820 feet of Sewer, at $\$ 2.25$ $\$ 634500$
2820 do Excaraticn, 50c 141000
775500Murray Street.Sewer 2^3.
2183 feet of Sewer, at $\$ 2.25$ $\$ 491175$
2183 do Excavation, 550 c 109150

Clarence Street.
Sower $2 \nprec 3$.
2183 feet of Sower, at $\$ 2.25$ $\$ 491175$
2183 do Excavation, 50c 109150
Brought forward 芇212022 50
Parry Strect．
Sewer 2 \＆ 3 ．

York Street．
Sewer 2×3 ．

Ridecu Street．
Sewer 2m3．
4500 feet of Sewer，at $\$ 2.25 \ldots \ldots \ldots . .$. ．．$\$ 1012500$
4500 do Excaration， $75 \mathrm{c}$. ．．．． 337500
1350000
Oumberland Street．
Sewer 1．6＾2．6．
2614 feet of Sewer，at $\$ 1.25 \ldots \ldots \ldots \ldots$ ．．．．．．．．．．．． 826750
2614 do Excavation，50c．．．．．．．．．．．．．．． 130700
Carleton Streèt．
Sewer 1．6ッ2．6．
1820 feet of Sewer，at $\$ 1.25 \ldots \ldots \ldots . .$. ．．．．．．．．．$\$ 227500^{-}$
1820 do Excaration， $50 \mathrm{c}$. ． 91000

King Street．
Sewer 1．6ヶ2．6．
1246 feet of Sewer，at $1.25 \ldots \ldots$. ．．． 155750
1246 do Excavation， $50 \mathrm{c}$. ．．．． 62300
Brought forward. $\$ 24985325$
Nelson Street.
Sewer 1.6m2.6.

	feet of Sewer,	at \$1.25.............	\$1903 75
1523	do Excavation,	, 50c.	76150

Sewer 1.6×2.6.
1526 feet of Sewer, at $\$ 1.25 \ldots$. . $\$ 190750$1526 do Excavation, $50 \mathrm{c}$. 76300267050
SOUTH OF RIDEAU STREET.Augusta Street.Semer 2N3.
1374 feet of Sewer, at $\$ 2.25 . \ldots$. \$3091 50 1874 do Excavation, $50 \mathrm{c}$.377850Chapel Street.Sefver 2 a 3.
1372 fèet of Sewer, at $\$ 2.25 . \ldots$. . $\$ 308700$
1372 do Excavation, 50c................ 68600 377300
Gloweester Street.
Sewer $2 \Perp 3$.
1869 feet of Sewer, - at $\$ 2.25 \ldots \ldots \ldots . . .$.1369 do Excavation, $50 \mathrm{c}$. 68450
376475Nelson Street.Sewer 2×3.
1372 feet of Sewer, at $\$ 2.25 \ldots$.
1872 do Excaration, 50c................. 68600377300Fing Street.
Sewer 2×3.
1374 feet of Sewer, at $\$ 2.25$ \$3091 50
1374 do Excavation, 50c. 68700

Brought forward....................... . \$274056 76
Cumberland Street.
Sewer 2円 3.

1365 do Excavation, 50 c 68250
375375
Ottawa Street.
Sewer 2×3.
1385 feet of Sewer, at $\$ 2.25 \ldots \ldots$.
1385 do Excavation, $50 \mathrm{c}$. 69250

Nicholas Street.
Sower 2 M是.
1384 feet of Sewer, at ${ }^{\$} 2.25 \ldots$. . $\$ 311400$
1384 do Excavation, 50 c................. 69200
380600
Mosgrove Street.
Semer 2 \& 3.
400 feet of Sewer, at $\$ 2.25 \ldots \ldots$. . $\$ 90000$
400 do Excavation, $50 \mathrm{c} . \ldots$. 20000
110000
Little Sussex Street.
Sever 1.6ल2.6.
367 feet of Sewer, at $\$ 1.25 \ldots \ldots$. . $\$ 45875$
367 do Excavation, 2.00 73400
119275
St Paul Sirect.
Sewer 1.6ه2.6.
912 feet of Sewer, at $\$ 1.25$. . $\$ 114000$
912 do Excavation, 1.00................ 91200
Besserer Street.
Sewer 1.6 49. ϵ.
5300 feet of Sewer, at $\$ 1.25 \ldots \ldots$. . ${ }^{6} 662500$
5300 do Excavation, $50 \mathrm{c}$. . 265000
927500

Brought forwara

Victoria Street and John Street.
Sewér 2 m 3.

54

COST OF WATER WORKS.
 Conduit.

Excavation from Queen Street to foot of Bay, distance 2,000 feet, 28 feet wide and 15 averagedepth.

25,925 yards Rock, at \$ 1	$\begin{array}{cc} \$ \quad & \quad \text {. } \\ 25,925 & 00 \end{array}$
2,000 feet Arch, 22×2, at \$3	6,00000
4,000 feet Side-walls, 12×2, at \$2	8,00000
Cistern, $60 \times 20 \times 12=533$, at \$4	2,132 000
Wheel-house, 90×40	10,000 00
	\$52,057 00
Machinery.	
Two Water Wheels, 20 feet diameter and 15 feet wide ...	20,000 00
Four Pumps, each 2 feet diameter and 4 feet stroke, Connecting Rods, \&c	2,000 00
Three Air Vessels, Connections, Pipes, Valves, Gearing, \&c.	4,000 00

Reservoir.
250 feet in length by 200 feet wide.
Feet Superstructure.
Exterior Wall, $900 \times 35 \times 5=\begin{gathered}\text { C. yds. } \\ 5,833 \\ 5\end{gathered}$ at $\$ 8 \ldots \ldots$.
Puddle, $864 \times 32 \times 4=4,096$ at $\$ 1 \ldots \ldots$.
Interior Wall, $810 \times 35 \times 4=4,200$ at $\$ 6 \ldots$. . 25,20000
Parapet, $\quad 900 \times 5 \times 6=1,000$ at $\$ 10 \ldots \ldots$.
40 Buttresses, 35 х $8 \times 3=1,244 \ldots \ldots \ldots \ldots \ldots \ldots$................. 12,44000
Foundations.
C. yd .

Esterior Walls, $900 \times 7 \times 10=2,304$ at $\$ 3 \ldots \ldots \ldots \ldots$......... 7,00200
Interior do $810 \times 6 \times 10=1,800$ at $\$ 3 \ldots .$. 5,400 00
Excavation.
$50,000 \times 10=18518$ cubic yards, at $50 \mathrm{c} . \ldots \ldots \ldots \ldots \ldots$......... 9,25900
Puddle.
$50,000 \times 4=7,407$ cubic yards, at $\$ 1 \ldots \ldots \ldots \ldots$.
Oarried forward........................ $\$ 127,468$ on
H

LIST OF STREETS.

LENGTH. WIDTH:
870 60
McKay Streot
2,590 60
Baird Street 797 60
Redpath Street 1,330 66
McTaggart Street 2,087 66
Boteler Street 66
Bolton Street 66
Cathcart Street 66
Bolton Street 62
St. Andrews Street 62
Church Street 2,188 62
St. Patrick Street 2,183 60
Park Street 1,871 62
Ottawa Street 66
Susser Street 66
Murray Street 66
Clarence Street 63
Parry Street 64
York Street 132
George Street 125
Ridean Street $96 \& 66 \frac{1}{3}$
To Rideau Bridge 35
Bridge 18
St. Paul 58
Besserer 58
Daly 58
Stewart 58
Wilbrod 58
Theodore 66
Gloucester Road 45
Dalhousie Street 58
Cumberland 58
Carleton 66
King 132
Nelson 58
Gloucester 65
Chapel 66
Augusta 66
Coburg 60
Cbarlotte 60
Wurtemburg 59

South of Rideau Street.

	Lengte.	FIDTE.
Augusta.	1,374	66
Chapel	1,372	66
Aloucester	1,369	65
Nelson.	1,372	58
King	1,374	66
Cumberland.	1,365	58
Ottana	1,885	64
Nicholas	1,384	58
Mosgrove	400	60
Little Sussex	367	33
William	198	38
Wellington Street, to to Elgin Street.	400	96
From Elgin to Hill's	3,680	96
Sparks Street	4,158	58
Queen	2,962	58
Maria	4,960	66
Biddy	2,458	35
Centre	4,195	35
Elgin.	530	56
Metcalfe	1,330	60
O'Connor	1,320	61
Bank.	3,050	40
Hugh	1,296	58
Sally	1,028	60
Bay	1,276	58
Richmond Road	3,387	63
Albert Street	1,010	58
Victoria Terrace	2,000	58
George Streel	780	45
Concession B O	2,770	45
Ashburaham Street	620	38
Percy	625	35
Nepean	768	82
Gloycester	1,098	35
	ton.	
Bank	275	66
Hugh	585	60
Sally	340	62

COST OF IMPROVING THE MAIN THOROUGHFARMS.

FEET.From Union Eridge to Head of Wooden Bridge over Slides 332
From Wooden Bridge to Duke street 460
Ledgth of Dake síreet 872
" Qneen street to Pooley's Bridge 220
" (Bridge) to George street 65
" (Bridge) to be filled in 145
" George street to Wellington 785
" Wellington to head of New Bridge 4,080
" Approaches to New Bridge 330
e: Rideau street 6,125

* to 思ideau Bridge 460
To paving 13,874 feet, at $\$ 2$ per foot \$27,748
" Macadamizing 2,879 feet 26 feet wide, at $\$ 1$ per foot 2,879
" " 10,995 " 52 " $\$ 2$ " 21.990
" Excavation Rock, 7,267 jds, at \$1 7,267
" Sand, Clay and Filling, 22,740 yds, at 20c. 4548
" Flagoing 9,578 feet, 24 feet wide, at ${ }^{\$} 2$ 19,156
" Side Gutters, 27,088 feet, at 25 c . per foot. 6,772
" Bridge orer Rideau River, 540 feet, at $\$ 10$ 5.400
18 Iron Bridge over Canal, 100 feet, at $\$ 105$ 10,500

Brought forward............................ 106,26000

COST OF PAVING AND MACADAMIZING.

Sussex Street.

Metcalfe Street.

Paving,	$2,595=20 \mathrm{ft}$. wide, at ${ }^{\mathbf{\$}} 2 .$.	5,190 00
Macadamizing	, 2,595=16 do 75 c .	1,946 25
Filling,	21,500, at 20 c .	4,300 09
Excavation,	550 yards rock, at \$1.	55000
Side Flagging,		5,190 00
Gutters,	5,190, at 25c.	1,297 50

Baird Street.

Macadamizing,	$797=36 \mathrm{ft}$. wide, at $\$ 1.50$			1,195	
Filling,				1,000	
Gravel Sidewalks,	$797=24 \mathrm{ft}$. wide, at $\$ 1.40$			1,115	
Stone Curbing,	1,594	do	25 c .	398	
Gutters,	1,594	do	25 c.		

Redpaith Street.

Macadamizing,	$1,337=42$	ft. wide,	at $\$ 1.60$	2,13920
Gravel Sidewalks,	$1.337=24$	do	$\$ 1.00$	1,33700
Stone Curbing,	2,674	do	25 c.	66850
Gutters,	2,674	do	25 c.	668

Brought forward. $\$ 148,58786$

McTaggart Street.

(Ottawa and Prescott Railway occupies the centre of this street, a width of 20 feet clear should be allowed to this Railway, -leaving 46 feet for roadway and sidewalks, or 27 feet to each side, 10 for sidewalk, and 14 for roadway, allowing 3 feet for gutter.)
Macadamizing, $\quad 2,080=28 \mathrm{ft}$. wide, at $\$ 1.10 \quad 2,28800$
Gravel Sidewalks, do $\quad 2,080$ \$1,10 2,28800
Stone Curbing, 4,160 do 25c. 1,04000
Gutters $\quad 4,160$ do 25c. 1,04000

Boteler Street.
Macadamizing, $\quad 2,266=43 \mathrm{ft}$. wide, at $1.60 \quad 3,62560$
Gravel Sidewalks, $2,266=24$ do $1.00 \quad 2,26600$
Stone Curbing, $\quad 4,532$ do 25 c . 1,13300
Gutters, 4,532 do 35 c . 1,13300
————3,15760
Bolton Street.

Oatheart Street.

Bolton Street.

Macadamizing	$2,400=38 \mathrm{ft}$. wide, at $\$ 1.50$			3,600		8,400 00
Gravel Sidewalks,	$2,400=24$	do	\$1	2,400		
Stone Curbing,	4,800	do	25 c .	1,200		
Gutters,	4,800	do	25 c .	1,200		

Carried forward..................... $\$ 190,36295$

Brought forvard..................... \$190,362 95^{5}
St. Andrew Street.

Hacadamizing,	$2,187=38 \mathrm{ft}$. wide,	at	$\$ 1.50$	3,280	50
Qravel Sidewalks,	$2,187=24$	do	$\$ 1$	2,187	00
Stone Curbing,	4,374	do	255 c.	1,093	50
Guters,	4,374	do	25 c.	1,093	50

7,65450
Church Sirreet.

Macadami	$2,188=38 \mathrm{ft}$. wide, at ${ }^{\text {\$ }} 1.50$			3,282 00
Gravel Sidowalks,	$2,188=24$	do	\$1	2,188 00
Stone Curbing,	4,376	do	25 c .	1,094 00
Gutters,	4,376	do	25 c .	1,094 00

7,658 00
St. Patrick Street.
$\begin{array}{lllllll}\text { Macadamizing, } & 2,183=36 \mathrm{ft} \text { wide, at } & \$ 1.45 & 3,165 & 35 \\ \text { Gravel Siderwalks, } & 2,183=24 & \text { do } & \$ 1 & 2,183 & 00 \\ \text { Stone Curbing, } & 4.366 & \text { do } & 25 \mathrm{c} . & 1,091 & 50 \\ \text { Gutters, } & 4,366 & \text { do } & 25 \mathrm{c} . & 1,091 & 50 & \\ & & & & & & \\ & & 7,531 & 35\end{array}$
Parth Street.

Macadamizing,	$1,871=38 \mathrm{ft}$. wide, at $\$ 1.50$	2,80650				
Gravel Sidewalks,	$1,871=24$	do	$\$ 1$	1,87100		
Stone Curbing,	3,742	do	25 c.	93550		
Gutters,	3,742	do	25 c.	93550		
						6,548

Ottawa Street.

Macadamizing,	$2,820=42 \mathrm{ft}$. wide, at $\$ 1.60$			4,512 00
Gravel Sidewalks,	$2,820=24$	do	\$1	82000
Stone Curbing,	5,640	do	25 c .	1,410 00
Gutters,	5:640	do	25 c .	1,410 00

Murray Street.
Macadamizing, $\quad 2,183=42 \mathrm{ft}$. wide, at $\$ 1.60 \quad 3,49280$
Gravel Sidewalks, $2,183=24$ do $\$ 1$ 2,183 00
Stone Curbing, 4,366 do 25 c . 1,09150
Gatters, $\quad 4,366$ do 25 c . 1,091 Б̆ 0
10,15200

Brought forward
$\$ 237,766 \quad 10$
Clarence Street.

Macadamizing,	$2 ; 183=39 \mathrm{ft}$. wide, at	$\$ 1.55$	3,383	65	
Gravel Sidewalks,	$2,183=24$	do	$\$ 1$	2,183	00
Stone Curbing,	4,366	do	25 c.	1,091	50
Gutters;	4,366	do	25 c,	1,091	50

7,749 66
Parry Street.

Macadamizing,	$1,363=40 \frac{1}{4} \mathrm{ft}$.wide, at \$1.50			2,126 28
Gravel Sidewalks,	1,363	do	\$1	1,363 00
Stone Curbing,	2,726	do	25 c .	68150
Gutters,	2,726	do	2 c c.	68150

York Street.

Macadamizing,	2,180 $=108 \mathrm{ft}$.wide, at \$4.10			8,938	00
Gravel Sidewalks,	$2,180=24$	do	\$1	2,180	
Gutters,	4,360	do	25 c .	1,090	
Curbing,	4,360	do	25 e.	1,090	

Macadamizing,	1,690 $=101 \mathrm{ft}$.wide, at $\$ 3.97$			6,709	
Gravel Sidewalks,	$1,690=24$	do	\$1	1,690	
Gutters,	3,380	do	25 c .		
Curbing,	3,380	do	25 c .		

St. Paul Street.
Macadamizing, $\quad 912=34 \mathrm{ft}$. wide, at $\$ 1.40 \quad 1,27680$
Gravel Sidewalks, $912=24 \quad$ do $\quad \$ 1 \quad 91200$
Gutters, $\quad 1,824$ do $25 \mathrm{c} . \quad 45600$
Curbing, 1,824 do 25c. 45600
Besserer Street.
Macadamizing, $\quad 5,300=34 \mathrm{ft}$, wide, at $\$ 1.40 \quad 7,42000$
Gravel Sidewalks, $5,300=24$ do $\$ 1 \quad 5,30000$
Gutters, $\quad 10,600$ do 2厄.c. 2,65000
Curb Stones, $\quad 10,600$ do 25c. 2,650 00
Cutting and filling 22,222 cubic yards, at 20 c . 4,444 40

Brought forward. $\$ 299,320$ 63
Daly Street.

Macadamizing,	$4,880=34$ fl. wide, at ${ }_{\text {¢ }} 1.40$			6,832 00
Gravel Sidewalks,	$4,880=24$	do	\$1.00	4,880 00
Guiters,	9,760	do	25 c .	2,440 00
Curb Stones ${ }_{\text {r }}$	9,760	do	25 c .	2,440 00
Cutting 6,222 yds.			10 c.	62220

Stezoart Street.

Macademizing,	$4,680=34 \mathrm{ft}$. wide,	at $\$ 1.40$	6,55200		
Gravel Sidewalks,	$4,680=25$	do	$\$ 1.00$	4,680	00
Gutters,	9,360	do	25 c.	2,340	00
Curb Stones,	9,360	do	25 c.	2,340	00

15,912 00
Wilbrod Street.

Macademizing,	$4,160=34 \mathrm{ft}$.	wide, at	$\$ 1.40$	5,82400	
Gravel Sidewalks,	$4,160=24$	do	$\$ 1.00$	4,160	00
Gutters,	8,320	do	25 c.	2,080	00
Curb Stones,	8,320	do	25 c.	2,080	00

14,14400
Theodore Street.

Macadamizing:	$4,440=42 \mathrm{ft}$. wide, at $\$ 1.60$			7,104	
Gravel Sidewalks,	$4,440=24$	do	\$1.00	4,440	
Gutters,	8,880	do	25 c .	2,220	
Curb Stones,	8:880	do	25 c .	2,220	

Gloucester Road.

Dalhousie Street.

Macadamizing,	$4,213 \equiv 34 \mathrm{ft}$. wide, at $\$ 1.40$	5,89820			
Gravel Sidewalks,	$4,213=24$	do	$\$ 1.00$	4,21300	
Gutters,	8,426	do	25 c.	2,10650	
Curb Stones,	8,426	do	25 c.	2,10650	

Carried forwarda.......................... $\$ 382,37648$

Brought forvard. $\$ 382,37643$
Oumberland Street.

Macadamizing,	2,614 $=34$ ft. wide, at \$1.40			3,659 60
Sidewalks,	$2,614=24$	do	\$1.00	2,614 00
Gutters,	5,228	do	25 c .	1,307 00
Curb Stones,	5,228	do	25 c.	1,307 00
Filling 21,455 C. yards, at 10c. on this street and				
Carleton,				2,145 50

Carleton Street.

Macadamizing,	$1,820=42$ ft. wide, at $\$ 1.60$	2,91200			
Sidewalks,	$1,820=24$	do	$\$ 1.00$	1,820	00
Gatters,	3,640	do	25 c.	91000	
Curb Stones,	3,640	do	25 c.	91000	
					6,55200

Fing Street.

Macadamizing,	3,926 $=108$ ft. wide, at \$4,10 16,096 60				
Sideralks,	$3,926=24$	do	\$1.00	3,926	
Gutters,	7,852	do	25 c .	1,963	
Curb Stones,	7,852	do	25 c .	1,963	
Filling 58,100 yds at 10 c .				5,810	

Nelson Street.

Macadamizing,	$1,523=34 \mathrm{ft}$. wide, at $\$ 1.40$			2,132 20	
Gravel Sidewalks,	$1,523=24$	do	\$1.00	1,523	
Gutters,	3,046	do	25 c .		50
Curb Stones,	3,046	do	25 c .		50

Gloucester Street.

Macadamizing,	$1,526=4.1 \mathrm{ft}$. wide, at $\$ 1.60$			2,441 60	
Gravel Sidewaliss,	$1,526=24$	do	\$1.00	1,526 00	
Gutters,	3,059	do	25 c .	76300	
Curb Stones,	3,052	do	25 c 。	76300	

Carried forward:....................... $\$ 440,391,93$

Brought forward. \$440,391 98
SOUTH OF RIDEAU STREET.
Augusta Street.

Macadamizing,	$1,374=42 \mathrm{ft}$, wide,		at	$\$ 1.60$	2,198	40
Sidewalks,	$1,374=24$	do	$\$ 1.00$	1,374	00	
Gutters,	2,748	do	25 c.	687	00	
Curb Stones,	2,748	do	25 c.	687	00	
						4,946

Ohapel Street, South of Rideau.

Macadamizing,	$1,372=42$	ft . wide,	at $\$ 1.60$	2,195	20	
Gravel Sidewalks,	$1,372=24$	do	$\$ 1.00$	1,372	00	
Gutters,	2,744	do	25 c.	686	00	
Curb Stones,	2,744	do	25 c.	686	00	
				4,939	20	

Gloucester Street.

Macadamizieg,	$1,369=41 \mathrm{ft}$. wide, at $\$ 1.60$			2,190 40
Gravel Sidewalks,	$1,369=24$	do	\$1.00	1,369 00
Gutters,	2,738	do	25 c .	68450
Curb Stones,	2,738	do	25 c .	[684 50

Nelson Street.

Macadamizing,	$1,372=34 \mathrm{ft}$. wide, at $\$ 1.40$			1,920	
Gravel Sidewalks,	$1,372=24$	do	\$1.00	1,372	
Gutters,	2,744	do	24 c .		
Curb Stones,	2,744	do	25 c .	686	

Fing Street.

Macadamizing,	1,374 $=42 \mathrm{ft}$. wide at $\$ 1.60$			2,198 40
Gravel Sidewalks,	$1,374=24$	do	\$1.00	1,374 00
Gutters,	2,748	do	25 c.	68700
Filling,				1,000 00
Curbing $2,748 \mathrm{ft}$ at	25c.			68700

Carried forward
$\$ 465,81713$

Brought forward..................... $\$ 465,817$ 19
Cumberland Street, South of Rideau,

Macadamizing,	$1,365=34 \mathrm{ft}$. wide,	at	\$1.40	1,91100
Gravel Sidewalks,	$1,365=24$	do	$\$ 1.00$	1,36500
Gutters,	2,730	do	25 c.	68250
Curb Stones,	2,730	do	25 c.	68250

Ottano Strect.

Macadamizing,	$1,385=40 \mathrm{ft}$.	wide,	at $\$ 1.60$	2,21600	
Gravel Sidewalks,	$1,385=24$	do	$\$ 1.00$	1,38500	
Gutters,	2,770	do	25 c.	69250	
Curb Stones,	2,770	do	25 c.	69250	
Filling,				1,00000	

Nicholas Street.

M	$1,384=34$ ft. wide, at $\$ 1.40$			1,937 60
Gravel Sidewalks,	$1,384=24$	do	\$1.00	1,384 00
Gutters,	2,768	do	25 c .	6920
Curb Stones,	2,768	do	25 c.	692

Mosgrove Street.

Macadamizing,	$400=36 \mathrm{ft}$. wide,	at	$\$ 1.45$	58000	
Gravel Sidewalks,	$400=$	do	$\$ 1.00$	40000	
Gutters,	800	do	25 c.	20000	
Curb Stones,	800	do	25 c.	20000	
				1,380	00

Little Sussex Street.

Macadamizing,	$367=21 \mathrm{ft}$. wide, at 70 c.$$			25690		
Gravel Sidewalks,	$367=12$	do	50 c.	183	50	
Gutters,	734	do	25 c.	18350		
Curb Stones,	734	do	25 c.	18350		
					80740	

William Street:

Macadamizing,	$200=24 \mathrm{ft}$ wid θ, at 70 c.	14000		
Gravel Sidewalks,	$200=18$	do	75 c.	15000
Gutlers,	400	do	25 c.	10000
Gurb Stones,	400	do	25 c.	10000

Carried forward. $\$ 483,827$ 18

Brought foruard....................... $\$ 488,82718$
UPPER TOWN.
Sparks Street.

Macadamizing,	$4,158=34 \mathrm{ft}$.	wide, at \$1.40	5,821 20
Gravel Sidewalks,	$4,158=24$	do \$ \$1.00	4,15800
Gutters,	8,316	do 25c.	2,079 00
Curb Stones,	8,316	do . 25 c .	2,079 00
Excavation Rock at upper end, to Bay Street, 21,900 yards, at $\$ 1.0021,90000$			
Queen Street.			
Macadamizing,	$2,962=34 \mathrm{ft}$	wide, at \$1.40	4,146 80
Gravel Sidewalks,	$2,962=24$	do \$ ${ }^{\text {P1.00 }}$	2,962 00
Gutters,	5,924	do 25 c .	1,481 00
Curb Stones,	5,924	do 25 c .	1,481 00

Maria Street.

Macadamizing,	$4,960=42 \mathrm{ft}$. wide, at ${ }^{\text {d }}$ \% 1.60			7,936	
Gravel Sidewalks,	$4,960=24$	do	\$1.00	4.960	
Gutters,	9,920	do	25 c .	2,480	
Curb Stones,	9,920	do	25 c .	2,480	00
Excavation,				5,000	

Biddy Street.

Macadamizing,	$2,458=33 \mathrm{ft}$ wide, at$\$ 1.40$ 3,441 20 Water tables, 4,916 5c. 245 80

Centre Street.
Macadamizing, $\quad 4,195=33 \mathrm{ft}$. wide, at ${ }^{\$ 1.40} \quad 5,87300$
Water tables, $\quad 8,390 \quad$ 5c. 41950
————6,29250
Elgin Street.

Macadamizing,	$530=36 \mathrm{ft}$. wide,	at $\$ 1.45$	768	50		
Gravel Sidewalks,	$530=24$	do	$\$ 1.00$	53000		
Qutters,	1,060	do	25 c.	26500		
Curb Stones,	1,060	do	25 c.	26500		
						1,828

Carried fortuard........................ $\$ 564,598$ 12

```
Brought forward...................... \(\$ 564,599\) 18
ALetcalf Street.
```

Macadamizing,	$1,330=36 \mathrm{ft}$. wide, at \$1.45			1,928 50	
Gravel Sidewalks,	$1,330=24$	do	\$1.00	1,330	
Gutters,	2,660	do	25 c .		
Curb Stones,	2,260	do	25 c .	665	

O'Connor Street.

Macadamizing,	$1,320=37$	ft. wide,	at $\$ 1,45$	1,914	00	
Gravel Sidewalks,	$1,320=$	do	$\$ 1,00$	1,320	00	
Gatters,	2,640	do	25 c.	660	00	
Curb Stones,	2,640	do	25 c.	660	00	
						4,554

Bank Street.

Macadamizing,	$3,050=42 \mathrm{ft}$.	wide,	at $\$ 1.60$	4,880	00
Gravel Sidewalks,	$3,050=24$	do	$\$ 1.00$	3,050	00
Gutters,	6,100	do	25 c.	1,525	00
Curb Stones,	6,100	do	25 c.	1,525	00
			10,980	00	

Hugh Street.

Macadamizing,	$1,296=34 \mathrm{ft}$.	wide, at $\$ 1.40$	1,81440			
Gravel Sidewalks,	$1,296=24$	do	$\$ 1.00$	1,29600		
Gutters,	2,592	do	25 c.	64800		
Curb Stones,	2,592	do	25 c.	64800		
						4,406

Sully Street.

Macadamizing,	$1,028=36 \mathrm{ft}$. wide, at $\$ 1.45$	1,490	60			
Gravel Sidewalks,	$1,028=24$	do	$\$ 1.00$	1,028	00	
Curb Stones,	2,056	do	25 c.	51400		
Gutters,	2,056	do	25 c.	51400		
						3,546

Bay Street.
Macadamizing, $\quad 1,276=34 \mathrm{ft}$. wide, at $\$ 1.40 \quad 1,78640$
Gravel Sidewalks, $1,276=24 \quad$ do $\quad \$ 1.00 \quad 1,27600$
Curb Stones, 2,552 do 25 c . 63800
Gutters, $\quad 2,552$ do $25 \mathrm{c} . \quad 63800$
4,338 40
Curried forward....................... $\$ 597,01308$

Brought forvard........................ $\$ 597,013$ of
Richmond Road.

Macadamizing,	$3,337=42 \mathrm{ft}$. wide, at $\$ 1.60$	5,339	20		
Gravel Sidewalks,,	$3,337=24$	do	$\$ 1.00$	3,337	00
Guters,	6,674	do	25 c.	1,668	50
Curb Stones,	6,674	do	25 c.	1,668	50
				12,013	20

Albert Street.

Macadamizing,	$1,010=34 \mathrm{ft}$. wide,	at	$\$ 1.40$	1,41400		
Gravel Sidewalks,	$1,010=24$	do	$\$ 1.00$	1,010	00	
Gutters,	2,020	do	25 c.	50500		
Curb Stones,	2,020	do	25 c.	50500		
						3,434

Victoria Terrace.

Macadamizing,	$2,000=34 \mathrm{ft}:$	wide,	at $\$ 1.40$	2,80000
Gravel Sidewalks,	$2,000=24$	do	$\$ 1.00$	2,00000
Gutters,	4,000	do	25 c.	1,00000
Curb Stones,	4,000	do	25 c.	1,00000

George Street.

Macadamizing,	$787=21 \mathrm{ft}$. wide, at 80 c.			62400	
Gravel Sidewalks,	$780=24$	do	\$1.00	780	
Gutters,	1,560	do	25 c .	390	
Curb Stones,	1,560	do	25 c .	390	00

Ooncession B and O.

Macadamizing,	$2,770=21$	ft. wide, at 80 c.	2,21600		
Gravel Sidewalks,	$2,770=24$	do	$\$ 1.00$	2,77000	
Gutters,	5,540	do	25 c.	1,38500	
Curb Stones,	5,540	do	25 c.	1,38500	
					7,75600

Ashburnham Street.

Macadamizing,	$620=26$		ft. wide,	at 90 c.	558
Gravel Sidowalks,	$620=12$		do	50 c.	310
Guters,	1,240	do	25 c.	310	00
Gutters	1,240	do	25 c.	310	00

[^0]Brought forward....................... $\$ 680,688$ 2s

Percy Street.			
Macadamizing,	$625=23$	ft. wide, at 86c.	53750
Gravel Sidowalks,	$626=12$	do 50c.	31250
Gutters,	1,250	do 25 c .	31250
Curb Stones,	1,250	do 25 c .	31250

Nepean Street.

Macadamizing,	$768=20 \mathrm{ft}$. wide, at 80 c .			61440	
Gravel Sidewalks,	$788=12$	do	50 c .		
Gutters,	1,536	do	25 c .		
Gurb Stones,	1,536	do	25 c .		

Gloucester Street.

Macadamizing,	$1,098=23 \mathrm{ft}$. wide, at 83 c .			911	
Gravel Sidewalks,	$1,098=12$	do	50 c .		
Gutters,	2,196	do	25 c .	549	
Curb Stones,	2,196	do	25 c .	549	00

NORTH OF WELLINGTON STREET.

Banlo Street.

Macadamizing,	$275=42 \mathrm{ft}$. wide, at ${ }^{\text {c }} 1.60$			440	00
Gravel Sidowalks,	$275=24$	do	\$1.00	275	
Gutters,	550	do	25 c .	137	
Curb Stones,	550	do	25 c .	137	
Filliug,				200	00

Hugh Street.

Carried forward \$639,696.22

Brought forvard........................ $\$ 689,69622$
Sally Street.

Macadamizing,	$340=38 \mathrm{ft}$. wide, at $\$ 1.47$			4980	
Gravel Sidewalks,	$340=24$	do	$\$ 1.00$	340.00	
Gutters,	680	do	25 c.	17000	
Curb Stones,	680	do	25 c.	170.00	

Tictoria Street.

Macadamizing,	1,220 $=36 \mathrm{ft}$. wide, at $\$ 1.45$			1,769 00	
Gravel Sidewalks,	$1,220=24$	do	\$1.00	1,220	
Gutters,	2,440	do	25 c .	610	00
Curb Stones,	2,440	do	25 c .	610	00

Joln Street.

Macadamizing,	$145=25$	ft. wide, at 87 c.	12615		
Gravel Sidewalks,	$145=12$	do	$\$ 1.00$	14500	
Guttero,	290	do	25 c.	7250	
Curb Stone,	290	do	25 c.	7250	
					416

Queen Street (from Duke Street).

Macalamizing,	$1,030=36 \mathrm{ft}$. wide, at $\$ 1.45$			1,493	
Gravel Sidewalks,	$1,030=24$	do	\$1.00	1.030	
Gutters,	2,060	do	25 c .	515	
Curb Stones,	2,060	do	25 c .	515	00

Bridge Street.

Macadamizing,	$620=36$	ft. wide, at $\$ 1.45$	89900			
Gravel Sidewalks,	$620=24$.	do	$\$ 1.00$	620	00	
Guters,	1,240	do	25 c.	310	00	
Curb Stones,	1,240	do	2 ãc.	31000		
						2,139

Corried forward. \$651,193 67.

Brought forward. \$651,193 67
Sherwood. Street.

Macadamizing,	$698=46 \mathrm{ft}$. wide, at \$1.70			1,186	
-Gravel Sidewalks,	$698=24$	do	\$1.00	$6!18$	
Gutters,	1,396	do	25 c .	319	
Curb Siones,	1,396	do	25 c ,	349	00

SUMMARY OF COST.


```
Macadamization ............................................ 657,293 97
```

$\$ 1,523,50252$
Conlingencies and Superintendence, at 10 per cent. $152,350 \quad 25$
Total. $\$ 1,675,852$ 7 7 7

The interest on this sum, at six per cent. per annum, would be $\$ 100,55112$, and, taking the present value of rateable property within the City Limits as equal to $\$ 303,942$, an assessment to meet that yearly denand for interest would be equal to $83 \frac{1}{2}$ cents in the dollar, or six and eight pence in the pound. It would not be necessary however, to provide for this large outlay at once; the work should be undertiken by mstalments, and completed within a period of four years. The advantages of this mode of proceeding will be that the expenditure for those necessary works should be equalized on the progressive value of property, and the nucussity of adding materially to the public burthen of the present inhabitants avoided. A considuration of the financial arrangements by which the great objects of this measure are to be attained, properly belongs to the City Council, and it is beyond all question that their action will be sustained by the rate-payers, in the effort to secure for the city fuil value in permanent and useful works of public improvement, for the outlay demanded. Every day's experience tends to pr: ve the value of united action, operating by means of a known and comprebensive gystem in the accomplishment of works of such magnitude, as the wants of this city demand, because eventually, such a mode of procedure is far les; expenive than the desultory, costly, inefficient and unsatisfictory ineasures hitherto employed for that purpose. The city is largely indebted for works of dminage, macadamization, and general inprovements, and its streets are suamps, its sidemalke in the last stage of dilapidation, and its few drains st nch traps or cess pools, whure the semage matter is carefully collected for the ex-
elusive bencfit of the citizens. It would be no exnggeration to declare that the proposid utlay for this city during the present year, is utterly wasted, and of no use to the public interests.

As it is not:advisable to commence all these works simultaneously, such portions as form the base of the systim, should be selected as the first to be undertaken, and the construction of the main drain, main thoroughtare, and the Rese voir for the Water Works should be sufficient for the furst year. The Estimatus for those works would be as follows:

```
Main drain from Hugh Street to Ottawa River, as shewn
    in detailed estimates. Page 44
    $132,985 00
Cost ef improving main thoroughfares Page 59........ 106,260 00
Macadamiziag King Street. Page 65................. 29,758 60
Cost of constructing Reservoir for Water Works. Pages
```


\$180,17660
Contingencies and Superintendence, a.t 10 per cent...... 43,01766
Total
$\$ 178,19426$

The works un ertaken for the second yeaw, should be Sussex Strect, Metcaif Street, York Sireet, Clarence, Murray and Parich Streets, with the remminder of the Witer Works. Thu Botimates would be as follows:

Cost of draioing	Sussex Street.	Page 54,.............	\$6,314 55
do	Metcalf	Page 44..............	8,417 50
do	York	Page 47.	5,995 00
do	Clarence	Page 46..............	6,003 25
do	Murray	Page 46..............	6,003 25
do	Patrick Street,	" \ldots.	6,003 25
Cost of dr	raising.	\$38,786 80

76

The outlay for the third year should embrace the leading thoroughfares as the Ri-hmond Pord, the Ginucester Road, Cumberland, Dahousis, Georre, Chuch, St. Andrem, Bulton, Cathcart, Boteler, Carleton, Realpath, Meitiggart and Baird Strets.

Draining	Richmond Road.	Page 51.	\$10,845 25
do	Cumberland St.	Pad	57450
do	Carleton	"	3,185 00
do	Dalbonsie	Pa, e52.	5,203 50
do	Gerrge	Page 47	4,647 50
do	Church	Page 46.	6,017 00
do	St. Andrew's	Page 46.	601425
do	Brilun	Page 45.	6,600 00
do	Cathcart	،	2,577 75

Brought fomvard. $\$ 19.66475$
Braining Bolton Street. Page 45 4,43100
do Redpath 2.33975
es do McTaggart 361000
do Baird 1,394 75
Total \$51479 25:
Cost of Macadamizing Richmnnd Road. Page 70 $\$ 12,01320$
do Cumberlaud St. Paue 65 $11,0.310$
do Carlet: n $6,552.00$
do Dalhousie " Page 64 14,32420
do Georne " Page 63 $10.0 \div 930$
do St. Audrew's " Page G2 $7,6.450$
do Clurch " " $\ldots .$. ... 7,6:8 00
do Bolton " Page 61....... 8,400 00
do Catheart " " $\ldots \ldots$.... $9, \pm 9680$
do Bution "s. " 4,11520
do Redpath " Page 60....... 4, 81320
do MeTaggart " Paye 61....... 6,6. 600
do Baird " Pine 60 4,108 30
do Gloucester Road, Paye 64 5,47750
Total\$117, 8 Y1 30
Drainage $\$ 51,47025$
Macadamization 117,391 30
Total $\$ 17886155$
Superintendence and Contingencies, 10 per ceat $17.8^{\circ} 615$
Wost of third gear's operations $\$ 196.74770$
\qquad

The balance to be expended for the fourth year will be large, and may probably be divided over 2 or 3 years. As the first three year's operations are directed to the completion of such works as are most needful, it will not mirh aftect the general interest, if the balance, amounting to $\$ 648.83372$ of the whole estimate is not laid out for a much longer period, all the streets upon which this sum shoud be expended are, with the excention of Spark; Street, comparatively of little importance, not extensively built upon, and naturally occupying such positions as would render the immediate ap.lication of measures of improvement unnecessnry. One of the chief considerations which have influenced my decision in the appropriation of thesesums, arises from the absolute necessicy of applying prompt remedies to the evils under which the low lying porions of the city are suffering, as well as to prevent the wasteful, useluss and outrageous expenditure of public money on mischeivous and worthless works.

Accompanying this Report is the large Plan of the city, fourteen shects of longitudiual sections of streets, two sheets of designs, and general plan. I would respectfully recommend to the Conmittee, that all care be taken of the large Plan-that it may not be open to every person, as such a course would infalibly insure its destruc-tion-and that tracings be made of it for general use, as soon as possible. As it shews the actath position and description of every street, honse and structure in the city up to November 1860, its value as a record is abundintly apparent, and the Conncil will find it necessary to have the localion of every new house or other structure hereafter to be ercted, arcurately placed in its true position on that plan, as well a matter of Municipal econnmy as necessary for the ex cution of such works as may subsequently be undertaken by the city. The table of grades appended, are referred to the sill of the Guard Lock on the Rideau Caual.

In concluding this Report, I would not be doing my duty to my fellow citizens if I did not strongly point out to the Council, the necessit, for taking action thereon with the least possible delay. The health, prosperity and future growth of this city must depend in a great measure on the encrgy, ability and prudence of its leading men; and this is always measured by the extent of pubiic improvements and the facil ties for cleanliness and comfort which prudent measures of adainistration secures. It is not necessary to look to ether cities where extravagent speculation in public improvements

Thas been the rule, but the actual want of those social and commercial facilities afforded by good roads, drainage and water supply is so apparent here, that it does not require any far fetched theory to decide on the extent of improvement, or the amount of population it is meant to accommodate. The circumstances of the city requires this outlay; every month it is delayed adds to its future expensiveness, as well as prevents the property of the citizens from attaining its full value.

All which is nevertheless respectfully submitted.
GEORGE H. PERRT, O. K.

LIST OF STREETS AND GRADES.

IIST OF STREETS AND GRADES.-Continued.

Duke	Duke and Queen ．．．．．．．	49.57	Bridge	53．57	930	10.45 i	100 feet．		
York	Susiex	86.99	Dalhousie	81.76	1100	0.47	do		
	Dallumate	81.76	Cumberlama	72．nif	620	1.48	do		
	Cumberland	72．50	King	64.40	406	0.74	do		
Cumberland	Rinlenu．	77.25	Darance	70.69	940	0.67	do	－	
	Charence	70．6\％	2t．Patrick	68.67	¢10	0． 0.38	do	\cdots	
	St．Pataick	188．6．	Uatheart	1，5．6．t	1050	0.27	do	${ }_{0}^{\circ}$	
Carleton	Catheart	（35．74	l cTaggart	66.2	820	0.07	do		
	UcTagorat	66.2%	R＋chpath．．．	70.60	645	0.67	do		
	Reilpath	70.60	Baid．．	68.40	450	2.60	do	－	
St．Paul	Camal Bank	89.63	Mongrove	96．13	336	1.93	do		
	Horgruve	96.18	Nichotas	86.72	$76 \pm$	1.23	do		$\stackrel{\infty}{\infty}$
Besserer．．．．．．．．．．．．．．．．	Nicholas	86.72	Ditawa．	85，68	450	0.23	do		
	Mtalwa．	~ 5.68	Cumberland．	85.87	300	0.06	do		
	Granherland	85．87	Kinu	93.00	570	1.18	do		
	Kime．	y3． 00	G ancester．	97.21	Q 41	0．4\％	do		
	Hinoucester	97． $2 \pm$	End of Sueet	111.51	2769	0.50	do	－	
Daly Street	Pank over Rillata．	107．68	King	107．68	3456	IIが号		\％	
	K！！¢T．．．．．．．．．．．．．．	107．ts	Cumberlamd ．．．．．．．．．	44.40	＋44		100 feet．		
	C＇mabertand	24.40	－hlawa．	14．2．1	400	0.04	do		
	Mstawa．．．	94．23	Nicholas	92.14	516	0.49	do		
Fagh	Rear．	S8．42	Wellington．．．．．．．．．．．．	113．87	600	t． 23		$\stackrel{\square}{6}$	
	Wellington	113．37	Sparks ．．．．．．．．．．．．．．	112.80	300	0.19	do	－	
	Sparks．．．．．．．．．．	121．80｜	Queen ．．．	116.50	250	11.48	do		

LIST OF STREETS AND GRADES.-Continued.

LIST OF STREETS AND GRADES.-Continued.

LIST OF STREETS AND GRADES.-Continueit.

OTTAWA:

printed at the "tribune" book and job printing establishment, Corner of York and Sussex Streots.

[^0]: Carried formard
 $\$ 630,68828$

