PART VI

 DEPARTMENT OF THE INTERIOR

 DEPARTMENT OF THE INTERIOR TOPOGRAPHICAL SURVEYS BRANCH

GENERAL REPORT OF OPERATIONS

нROM
1869 to $188!$
Together with an Exposition of the System of Survey of Dominion Lands, and a Schedule of

DOMINION LAND AND TOPOGRAPHICAL SURVEYS
BY
W. F. KING, B.A., D.T.S., Chief Astronomer of the Department of the Interior,

AND
J. S. DFHNNIS, D.T.S., Chief Inspector of Surveys.

FEBRUARY, 1892.

Department of the Interior, Topographical Surveys Branch, Ottawa, 12th February, 1892.

Str,-The surveys performed under the Topographical Surveys Branch of the Department of the Interior have been of varied character. The primary object has been the division of land for the purpose of settlement, and hence the bulk of the work has consisted of block, township outline, and township subdivision surveys, together with surveys of parishes and town plots. Other surveys have from time to time, in connection with these, become necessary, such as trail surveys, surveys of Indian reserves, exploratory and micrometer surveys, triangulation and phototopographical surveys, determinations of latitudes and longitudes, \&c.

Altogether a very large amount of work has been performed, and although much of the information concerning it is contained in the reports of the Department of the Interior published yearly, yet the necessity of a general report of all the operations, for use as a book of reference, has become apparent.

With the hope of supplying this want, we bave the honour to submit herewith the first two sections of such report. The first section contains a historical narrative of the surveys, with schedules showing the names of all surveyors employed, together with the work performed by each, also all trail surveys, reserves for the Hudson's Bay Company, Indian reserves surveyed under the Department of the Interior, micrometer and exploratory surveys, correction of resurveys, acreage of the yearly surveys, and all surveys of parishes, town plots and other miscellaneous work. It also contains a list of all Dominion land and topographical surveyors.

The second section treats of the theory of the Dominion lands system of survey, and contains a number of geodetic tables useful in calculations connected with surveys under the system, and an explanation of the method of using them.

We have prepared this report in the hope that it will be found useful as a book of reference in all matters connected with the surveys, and to that end we have made it as complete as possible in the lines indicated.

It is proposed to supplement the information herein contained by the issue from time to time of additional sections giving fuller details of the various operations.

> We bave the honour to be, Sir,
> Your obedient servants,

W. F. KING, Chief Astronomer.
J. S. DENNIS, Chief Inspector of Surveys.

E. Deville, Esq.,
Surveyor Gencral,
Topographical Surveys Branch.

CONTENTS.

SECTLON I.

Page.
Purchase of Rupert's Land by the Dominion 1
Surveys prior to transfer of Rupert's Land 1
Inception of surveys under Dominion Government 1
System first proposed 1
Facts in support of proposed system 2
Adoption and marking of governing lines of proposed system $\stackrel{3}{2}$
Change in system and reasons therefor 2
Administration of Dominion lands placerl under Secretary of state 3
Appointment of Col. Demnis as Surveyor (ieneral 3
Issue of the Manual of surveys and explanations regarding 2nd system 3
Inception of surveys under 2 ind system. 4
Surveys performed during season of 1869 4
Survey of the Wiunipeg or Principal Meridian 4
Province of Manitoba created 6
Surveys during the seasou of 1871 6
Appointment of Lindsay Russell, Esq., as Inspector of Surveys 6
Schedule of rates adopted for surveys 6
Inception of survey of settlement belt parishes 6
Surveys during season of 1872 7
Commencement of the survey of the reserves for the Hudson's Bay Company 7
Adoption of system of daily pay for surveyors 8
Issue of first map showing Dominion lands surveys 8
Passage of Dominion Lands Act 8
Commencement of survey of international boundary 8
Surveys during season of 1873 9
Creation of the Department of the Interior, and transfer of lominion Lands Branch to that Department 9
Geological Survey attached to Department of the Interior 9
Administration of Indian Affairs transferred to Department of Interior 9
Surveys during season of 18.4 9
Survey of outer two miles in settlement belt 9
Lindsay Russell, Esq., appointed Assistant Surveyor General 9
Inception of the " special survey" 9
Base-measuring apparatus for special survey 14
Surveys during season of 1875. 15
Operations of the special survey during 1875 15
Surveys during season of 1876 16
Comparison of rates for township sulb-division 16
Operations of special survey during 1876 17
Surveys during season of 1877 15
Surveys during season of 1878 19
Survey of Prince Albert settlement 19
Determination of latitude by W. F. King during 1878 19
Col. Dennis appointed Deputy Minister of the Interior 20
Lindsay Russell appointed Surveyor General 20
Surveys during season of 1879 $\because 1$
Proposed change in manner of surveying block lines 21
Surveys during season of 1880 ! 1
Exploration of Souris Valley and adjacent country by Prof. Macoun 20
Indian Branch detached from Department of the Interior and created a separate department. 2.2
Surveys during season of 1881 2.2 2.2
Changes in system of survey and issue of Lind edition of Manual $\because 2$
Appointment of E. Deville and W. F. King as inspectors of surveys
Appointment of E. Deville and W. F. King as inspectors of surveys 22 22
Exploration western slope of Duck Mountains and adjacent country by Prof. Macoun 2:3
Ciperations of astronomical section of the special survey, with schedule of latitude determina-
Ciperations of astronomical section of the special survey, with schedule of latitude determina- tions 23
Surveys during season of 1882 23
E. Deville appointed Chief Inspector of Surveys 24
Marking of surveys with iron posts and tins. $\because 4$
Bomus of 15 per cent to surveyors for fyling returns without delay 24
Establishment of lithographic office 24
Pagi
Division of North-West Territories into districts2
Mr. Lindsay Russell appointed Deputy Minister of the Interior 2
Surveys during season of 1883 2
Mr. A. M. Burgess appointed Deputy Minister of the Interior 2
Surveys during seasoll of 1884 2
Inception of the survey of old trails 2.
Dominion Lands system extended to railway helt in British Columbia 2
Coummencement of Dominion Lands survey in British Columbia 2
Retirement of Mr. Lindsay Russell from position of Surveyor General, 2
Surveys during season of 1885 $\stackrel{2}{2}$
Commencement of work of longitude cleterminations 2
Traverse of Canarlian Pacific Railway line in British Columbia 2
F. Deville appointed Surveyor deneral 2
2
2
Inception of work of correcting existing surveys $\underset{\sim}{2}$
Surveys rluring season of 1886 2
Astronomical operations during the year 1886 2
Inception of topographical survey of the Rocky Mountains 2
First attempt to use photography on surveys. 28
Appointment of Mr. W. F. King as Chief Inspector of Surveys 2
Amendments in provisions of Manual regarding marking surveys in grazing districts. 2
Surveys during season of 1887 2
Determinations of latitudes and longitudes during 1887 3
Photo-topographical operations during the season \because
Mr. J. S. Demis appointed Inspector of Surveys 2
Establishment of photographic branch 2ε
Correction surveys during 1887 2
Expedition sent to Alaska. 2 C
Surveys during the season of 1888 2
Determinations of latitudes and longitudes during 1888 $2!$
Exploration surveys during 1888 24
Photo-topographical surreys during 1888 31
Notes on the surveys, ete 30

APPENDIX.

SECTION II.

Chapter I.
 General Descripfion of the System of Survey.

Pame
Size of township 101
Governing lines-Initial meridian and base lines. 101
Meridian township boundaries 101
Correction lines 101
Northern and southern boundaries of townships 101
Lengths of township boundaries and angles of townships. 101
Differences between the first, second and third systems of survey 102
Position of corner posts with reference to the road allowances. 102
Fourth system in railway belt in British Columbia. 103
Advantage of the system of survey 103
General remarks concerning the tables 103
Limits of the different systems of survey 104
Chapter II.
Construction and Use of the Tables.
Tarle I.-Lengths of ares of meridian, parallel, \&c., in different latitudes 104
Table II.-Corrections to Table I. for change in elements of figure of earth 106 106
Table III. - Latitudes of base and correction lines and lengths of arcs of meridian, parallel, \&c., for the lst and 2 nd systems of survey. 107
Table IV. - Latitudes of base and correction lines, \&c., for 3rd and 4th systems of survey... 108
Tarle V.-Chord azimuths, \&c., for base lines, Ist and end systems of survey. 109
Table VI.-Chord azimuths, \&c., for base lines, 3rd and 4th systems of survey 110
Table VIL.-Chord azimuths, jogs, \&c., for correction lines, lst and 2nd systems of survey. 110
Table VIII.-Chord azimuths, jogs, \&c., for correction lines, 3rd and 4th systems of survey. 111
Table IX.-Latitudes and widths in chains of northern boundaries of sections in lst and 2 nd systems of survey. 111
Table X.-Latitudes and widths in chains of northern boundaries of sections in 3rd and 4th systems of survey 112
Table XI.-To reduce chains to decimals of a township side 112
Table XII.-Correction to widths of roads on correction lines on account of curvature 112
Table XIII.-Differences of latitude between township corners and section and quarter section corners. 113
Chapter III.
Problems comneted with the System of Survey.
Correction for height above sea level.-Latitudes and longitudes of points in the system :- Latitude 114
Longitude, 3rd system 115
Longitude, 1st system 115
Longitude, 2nd and 4th systems 116
Effect of errors of survey 116
To find the position with regard to the survey system of a point given in latitude and longitude:-
2nd, 3rd and 4th systems 116
lst system 117
Fractional township or range between parts of the country surveyed under different systems of survey :-
Fractional township 117
Fractional range 117
Example 118
Example 119
Fractional sections adjoining an initial meridian :-
Longitudes of the initial meridians 120
Example of the calculation 120

Chapter IV.

Solutions of some Problems in Practical Geodesy.

Given the latitude and longitude of a point and distance and azimuth to another point, to find the latitude and longitude of the latter and the reverse azimuth :-
Spherical solution (for short distances).

More accurate formula for long distances..................... 121
Formula in terms of rectangular co-ordinates... 122
Given the latitudes and longitudes of two points, to find the length and direction of their $\quad 102$
Knowing the latitudes and azimnths of one point from another, to find the distance........ 123
Given the latitude of one point, the azimuth from this to another, and the difference of longitude, to find the distance :-
Trigonometrical levelling
To find the elevation of one station above another by observation of the angle of elevation or depression.

Appendix.

Abstract

Tables

M AP
ON MERCATOR'S PROJECTION OF PART OF THE N.W. TERRITORY Illustrating the proposed System

MTAN
 Ow
 TOWNSHIP

PROPOSED SYSTEM OF PUBLIC SURVEYS RED RIVER TERRITORY.

East and West 733: 20
Note- The Tornship is divided into 64 squares of soo acres each
exclusive of allowance for Road, which is five per cent. Thisfive per cent is added into the sections as laid out upon the ground.
The sections number conscatively commencing ins S. E. and ending in N.E. Curners of
Tornship.
The area of the whole Township including five percent for Road is 33760acres. \qquad
Fort Garry, Aug. 28 th 1869
(Sgd) J.S:Dennis

$$
\frac{1}{4}=2-2---
$$

SECTION I .

A SH0RT HISTORY OF THE SURVEYS PERFORMED

UNDER THE

DOMINION LANDS SYSTEM
 1869 TO 1889

BY
J. S. DENNIS, D.T.S., Chief Inspector of Surveys.

SECTION I.

A SHORT HISTORY OF THE SURVEYS MADE UNDER THE DOMINION LANDS SYSTEM 1869 TO 1889.

Narrative.

The history of the surveys performed under the Dominion Lands System begins in the year 1869, shortly after the territory of Rupert's Land was acquired by the Dominion of Canada by purchase of the rights of the Hudson's Bay Company. Previous to that date, the only surveys, other than explorations, which had been effected in the territory purchased, covered a narrow belt of lots fronting on the Red and Assiniboine Rivers, and extending a short distance up and down these streams from their junction at Fort Garry. These surveys had been performed by Messrs. Sabine and Goulet, under instructions from the Hudson's Bay Company, with the object of defining the boundaries of holdings granted by that company to settlers living along these rivers.

As it was thought that a large portion of the newly acquired territory was good agricultural land, well adapted for successful farming operations, and it being expected that a large influx of immigrants would follow the transfer of the country to the Dominion, it was realized that one of the first duties of the Government was to devise and adopt a comprehensive scheme or system upon which to conduct the surveys of the country, and to proceed with the survey of such portions as were likely to be required for immediate settlement. To the Department of Public Works was relegated this important duty, and on the 10th July, 1869, instructions were issued by the Honourable the Minister of Public Works to Lieut.-Col. J. S. Dennis, Provincial Land Surveyor, instructing him to proceed to the Red River district to examine the country in the vicinity of Fort G:rry, and to suggest a scheme or system upon which to base the surveys which were to be undertaken. He was accredited to the Crown Lands Departments both in Canada and the United States, with the object of procuring all the information and advice possible to aid him in drawing up the scheme or system for adoption by the Government.

Arriving at Fort Garry in August of that year, the country bordering the Red and Assiniboine Rivers and vicinity was examined, and after giving due weight to the information received from those competent to advise on the subject, a system for the survey of the country first into townships and then into farms was drawn up, and, with illustrating sketches, was forwarded to the Government under date the 28 th of August, 1869. The proposed system was approved, and was brought into force by an Order in Council dated the 23rd of September, 1869, the Order in Council being based upon a memorandum from the Hon. Wm. McDougall, the then Minister of Public Works, who forwarded the proposed system and recommended its adoption.

The system adopted contained many points of difference from that now in force, and being of interest from an historical standpoint, it is here given in extenso:-

[^0]In submitting the above system, it was represented as being well adapted to the country to be surveyed. In devising the system, the views of those well versed in surveying operations, both in Canada and the United States, were made use of, and the following facts were offered in support of the scheme proposed :-

In comparing it with the American system then in force in most of the western states and territories, it was noted that in the latter there was no provision made for public roads, the area required for this purpose being subsequently taken by expropriation from out of the net area acquired by the settlers.

It was also suggested that the townships in the American system were unnecessarily small, and it was pointed out that in an open or prairie country the facilities for communication are greatly in excess of those in a broken or wooded country, and the larger townships were advocated in consequence of the economy which would result in the administration of municipal affairs.

The numbering of the townships north from the international boundary line and the numbering of the ranges east and west from a principal meridian, was r reommended on account of its simplicity and the facility which it afforded for easy description in disposing of the Crown lands.

In the interval between the date of sending the proposed system and the receipt of further instructions as to its adoption or otherwise by the Government, it was decided to carry on the survey of the Winnipeg or Principal Meridian referred to in the scheme submitted. In doing this, an approval of the scheme was anticipated which might not have been obtained, but no doubt it was realized that any scheme adopted would, in its main features, resemble the one proposed, and would authorize the survey of the country into rectangular townships.

The line which it was proposed to run would serve as a base or initial meridian for any system decided upon, and in consequence of the absence of surveys of any kind from which a survey under a defined system could be begun, some line had to be adopted and surveyed as a starting point.

In the absence of information on the subject, it is impossible to say why the particular location in which the Winnipeg Meridian was run was adopted, but no doubt, judging from the information which we now have regarding the country traversed by this meridian, it was so located as to avoid the belt of timber along the Red River, and at the same time not too far west of the river to be readily available for the dependent surveys which it was proposed to effect in the vicinity of Fort Garry. It would seem that the intention was, pending the receipt of instructions regarding the adoption of the system proposed, to survey and mark the Winnipeg Meridian from the boundary line as far north as Township 11 in the proposed system, and then to project the line between Townships 6 and 7 easterly, and to subdivide a small tract in the vicinity of Oak Point. This was done, and it may be referred to as the first survey performed under authority of the Dominion Government in the territory of Rupert's Land.

In the fall of 1869, the outbreak known as the Red River troubles occurred, and this put an end to the surveys for the time being.

During the year 1870, nothing in the way of surveys was undertaken, but the subject of the future surveys, and the system to be followed, received considerable attention, and towards the end of the year steps were taken to amend the system authorized by the Order in Council of September, 1869. The Government was no doubt largely influenced in the decision to alter the system adopted, by the views of the Hon. (now Sir) Adams Archibald, the Lieutenant Governor of the newly created Province of Manitoba. The views of the Lieutenant Governor were very fully set forth in a despatch to the Secretary of State, under date the 20th September, 1870. By permission, the following notes taken from this despatch are here given in explanation of the very material change which was shortly to be made in the system authorized.

It was pointed out by the Lieutenant Governor that, while the general principle of the survey of the country into rectangular townships was a good one, at the same time he considered the townships too large; it was also noted that for a very long
time the American Government had been carrying on their land surveys under a system which provided for townships six miles square and containing 36 sections of 640 acres each, and that these sections were again subdivided into quarter sections of 160 acres each. Attention was drawn to the fact that many states of the Union had been laid out and peopled under this system, and, further, it was urged that, as the State of Minnesota and the Territory of Dakota, which would be surveyed under this system, adjoined our territories, and the two systems would be continuous, there were strong reasons for making our system somewhat analogous to theirs. Again, the American system being known all over the world to the emigrant classes, and a lot of 160 acres being the acknowledged extent of an emigrant's requirements for farm purposes, any change from that system, it was claimed, would act disadvantageously to our country. In reference to the 5 per cent of the acreage of each lot set aside for roads under the system authorized, the Lieutenant Governor urged that this system would act unfairly, for while one man's farm might be badly cut up by a road, his neighbour, subject nominally to the same charges, might escape altogether, and he therefore recommended a fixed allowance for roads as being the fairest method of providing for public highways.

In January, 1871, Col. Dennis submitted a memorandum in reference to the proposed change in the system in force; he recommended that "the system of survey "be altered, retaining the rectangular principle, but making the townships six miles "square, with road allowance on all section and township lines of $1 \cdot 50$ chains wide." This memorandum contained some additional recommendations regarding the boundaries of the newly constituted Province of Manitoba, and in reference to the disposal of certain lands within that province, but these latter recommendations had no bearing on the survey proper.

On the 7th of March, 1871, Col. Dennis was appointed Surveyor General of Dominion Lands, and during the same month the control and administration of the Dominion Lands was trausferred to the Department of the Secretary of State, and a branch of that department called the "Dominion Lands Branch," was created.

We now come to what may be termed the starting point of the great work of surveying the vast country which had been acquired by the Dominion, and since this date the work has gone steadily on each year. The first important point requiring consideration and settlement, was the question of the proposed change in the system; the recommendations of the Lieutenant Governor and Col. Dennis seem to have met with favourable consideration, for we find that in April, 1871, on the recommendation of the Hon. the Secretary of State, an Order in Council was passed, bringing the new system into force, and on the 1st of May, of the same year, a manual of surveys was issued by the Surveyor General, explanatory of the system which had been adopted, and for the guidance of the deputy surveyors, as they were then called, who were to be employed in surveying Dominion Lands. This mauual remained in force for some years, and as under its provisions a large portion of the country was surveyed, and as it was the basis for the new or amended manuals which have since been issued, its main features will be briefly referred to; it provided:-
"(1.) The public lands in Manitoba and the North-West Territories are to be laid off in rectangular townships, containing thirty-six sections of one mile square in each, together with road allowances between all townships and sections, of one chain and fifty links in width.
"(2.) The townships, therefore, will, subject to deficiency or surplus from converging or diverging meridians, as the case may be, measure on each side from centre to centre of the road allowances bounding the same, four hundred and eighty-nine chains.
" (3.) The townships will number in regular order northerly from the international boundary, or forty-ninth parallel of latitude, and will lie in ranges, which will be numbered, in Manitoba, east and west from a certain principal ineridian, run in the year 1869 and styled the ' Winnipeg Meridian,' which starts from the said forty-ninth parallel at a point ten miles or thereabouts, westerly from Pembina.
"(4.) The said forty-ninth parallel or international boundary is the first base, or that for townships one and two; the second base will be between townships four and five; the third between townships eight and nine; the fourth between townships twelve and thirteen; the fifth between townships sixteen and seventeen, and so on northerly in regular succession.
" (5.) The correction lines, or those upon which will be allowed the 'jog' resulting from want of parallelism of meridians, will be as follows, that is to say : on the line between townships two and
three, on that between six and seven, on that between ten and eleven; and so on. In other words, they will be those east and west township lines which are equi-distant from the bases.
"(6.) In the survey of any and every township, the deficiency or surplus resulting from convergence or divergence of meridians is to be set out and allowed in the range of quarter sections adjoining the west boundary, and the north and south errors in closing on the correction lines from north and south is to be allowed in the ranges of quarter sections adjoining, and north or south respectively of the said correction lines.
" (7.) The dimensions and area of the irregular quarter sections resulting as above, whether the same shall be deficient or in excess, must in all cases be returned by the surveyor at their actual measurements and contents.
" (8.) Preliminary to the subdivision into townships and sections of any given portion of country proposed to be laid out for settlement, the same will be laid out into blocks of four townships each, by projecting the base and correction lines, and north and south lines (to be designated 'meridian exteriors.')
" (9.) On these lines, at the time of such survey, all township, section and quarter section corners are to be marked, which corners are to govern respectively in the subsequent subdivision of the block.
" (10.) Only a single row of posts or monuments to indicate the corners of townships or sections (except as hereinafter provided) will be placed on any survey line. These posts or monuments, as an invariable rule (with the exception above referred to) are to be placed in the west limit of the road allowance on north and south lines, and in the south limit of the road allowances on east and west lines, and in all cases will fix and govern the position of the boundary corners between the two adjoining townships, sectious or quarter sections on the opposite side of the road allowance.
"(11.) The exception above referred to is in the case of the township, section and quarter section corners on the correction lines, which in all cases will be planted and marked independently for the townships on either side. Those for townships north of the line in the north limit of the road allowance, and those for townships south, in the south limit."

The manual contained detailed instructions for the guidance of deputy surveyors engaged in surveying Dominion Lands under the above system, and also much general information regarding the surveys.

The system and the manner of effecting the surveys underit are so exhaustively treated of further on in this report that it is not necessary to speak further on this point here.

With the issue of the manual the survey of Dominion Lands was actively begun, and it is propsed, in the following pages to give a short account of their prosecution since that date.

For convenience of reference, and as the most ready method of writing of the surveys since performed, each season's surveys are treated of by themselves, beginning with those of the season of 1869 .

Season of 1869.

The inception of the survegs during the early part of this year has already been referred to. The report regarding the system which it was proposed to follow in carrying them on was forwarded from Fort Garry about the end of August, and immediately afterwards the actual field work was begun at Pembina by a series of observations for latitude to determine the position of the 49th parallel.

These observations placed the boundary between the United States and the Territories about 200 feet further north than that determined some years previously by General Pope of the United States army.

Beginning from the point established by these observations, the 49th parallel was produced for a distance of ten miles west of the Red River and from there the survey of the Winnipeg or Principal Meridian was begun.

In establishing this portion of the 49th parallel it was found that the line surveyed from General Pope's post by American surveyors crossed the line run from the post established by Colonel Dennis, and that posts and mounds placed to mark sections in townships south of the boundary line stood on the north side of the latter line.

This fact was reported to the Government and their attention was drawn to the necessity for a joint commission to settle the position of the international boundary west of the Lake of the Woods.

By 28th September the Principal Meridian was completed up to the Assiniboine River, being marked with posts and mounds in accordance with the system submit-
ted. From this point the further production of the meridian was assigned to M. Hart, P.L.S., and a second party under the charge of Major Webb, P.L.S., was organized and started on the survey of the base line between Townships 6 and 7 from the meridian easterly to Oak Point.

Colonel Dennis then returned to Winnipeg and commenced the compilation of a map of that portion of the country between the Lake of the Woods and Fort Ellice and from the boundary line north for one hundred and twenty-five miles. It was proposed to show on this map the projected townships in accordance with the system approved, and the manner in which the convergence of meridians, dc., was to be allowed for. The work on this map, when nearly completed, had to be abandoned on the 30th of October owing to the political troubles which then broke out.

Mr. Hart had continued the Principal Meridian up to Township 11 and then turned west on the base betwean Townships 10 and 11 with the object of projecting it west as far as Portage la Prairie. However, after running this line a short distance west, he struck Shoal Lake.

He then returned to the meridian and, beginning at the line between 'Townships 9 and 10, produced it west auross Range 1, then turning north he produced the meridian between Ranges 1 and 2 to Shoal Lake, and returning to the base he continued its production west, and had finished the greater part of Range 2 when the outbreak occurred.

The party was then withdrawn from this point and spent the remainder of the season in running the exterior lines of the townships lying between the Principal Meridian and the Red River, north of Township 8.

Major Webb had begun the production of the base line between Townships 6 and 7 from the Principal Meridian east, and had nearly reached the Red River when he was stopped on the 11th of October by a party of the discontented half-breeds; his party was, therefore, withdrawn and spent the remainder of the season in running the exterior township lines north of the Assiniboine River and east of the Principal Meridian, and in the survey of the lots of the settlement belt along the Assiniboine.

The field work was finally stopped on the 1st of December, the surveyors and several of the members of their parties being enrolled among those who were organized as a military force with which an attempt was to be made to restore order in the country.

On the 11th of December this force was disbanded, and an effort was made to continue the surveys; this, however, failed, and nothing further was done.

The following is from Colonel Dennis's report regarding the work accomplished up to the date at which surveys were stopped :-

> "Meridian lines and east and west township exteriors drawn on the ground and marked by posts and mounds at quarter section....
> "Survey of settled farms on west side of Red River and below parish of St. John's, and up the Assiniboine on north side between Fort Garry and Silver Heights (or a little beyond the latter, near Sturgeon Creek) ascertaining the present actual boundaries and position of builuings, situation of roads, and traverse of river in front
> 20,000 acres.
"office work.
"(1.) Map on large scale, embracing country from Lake of the Woods to Fort Ellice, and from 49th parallel north for 125 miles.
" (2.) Prepared one plan on scale of 60 chains to an inch, showing the Hudson's Bay Company's grants on Red and Assiniboine Rivers, as copied from their maps, and also showing where the township exteriors, according to the system decided upon, will intersect the same.
"(3.) One finished township plan on scale of 40 chains to an inch.
"(4.) Two finished tracings of Hudson's Bay maps, showing grants so far recorded."
Considerable work was also done in connection with preparing copies of the Hudson's Bay Company's land register having reference to the lots granted along the Red and Assiniboine Rivers.

Season of 1870.
On the 20th of May of this year, the Act setting apart a portion of the territory of Rupert's Land as the Province of Manitoba was assented to, but, owing to the disturbed state of affairs in that province, nothing in the way of surveys was undertaken during this year.

Season of 1871.

The adoption of an amended system of surveys and the appointment of the Surveyor General in the early part of this year have already been referred to.

With the formation of the Dominion Lands Branch of the Department of the Secretary of State, and the issue of the Manual of Surveys, the survey into townships and sections of the immense territory was begun.

Instructions were issued to twenty-one depaty surveyors who were to be employed on the season's surveys; of these, fifteen were to be engaged in surveying block outlines and effecting subdivision surveys. The remaining six carried on surveys in the settlement belt along the Red and Assiniboine Rivers.

The number of surveyors employed, and the extensive field included in the surveys, rendered the appointment of an inspector necessary.

Mr. Lindsay Russell, who had visited the Red River country as far back as 1858-59, was offered this position, and in July became Inspector of Surveys. He had charge of the surveys in the field, and during the season visited many of the parties employed.

All the surveys during this season were performed under contract at so much a mile. The schodule of rates paid under these contracts was as follows :-

SCHEDULE OF RATES.

Character of Survey.	$\begin{gathered} \text { 1st Class. } \\ \text { Open Prairie. } \end{gathered}$	$\begin{gathered} \text { 2nd Class. } \\ \text { Poplar Woods. } \end{gathered}$	3rd Class. Other woods-Heavy timber, windfall, or dense bottom scrub with vines or thick willow, hazel, etc.
	Per mile.	Per mile.	Per mile.
Block surveys	S900	\$15) 00	\$25 00
Sublivision surveys.	700	1100	1800

The surveys during the season were much delayed, owing to extensive fires and the resulting smoke. Several of the parties were burnt out and lost everything, and in one or two cases the members had narrow escapes from the fire.

The Fenian "raid" into Manitoba, in the fall of this year, also retarded the work, but in spite of these drawbacks a very fair amount of work was done, as will be seen from the following extract from the report of the Inspector of Surveys :-
"The total amount of the season's work, reckoning it by mileage of line surveyed is to the nearest mile as follows:-

	Miles.
Block surveys.	1,207
Sulbdivision surveys.	1,406
Settlement surveys, equivalent to above subdivision line.	1,200
Total	3,813

The work carried on by the surveyors in the settlement belt was of a somewhat tedious and unsatisfactory nature. Their survey was only of a preliminary character so as to provide information for the compilation of plans upon which were to be
arranged the exact boundary lines of individual occupancies, and these limits had then to be marked on the ground.

Owing to the scattered way in which the claimants of lots in the settlement belt had erected their dwellings and effected .their improvements, the work of defining their holdings was necossarily slow.

The surveyors employed on these latter surveys were paid at the rate of $\$ 13.60$ per day, which covered all charges for pay and subsistence of the surveyor and his party.

Season of 1872.

The surveys during this season showed considerable expansion, as compared with those of the previous year.

Forty-six surveyors, in addition to the Inspector, Mr. Lindsay Russell, and Messrs. Milner Hart and A. H. Whitcher, who had been appointed Assistant Inspectors, were employed.

The necessary working parties for this staff involved a force of about 400 men , with 100 horses and carts for transport service. This gave many of the newlyarriving immigrants remunerative employment, and ufforded them an opportunity to acquire, in the course of the surveys, a knowledge of the country valuable to them, when deciding as to the locality in which they would settle.

To insure that these numerous survey parties should incur no loss of time through difficulty of obtaining sufficient and wholosome supplies, large quantities of provisions consisting of bacon, biscuit, dried fruit, compressed vegetables, \&c., were procured and forwarded to Manitoba, and there furnished the surveyors at cost price. This, of course, entailed a considerable amount of labour on the part of thoze looking after the surveys, but it was hoped that the progress of business in Manitoba would soon reach such limits that sufficient supplies could be furnished by private enterprise at reasonable cost.

The surveyors employed this year were divided as follows :-Eight were engaged in running block outlines; twenty-three carried on township subdivision surveys; five were employed in the surveys of the sottlement belt parishes, and five were engaged in making explorations at different points in advance of the surveys.

The reserves granted to the Hudson's Bay Company at certain of their posts under the deed of surrender required survey. Instructions were issued to Mr. W.S. Gore, P.L.S. (now Assistant Commissioner of Lands and Works of British Columbia), to carry out this work, and he was also instructed to collect all information possible in travelling from one post to the next. This work was expected to occupy Mr. Gore for two years.

The following is the number of miles of line surveyed during the season:-
Miles.

Block lines.	1,019•22
Subdivision lines	10,147.00
Settlement belt surveys	532.00
Total	11,698 22

The surveys during this season, as in 1871, were all performed by contract, at so much per mile, but toward the end of the season, the surveyors engaged on block work represented to the Inspector the difficulty of carrying on these surveys under contract, at previously stipulated prices per mile, and represented that the method of paying for the surveys, most likely to be fair, alike to the Government and to the surveyor employed, was that of daily pay and allowances.

Upon their representations the Inspector reported as follows :-

[^1]Obstacles to progress, in the shape of extensive marshes, thick woods, windfalls, \&c., occurred, presenting varying degrees of difficulty and delay, to arrange prices corresponding to the different shades of which would be impracticable. Some surveynrs who were fortunate enough to fall in good country, realized fair remuneration from their contracts, but the majority would not, unless some consideration beyond the terms of their contract were allowed for special difficulties encountered. This might at first sight seem simple to remedy, by allowing higher rates per mile for lines run in certain kinds of country; but the difficulty of so doing justly by both parties to the contract, lay in the impossibility of estimating beforehand for an unknown tract of country, to what extent obstacles to survey existed, and precisely what increase of cost they entailed. Only by fixing a rate per mile, so high as to be more than work of average difficulty would be worth, could it be ensured to the surveyor that he would in all cases make his fair daily pay. An average price though fair to the surveyors as a body, might prove exceedingly unjust to the individual. The cases of the block and the suldivision surveyors are widely different. The former, besides being the pioneer of the latter, extend over distances in some cases reaching a hundred miles and more, with consequent vicissitudes in the survey of the line and transport of supplies, that the varying character of the country traversed would produce. For example, one surveyor in the course of his season's work had ent 30 miles of road through the woods, to enable his carts to follow him with his supplies. Another, not very remote from him, worked all summer on open plain, where his horses hardly ever required to deviate from the line he was rumning. Where in the matter of transport, delay had cost the first surveyor weeks of his whole party's pay and food, they had not cost the second an hour. The contract price to each of these was not the same, but it was difficult, until the work was done, and actual cost known, to assign a difference in price per mile run that would exactly meet the circumstances.
"Their case thus set forth by the block outline surveyors is fairly stated. I would add thereto, in favour of their being remunerated by daily pay and allowances, that under the contract system, adverse circumstances, such as bad weather, difficult country, \&c., act as a pressure on the surveyor to slight his work in his endeavour to make $n \mathrm{p}$, by hurrying through it, for lost time. It sometimes occurs at governing points, when, by the rules laid down to him, the surveyor should before proceeding further, check his positions by astronomical observation, that he is kept, with his whole party idle, waiting days for the requisite clear weather. He is here, by the dead loss of his disbursements for pay and expenses of a large and costly party, and of his own time, tempted to disregard his instructions, to proceed with his line and to assume that it is correct, thus involving that very liability to error against which the rule was intended to guard. As the subdivision of a township is confined to a distance each way of six miles, and its character is by the previously made block survey, to a great extent known, the contract system can be successfully applied to subdivision surveys."

The representations of the surveyors employed, aided largely no doubt by the Inspector's report, seem to have had the desired result, for the rule was adopted that all future block and outline surveys were to be performed under daily pay and allowances, and that subdivision surveys only should be made under contract. This rule has remained in force ever since, and there is every reason to suppose that the work has been much more carefully performed than it would have been if effected under contract.

A map showing the surveys completed in Manitoba and the North-West Territories wasissued with the Surveyor General's report of this year. It is introduced here, being of interest as the first map issued to show the results of the surrevs of Dominion Lands, and also the first official map of the Province of Manitoba.

In April an Act was passed called the "Dominion Lands Act" in which the manner of administering the lands in Manitoba and the North-West Territories was dealt with, and the system of survey explained. The Act also provided for the formation of a Board of Examiners who were to examine candidates for admission to practice as deputy surveyors, and provided for the admission to practice of surveyors from the different provinces.

With the passing of this Act the persons employed in surveying Dominion Lands were given the distinctive title of deputy surveyor. This title has since been changed, and numerous alterations have been made in the law regarding the qualifications necessary to be admitted to practice.

In the autumn of this year a joint British and American Commission commenced the survey of the international boundary between the North-West Territories and the United States, from the uorth-west angle of the Lake of the Woods to the summit of the Rocky Mountains.

Season (ff 1873.
Thirty-four surveyors were employed during this season. They were divided as follows:-Four were engaged on block surveys, one in the survey of reserves for the Hudson's Bay Company, and twenty-nine in subdivision surveys.

The representations of the Inspector regarding the payment of block surveyors by the day instead of by contract having been favourably considered, we find that during this year all the surveyors, except those employed in effecting subdivision surveys, were paid by the day, and the system of payment, inaugurated at this time. has remained in force ever since.

In May the Bill creating the Department of the Interior was assented to, and on the 30 th of June the management and control of Domicion Lands was transferred from the Department of the Secretary of State to the newly constituted Department of the Interior. The Geolngical Survey was also at this time attached to the Department of the Interior, which was also charged with the administration of Indian Affairs.

SEason of 1874.

The ordinary surveys were on a somewhat more limited scale during this season than they had been during the two previous years.

In the work of block and subdivision surveys eighteen surveyors were enployed; of these, two were engaged in block outlines, and the athers in subdivision or settlement belt surveys.

The survey in detail of all the holdings in the several parishes fronting on the Red and Assiniboine Rivers was completed.

The decision arrived at in September, 1873, conceding the land covered by the hay and common privilege in the "outer two miles" to the owners of front lots in certain of the parishes fronting on the Red and Assiniboine Rivers, necessitated the survey of the "outer two miles" to correspond with the river front lots.

A force of surveyors was detailed for this work, under the direction of Mr.. Whitcher, one of the inspectors of surveys, and the larger part of the field operations was completed before the close of the season.

The lands reserved to the Hudson's Bay Company, under the deed of surrender, at several posts in the Lac la Pluie district were surveyed by Mr. D.L.S. Miles.

During this season the first surveys of Indian reserves were undertaken. On this work six surveyors were engaged, and reserves were laid out at several points in Manitoba and the North-West Territories.

SPECIAL SURVEY.

In February an Order in Council was passed authorizing a special survey of bases and meridians through the North-West Territories, and extending to Peace River. This was the most important surveying work undertaken by the Government since the acquisition of the territory, and a short description of its objects, and of the work effected during the season, will be of interest.

The objects of this survey were:-

1. To establish a practical ground-work for the extension of township surveys at any point along the line of the proposed route for the Canadian Pacific Railway, thus tending by systematic settlement to the development of the country.
2. To contribute towards the construction of the railway by facilitating the location of the land grant along the line.
3. To obtain a knowledge of the character and resources in the way of soil, timber and minerals, as also of the flora and fauna, of the territories covered by the survey.

To the above may be added the possibility that data of value would be obtained for estimating the length of a degree of the meridian in the region covered. This will be understood when it is said that the work was intended to extend over some twelve degrees of latitude, and that all possible precision was to be aimed at in carrying on the work.

With this view, in addition to laying down the actual lines of the meridians and bases throughout the country, which was to be performed by a separate party under the supervision of the chief of the special survey, the position of these bases and meridians was to be definitely checked from time to time by means of a continuous triangulation to be carried on simultaneously over the most favourable belt of country that could be found for that purpose.

This triangulation was to be extended northerly from the 49 th parallel, as fixed by the International Boundary Commission, and westerly from the Principal Meridian, in Manitoba, to the Mackenzie River near the outlet of Lake Athabasca.

This important survey was placed in charge of Lindsay Russell, Esq., Assistant Surveyor General, and early in the year a move towards initiating the work was made by ordering some of the instruments needed. Owing however to delay in receiving these the inception of the field work was somewhat delayed; however work was begun towards the end of July, and the following extract from the report of the Assistant Surveyor General upon the work accomplished this season will serve to show the boginning made in this important work:-
"Towards the end of July a portion of our instrumental outfit arrived at Ottawa, sufficient to enable me to instruct Mr. A. L. Russell, D.L.N., my first assistant, to commence the field work by connecting, by careful survey, the iron boundary at the intersection of the Principal or Wimnipeg Meridian and the fourth base line, with the astronomic station at Pembina, whose longitude had been telegraphically determined.
"This he did in the following mamer: Starting from the fourth base he made a check survey of the Winnipeg Meridian, with careful double chaining and repeated azimuthal observations throughout, down to the 49 th parallel or international boundary.
"Thence he measured along that parallel eastward, by thrice chaining each mile, the distance between the Winnipeg Meridian and the astronomic station above-mentioned. Careful comparison of the steel chains used by him, with standard, was made at the end of every mile.
" On the 29th August, I left Ottawa with the remainder of the party, and sufficient instrumental outfit to do the principal part of the work of triangulation westward from Mr. A. L. Russell's point, the iron boundary before-mentioned.
"We were delayed on our journey to Manitoba by the necessity of going down the Red River by steamer, on account of our instruments, chronometers, base apparatus, \&c., that could not go by stage waggons.
"These steamers are governed by circumstances as to time of sailing, and have not stated days of departure. We unfortunately arrived at such time as to lose altogether four days waiting for a steamer. This, with a slow passage down at low water, prevented our fairly getting to work at our base of triangulation until 18 th September.
"A few days after this Mr. A. L. Russell and his division of the party joined me. Having completed the part of the survey already described, I instructed him to proceed westward to the vicinity of the White Murl River, there to carry on a section of the triangulation.
"The leveller, Mr. H. B. Smith, C.E., had hitherto-besides making some useful connections of the water levels below the rapids at St. Andrews on the Red River, the mouth of the Assiniboine, and the Red River at Pembina-been engaged in getting a profile along the lines surveyed by Mr. A. L. Russell.
"Considering that the country, over which our triangulation would for the rest of the current season extend, had been fully examined and levelled by the engineers of the Pacific Railway survey, I jurged it desirable to turn our levelling party to more profitable account than that of verifying facts already well obtained. I therefore instructed him, instead of carrying his line of levels westward, in our track, to take them up the course of the River Assiniboine, and at the same time to make such observations of the nature of the stream, and the obstructions to its navigation, as would enable him to report upon its value for that purpose, and approximately the ameliorations it might require.
"I also directed him to make an examination, and obtain a profile between the River Assiniboine and the south end of Lake Manitoba, by the way of Long Lake, sounding the latter, and thence following the lowest intervening ground he could find, with a view to possible future connection by canal of the navigation of Lake Manitoba with that of the Assiniboine.
" Mr. Hermon, P.L.S., had, a previous season, reported to me that during the course of a survey in the vicinity he had seen the possibility of such a connection from the existence of ground of a low level throughout, between Long Lake and Lake Manitoba, exceedingly favourable to a canalling pro-
ject. ject.
"Mr. Hermon's judgment proved quite correct. Mr. Smith found a practicable line for the connection of navigation, and the relative level of the waters to be such as to admit of turning those of Lake Manitoba into the Assiniboine, to regulate its depth, and for the creation of water power, both objects of great importance in the locality concerned.
"Returning to the main occupation of the survey-the carrying of a series of triangles from the Winnipeg Meridian westward--this was continued by both sections of the party until winter had set in and the weather became sufficiently severe to interfere with accurate observation of the angles.
"On the l0th November, the work immediately under my own eharge had reached Mr. A. L. Russell's section, and closed with it. I then moved the whole party down to the vicinity of Sturgeon Creek, and, availing myself of the finer days, ran the triangulation from the Winnipeg Meridian into Winnipeg, tying in its geographical position by stations on Fort Garry, Nt. John's Cathedral, and the iron township boundary in rear of the town.
" This closed our work of this nature for the winter, making the total distance covered by the survey, from the astronomic station at Pembina to the western termination of A. L. Russell's tri. angulation, and including that between the Meridian and Fort Garry, a hundred and sixty miles.
" Having received, on my return to Winnipeg, your telegraphic instructions that the force of the party was to be employed during winter, under direction of Mr. A. L. Rnssell, in layimy out meridians and bases for townships east of the Lake of the Woods and along Rainy River, I proceeded to maizethe necessary arrangements for placing supplies in depots in these localities.
"This was effected with some difficulty; no one was passing over the Lake of the Woods road east of its first thirty miles; therefore the road had to be broken along it, and over the ice on the Lake of the Woods, the rest of the 150 miles that supplies were drawn. The absence of any foragethe entire way was also unfavourable.
"Food for the party for the winter having been thus placed in the centre of their work, and having provided them with an outfit of camp equipage suited for the season-siow-shoes, dogs and dog sleds for transport-I despatched them on the 8th December to the Lake of the Woods, starting myself the same day on my return to Ottawa.
"Having thus given an outline of the manner in which the party was occupied in the field, I shall proceed to give some details of the method of survey, the processes and instruments employed
"The 49th parallel of latitude, as established by the International Boundary Commission, being the datum line across the continent to which our system of bases and meridians has to be referred throughout, it was necessary that the present survey should be connected with some fixed point upon it.
"It was also requisite for the accurate laying down of the geographic position of important places and features of the country to be traversed, that the absolute longitude of the commencement of the survey should be obtained.
"For the purposes of the British section of the International Bounclary Commission, and those of the Dominion Lands Surveys, in 1872, Capt. Anderson, R.E., Chief Astronomer to the British Commission, at Pembina, in co-operation with myself at Chicago, determined, by the electro-telegraphic method, the difference of longitude between the observatory at Chicago, and his astronomic station at the former place. This, with the known relative position of Chicago and Greenwich, will give, by reference to the Pembina station, the necessary connection of all our future surveys with Greenwich.
"Hence the adoption of the astronomic station on the 49 th parallel at Pembina as the point of leparture of the present survey.
"The accuracy of position, relatively to the 49th parallel, of our bases, can always be checked by carefully observed astronomical latitudes, therefore the actual measurement on meridians, northing and southing, does not require to be made with as minute precision as that along the bases in the east and west direction, on which no direct astronomic observation gives a check of any value.
" Until telegraph lines are constructed, throughout the country traversed, the accuracy of difterences of longitude will depend solely on that of survey measurement.
"For this reason it was necessary to employ the method of triangulation in carrying the survey westward. On the check survey of the Winnipeg Meridian careful double chaining was deemed sufficient. The interval of ten miles between the meridian and Pembina station was not triangulated, the circumstances being so favourable to accurate chaining, and the distance so short, that thrice measurement by that means was considered sufficiently accurate; the probable error being in a small ratio to that of the absolnte longitude of the point of reference.
"I have reason to believe, from the close inter-agreement of the different measures of each mile, that the longitude of the Winnipeg Meridian from the Pembina astronomic station is determined to a couple of feet, or as closely as measurement with the ordinary chain will admit. The evenness of ground-perfectly level prairie-was in the utmost degree favourable to accuracy.
"As the computation of the triangles and of the astronomic observations is yet in progress, I am unable to show for the whole of the work, by closing results, the comparative accuracy of the triangulation, but the following differences were obtained for the portion calculated.
"From the initial base, by a chain of twenty-eight triangles, whose sides would average about. two miles, to the first base of verification, the length of the latter by calculation differed from that obtained by direct measurement an inch-and a half, or as the base of verification was about 69 chains long, a closing error of about $\frac{1}{\overline{3} \frac{1}{\delta} \overline{0}}$.
"The double measures of these bases with our base apparatus had compared as follows :-difference of first and second measurement of initial base, three-tenths of an inch.
"The azimuth of the base of verification mentioned, deduced from the initial base through, oneside of the above chain of triangles, differed from that obtained by the other side four seconds of arc. In the next series, of twenty-two triangles, the azinuths similarly carried forward from the beginning to a common side at the end of the chain differed a second and a quarter.
"In measuring horizontal angles on the prairies, the cause of error most beyond control, is that of unsteadiness of image produced by irregular refraction. This occurs to so great an extent as to produce frequently an apparent lateral displacement, of the station under observation, of many seconds.
"In such cases there is no other resource than to wait for more favourable atmospheric conditions. Hence a good deal of lost time in observing. For two or three weeks in the fall our progress was similarly hindered by large prairie fires in our vieinity, their smoke making it impossible to see any distance.
" It is a question whether the difficulty of lateral refraction might not be considerably lessened by observing from the top of a framed staging at a beight of 20 or 30 feet from the ground. Some experiments shall be made at the outset of next season's work, to ascertain whether the advantage in this direction, and in the increased range of sight to be gained on prairie by very moderate elevation of the observer, would warrant the cost of transport of portable framework for the purpose.
"The station signals used are similar to jointed flagstaffs, and are capped by bright tin cones, with brush below ; they are stayed by three rope guys, an iron pin in the foot of the mast being stepped into the station mark, an oak post with central hole in head driven down till even with surface of the ground.
"The angles are taken with 10 -inch theodolites, by which five seconds can be read. To obtain greater precision, by taking the mean of many observations, a number of series of direction readings is taken at each station.
"A series consists of the successive readings, from that on the station adopted as zero, round on each station concerned, through 360 degrees back to the zero station. The difference between the first and the last direction reading on this station being the closing error of that series.
"To eliminate the instrumental errors of collimation, inclination of horizontal to vertical axis, and to decrease those arising from errors in graduation and from play in clamps and tangent screws, these series are arranged as follows, premising by way of explanation :-
"That 'face right' and 'face left' are positions of the verniers and telescope axis differing 180 degrees, or a semi-revolution in azimuth.
" That 'forward motion' indicates that the instrument is revolved in azimuth with a motion from left to right, in the same direction as the hands of a watch.
" Backward motion the reverse.
" That for both motions, in bringing the observed object in coincidence with telescope wires, the tangent screw shall always be turned so that the motion shall continue onward in same direction.
" That positions 1, 2, 3 mean respectively, that the position of the fixed or graduated limb of the instrument is so shifted for each that if A be the line of graduation directed to the zero station in position l, then will the lines $A+120, A+2+10$, comes successively opposite that station in positions 2 and 3.
" The arrangement is then -
" lst series, position 1 , face right, forward motion.
" 2nd do do do backward do
"3rd do do face left forward do
"4th do do do backward do
"And so on for each of the two other positions, giving twelve series in all, and for each position eight vernier readings ; therefore, 24 for any one direction, and 48 for any angle.
"The azimuths of the sides of the triangles are checked at intervals by referring them to circumpolar stars, the method of observation being similar to that already stated for horizontal angles of the triangulation with the addition of noting level readings and chronometer times.
"A reference mark is used, consisting of a box about 9 inches culbe, firmly mounted on a stand, and placed at such a distance as to be seen clearly through the telescope without altering its stellar focus. The fronting face of the box has in it a vertical slit of about a quarter of an inch opening; inside is a lamp, and between it and the slit is a ground or white painted glass pane, preventing irradiation and producing sharp definition of the edges of the slit to ensure precision when bisecting it with the telescope wire.
"The scheme for azimuthal observations stands thus :
"POSITION 1.
" val:E RHiHT.

" And so on for each of the other two positions.
"When taking the measures of a horizontal angle, the result of reversing the instrument, the inclination of its vertical axis being considered constant, is to reduce the angle to its projection on a plane passing through the instrument at right angles to its vertical axis of rotation, and there is a further correction to reduce it to its projection on the plane of the horizon. This is obtained by level readings.
" In prairie country the stations to be observed are usually so rearly on the same level that, with ordinary care in keeping the rotation axis of the instrument vertical, this correction is inappreciable. The level readings require to be noted only when stations differ thuch in elevation, and that there is risk of change of inclination, or when one of the objects is a star, as in the scheme for azimuthal observations above.
"These azimuths are also checked by comparison with a meridian mark established by observing transits of circumpolar and southern stars.
"To obtain the latitude of astronomic stations the following methods are employed :
" lst. Zenith distances of Polaris and other standard polar stars are observed in reversed positions of the altazimuth, with the chronometer times of observation; also, an equal number of measures of circum-meridian zenith distances of standard southern stars, the mean of whose altitudes corresponds to that of the polar stars.
" 2nd. The latitude is deduced from the observed interval of time between the east and west transits of stars across the prime vertical.
" 3 rd . Direct measurement, hy means of a micrometer screw, of the differences of the meridian zenith distance of pairs of stars north and south of the zenith, Talcott's method.
"The special construction of the altazimuth used admitting of the equally careful application of all these methods, they become in a measure, from the difference of principle or procedure involved in each, independent checks on one another.
"Method No. 3 has the advantages over the others of rapidity of observation, simplicity of construction of instrument it requires, and freedom from the errors involved in graduation, or change of form of graduated circles; but, in the present condition of star catalogues, has the drawback, that to comply with the restriction, of nearly equal altitudes of the north and south star in each pair-thecases of such coincidence occurring rarely among the fewer standard (best determined) stars, it is necessary to have recourse to the more numerous class, those whose positions are less accurately known.
" In the first method, by increasing the number of points at which the measuring circle is read, i.e., the number of reading microscopes-and by being careful to select stars so that the averages of altitudes north and south shall not differ widely, the errors arising from undetected irregularities of graduation and from change of form can be rendered inappreciable. In this method, the condition of equality of altitude north and south is so modified that there is no difficulty in finding for any latitude suitable standard stars.
"The second method is of the three the least convenient of application in the field; but is specially valuable as a check on either of the other two, on account of the, to some extent, independent data from which by it the latitude is deduced. It can be more successfully carried out in an observatory, where the stability of the instrument used can be better insured, where the small changes from fixity of position occur more slowly and are more uniformly proportionate to the intervals of time during which they take place. Satisfactory results can, however, be obtained in the field, with a properly constructer instrument, carefully placed and used in such wise as not to depend for too long an interval, without reference to stars, on its stability in azimuth.
" Common to all three methorls, and entering directly in the results of all to its full. amount, is any error arising from irregularity of action of levels, usually caused by alteration of curvature of the tubes due to their exposure, in course of observations, to changes of temperature. Attention to certain points in mounting them, and enveloping them, as much as their use will permit in non-conducting material, tend to prevent those rapid changes which have worst effect.
"For the first method, the following is the process of observation :-
"The altazimuth having been carefully adjusted and levelled, so that the outstanding instrumental deviations shall enter as exceedingly small factors, the telescope and vertical circle are firmly clamped at, approximately, the altitude of the polar star to be observed.
"The azimuthal motion is also clamped, and the star having been brought into a suitable position in the telescope field, the four circle microscopes are read and noted, also the three levels of the microscope bearer. A series of several measures is then made between the star and the middle fixed horizontal wire of the diaphragm, by means of the movable wire of the telescope micrometer, the chronometer time being noted with each measure; then the readings of circle levels and microscopes are repeated in order the reverse of that at the first readings.
"The mean between the readings before observing and those last taken is the adopted circle reading, to which is referred each one of the intervening series of micrometric measures of the increments of zenith distance.
" The instrument is then reversed, and the same course pursued, with the difference that a double set of micrometric measures and three readings of microscopes and levels are made.
" Then the instrument is returned to original position and first series repeated, giving finally an equal number of zenith distances in the two positions-face right and face left.
"For the accurate interpolation of the changes of refraction throughout the observations, the thermometric temperature and height of barometer are read at beginning and end of each position. To eliminate the effect of errors in the adopted declinations or right ascensions of the circumpolar stars, the observations on them are repeated when they are at diametrically opposed points of their diurnal path.
"The southern stars are observed in a similar manner, near and on the meridian, in reversed positions of the instrument, with the slight difference that-the rapidity of their motion requiring change of azimuth of the telescope to keep them in its field of view during the series of micrometric
measures-it is necessary to read the levels at every measure to obviate the effect of any change of inclination that might loe conseguent en the movement in azimuth.
"The mean of the reşults, obtained by the foregoing methorl of observation of alternate northern and southern stars, gives a latitude free from the effects of flexure, or other constant known, or unknown, causes of error.
"For the application on this survey of the third or Talcott's method-which is similar to the first in principle, but different in the process involved-an additional very sensitive level is connecter directly with the telescope of the altazimuth, somewhat in the mamer of the level attached to the zenith telescope, which is the instrument usually employed in this method.
" The following is the course of the observations and their record: The telescope having been clamped at the mean of the meridian altitudes of the pair of stars to be observed, it is set in azimuth for the star which culminates first, as the star crosses the meridian it is, by an onward motion of the micrometer screw, bisected by the movable wire. The telescope level is instantly read and noterl, and next the micrometer reading.
"The instrument is then turned 180 degrees in aximuth and same process repeated with the other star of the pair.
"As the instrument is very closely placed in the plane of the meridian, the chronometer time of bisection is noted only when the observer has failed to make it exactly at transit, and that it therefore requires reduction to the meridian.
" When the stars used have been observed a number of times at standard observatories, results from them, on account of the greater certainty of their declination, have more than usual weight; it then becomes worth while to repeat the micrometric measures on them, noting the chronometer times as in the method of circum-meridian zenith distances; but this seldom happens with the available pairs of stars, generally of lesser magniturle, among which class the fortuitous concurrence of equality of altitude and shortness of interval between transit of each, with certainty of position is rare.
"The sedond method, that of obtaining the latitude by observing the transit of stars across the east and west verticals, is carried out as follows :-
"From the catalognes are selected two groups of stars whose declinations are about a degree less than the latitude, and so disposed that the stars of each come closely one after another, and with such interval between the groups as will admit of their being observed in the following manner :-
"The meridian reading of the azimuth circle of the instrument having been checked by reference to the previously established meridian mark, its upper or movable part is clamped at the reading which places the central wire of its telescope in the plane of the prime vertical, then the chronometel times of the transits of the stars of the first group over the several wires are noted for their passage across the east vertical. The axis level is carefully read for each star-it remains on the axis during the course of the observations.
"Reference to the meridian mark is again made in case of any small azimuthal change of position of the stand. The instrument is reversed, the ends of the telescope axis being revolved through exactly 180 degrees of azimuth, and again clamped in the plane of the prime vertical, then the times of transit of the first group of stars over the west vertical are similarly recorded. This gives for that group of stars a series of observations in each of the positions-face north and face south-of the instrument.
" In this latter position the east transits of the second group of stars are observed, and then by reversal back to the original face north position, the west transits of the same group.
"This proceeding eliminates from the result of these observations any effect of collimation or wire interval.
" Meteorological observations were not made, for the reason that our outfit for that purpose was not complete at time of starting to the field ; further it was not judged of any profit to make partial observations, as the work would lie for the short part of the current season comparatively near to one of the fully equipperl government meteorological stations-connected with the Magnetic Observatory at Toronto--by which full returns would be made."

The requirements of the survey made it necessary to have some base measuring apparatus that would occupy an intermediate position, in point of relative accuracy and time consumed in working, between the rapid but rough measurements of the ordinary chain, and the base apparatus usually employed in primary triangu-lations-which latter, although giving fine results, is complicated and requres much time in its application.

A special base measuring apparatus was designed by Mr. Russell for use on this survey. The following concise description of the apparatus is extracted from the Surveyor General's report :-

[^2]inclination of the two rods, the distances, therefore, from dot to dot at the centres of these cylinders, with the temperature not considered-are constant for all inclinations of the rods. The objectionable feature of any measuring apparatus working on the contact principle is that of wear of touching surfaces and consequent alteration of length. This is to a considerable degree obviated, in the present arrangement, by a provision for turning the cylinder round, at equal intervals of use, to distri bute the wear and ensure, as nearly as possible, its occurring symmetrically. It is evident that the cylinder might be decreased in size until nearly cut through, and yet, if its section continued to be a true circle, the distance from central dot to central dot remain the same.
"Effects of temperature are approximately taken into account by adopting the mean of several standard coefficients of exprnsion for cleal. It is hoped that circumstances may admit of employing the more correct method of determining experimentally the expansions for both temperature and humidity of the particular rods used, and applyiug corresponding corrections to measures made with them.
"In an interesting report on deal measuring rods lately written by the Warden of the Standards of England, he shows that experiments made with then in measuring an important base in the Ordnance Trigonometric Survey of Britain cannot be deemed so conclusive as was then thought against their use. That, in the case in question, their expansion from humidity was, in a distance of 5 miles, about 4 inches only, instead of about 2 feet as first deduced.
"In using these rods on the survey now in question, their length will be frequently checked by referring them to a standard steel bar by means of a micrometric comparator, having due regard to atmospheric conditions at time of making such comparisons.
"The results obtained during the last season by this apparatus are such as to justify the belief that one mile in a day, over reasonably level country, may be measured with remarkable accuracy.
"For instance, two hases were measured. one of 60 chains, the other, a base of verification, of . 66 chains 25 links. The difference of a double measurement, in each case, was in the former, threetenths, and in the latter, two-tenths of an inch."

Season of 1875.

During this season thirty townships were subdivided, and 1,020 miles of block lines were run and marked. On this service twenty-one surveyors were employed, ten of whom were engaged on block surveys and the remaining eleven on township subdivision.

In addition to the ordinary land surveys, four surveyors were engaged in laying out Indian reserves at different points in Manitoba and the North-West Territories, and two in completing the surveys of the outer two-mile belt in parishes along the Red and Assiniboine Rivers.

Parts of the shore lines and adjacent islands of Lake Winnipeg and Lake of the Woods were surveyed, this work being performed in connection with the survey of timber limits.

The town plot called "Selkirk;" situate on the east side of the Red River, at the crossing of the latter by the line of the Canadian Pacific Railway, and the town plot called "Alberton" on the Rainy River at Fort Frances, were laid out during this year.

THE SPECIAL SURVEY.

The work on this undertaking was somewhat retarded owing to the accident which befell the chief, Mr. Lindsay Russell, who sustained a compound fracture of the leg early in the scason, and was in consequence unable to personally superintend the field operations.

In spite of this serious drawback, the work accomplished was of a satisfactory nature. The following extract from the report of the Assistant Surveyor General regarding the season's operations will illustrate the results secured:
" BLOCK SURVEY EAST OF THE LAKE OF THE woods.
"Between the block outlines in the Province of Manitoba, already run, and the Lake of the Woods, there was an interval of unsurveyed ground ; therefore, in projecting the meridians and bases east of that lake, to insure conformity of position with the existing surveys to westward, it was necessary to produce the 49th parallel, as established by the International Boundary Commission, across the lake, to serve as a tie and basis of projection for all blocks to the eastward.
"The course of the parallel crossed 30 to 40 miles of open lake. This, at a season of the year when the thermometer was sometimes registered there below 4%, entailed the expense of arrangements for dragging eamping fuel, and further the inaccuracy that is likely to attend instrumental
work done under so unfavourable conditions of extreme exposure. It therefore seemed preferable to get the position of the parallel on the eastern shore by the more indirect method of a diagonal tie-line from the before-mentioned commission's point at the north-west angle, which line would traverse a part of the lake fairly sheltered by occasional wooded islands furnishing fuel.
"In the computation of the triangle this involved, the differences of latitude and longitude were calculated by that known as 'Gauss's second method,' and frequent and close azimuthal verification obtained for the tie-line which was twice measured; it is therefore presumed that the intersection of the 49 th parallel with the eastern shore of the Lake of the Woods was established with very little if any less accuracy than by direct production of the line, the probable difference being only in the greater effect of any possible departure, in that region, of the figure of the earth from that assumerl, and in the greater length of survey by the detour.
"The instruments for an astronomic check on the latitucie were not in the field, even were they available the season would have made any dependence on their results precarious.

```
"triangulation from westbourne to \(102^{\circ}\) meridian.
```

" From Westbourne to the Little Saskatchewan, the best route for the purpose that could be found is sufficiently wooded to impede very seriously a triangulation survey in a flat country. While in this section but slow progress was made.
"Westward of the Little Saskatchewan it became more open; the work advanced more rapidly, but still subject, thongh in a lesser degree, to the retarding difficulty that has existed throughout the survey of getting triangular points in a country of so even a surface.
"Lateral refraction was, as in the first season's work, a constant cause of loss of time, and injurious to precision. To it, principally, are to be attributed all the larger closing errors that appear in the reduction of the triangles, and the resulting differences between computed and measured lengths of sides.
"From the first or Winnipeg Meridian to that of the 102 west longitude, six bases were measured at as nearly equal intervals as circumstances permitted. The average difference between computed and measured bases of verification was a little less than घ.1
" The base-measuring apparatus proved this season, as last, fairly equal to the work expected of it. Though necessarily much inferior in precision to the more complex and delicate apparatus usually employed on extensive national trigonometric surveys, it can be used with greater rapidity and gives suffioiently accurate results for triangulation of second order; the average departure from mean of different measures of same distance being alout $\frac{7 . \gamma_{00}}{}$ of the length."

Season of 1876.
The general depression in commercial affairs, and the consequent falling off in immigration, added to the grasshopper plague which had occurred in Manitoba during the previous three years, all had their effect upon the surveying operations, which during this season were on a somewhat limited scale.

Exclusive of the staff of the special survey, eighteen surveyors were employed. Their work was divided as follows:-Five were engaged on block surveys, six on township subdivision, five in surveying Indian reserves, one on settlement belt surveys and one on survey of main highway.

In his report for this year, the Surveyor General gives a statement regarding the total acreage of lands surveyed up to the end of this year's survey season, together with a statement of the cost per acre, and a comparison between this cost and that for Ontario and Quebec.

This statement is given here, being of considerable interest:
"Since the establishment of the Dominion Land Office, in March, 1871, to the date of this report, $10,574,915$ acres have been surveyed into townships, sections and quarter sections, and 341,666 acres, comprising all the old settled parishes on the Red and Assiniboine Rivers, have been surveyed and mapped.
"To the above has to be added the work of the special survey-as also the laying out of many Indian reserves, a number of exploration surveys, and, finally, the subdivision of large tracts of timbered land into wood lots for settlers.
"It is proposed to give the acreage cost, to the present date, of the Dominion Land Surveys, in connection with which it will only be proper to mention the principal features of the system.
"The township surveys involve the preliminary steps of laying out the territory into blocks of twelve miles square, or four townships, enclosed between meridians and base or correction lines.
"The running out of these blocks is performed by day-work of a surveyor and party; and where subsequently deemed expedient, such blocks are divided into townships, which in turn are subulivided into sections and quarter sections-such subdivision being performed by contract at mileage rates previously approved by Order in Council.
" The cost of block ontlines surveyed to the present time averages $\$ 36.83$ per mile.
"The cost per acre of subdividing the blocks of four townships into sections and Ifuarter-sections has been $2 \cdot 91$ cents ; adding the cost of the block lines to the above acreage rates makes the total cost of all the township lands surveyed to date to be 3.83 cents per acre.
"The survey of the settled lands in the parishes on the Red and Assiniboine Rivers has been more expensive, having cost $27 \frac{3}{10}$ cents per acre.
"This, however, cannot be considered an extravagant price, when it is remembered that an immense amount of work was involved in surveying and mapping the lands in the several parishes, showing all the boldings with the exactness required to admit of their being described in letters patent.
" Adding the expenditure for settlement belt surveys to that for subdividing township lands, we obtain the average cost for all farm lands surveyed to this date 4.57 cents per acre.
" Let us compare the township survey rates proper, i. e., $3 \cdot 83$ cents, with the relative cost of township surveys in Quebec and Ontario.
" It may be premised that, previous to the union of Upper and Lower Canada, in 1s41, the surveys in the respective provinces were performed with the ordinary surveyor's compass, the lines being run by the magnetic needle, and were, therefore, subject to gross errors, arising from the effect of local attraction upon the needle ; also from surveyors not ascertaining the variation of the latter when making their surveys; and, further, no check lines were drawn in any of these surveys previous to the year 1829, the result of all which was that the lots of land were not of the form or area intended, the concession or ranges lines in some cases being so crooked as to reduce some of the lots to onefourth of their intended area, and increase others proportionately, giving rise to subsequent endless law-suits and difficulties between owners of the arjoining lands.
" Further, surveys made by the magnetic needle did not involve the opening out of lines by cutting down trees, etc., and surveyors could therefore draw their lines much more rapidly than by the astronomical method, which requires all obstacles to be cleared.
"Since 1841 Crown Land surveys have been performed astronomically, and check lines have been run, thus ensuring accuracy in the form and area of the lots or sections.
"In stating the average cost per acre of the earlier Crown Land surveys in' Upper and Lower Canada, the amount of work performed in surveying is not shown, so that the rate camnot fairly be compared with the present rates. In the former, only one boundary of the lot, the front, was surveyed ; at present, all the four are drawn. Thus, in the old surveys the running of one mile of line gave 800 acres ; now it gives only 160 acres.
"The average cost of the Crown Lands surveyed in Upper and Lower Canada from 1841 to 1875 was $6_{7}^{4}{ }^{4}$ cents per acre, each mile bounding 200 acres.
"The Dominion Land township surveys, on the other hand, have been made for 3.83 cents per, acre, each mile bounding only 160 acres."

SPECIAL SURVEY.

In accordance with the recommendation of the Assistant Surveyor General, the triangulation, which was being carried on by this survey, was stopped at the 2nd initial meridian, the intention being to establish the additional initial meridians by means of the electric telegraph line or by running staudard meridians and parallels.

To effect these objects the following disposition of the force of the survey was made:-

Mr. A. L. Russell, D.L.S., in charge of the main section of the party, was instructed to proceed with the establishment of the meridians and parallels, and Mr. W.F. King, astronomical assistant, went to Battleford to co-operate with the chief at Winnipeg, in establishing the longitude by the interchange of telegraphic signals. However, the telegraph line between Fort Pelly and Winnipeg was never, throughout the summer, in sufficiently good order to admit of making through signals, and the attempt to establish the longitude of Bàttleford failed.

Mr. King devoted his time while waiting at Battleford to determining accurately the latitude of the place, and he also made a survey of the settlement and exploration of the district.

The main section of the survey was first engaged in connecting the 5 th base and the 2nd initial meridian. The meridian was then measured and marked (it had been run the previous fall) for a distance of about 81 miles north of the 5 th base.

Turning. west from the initial meridian on the 8th base, the remainder of the season was spent in the survey of bases and meridians extending as far west as Fishing Lake. During the season about 180 miles of meridians and parallels were surveyed and marked, observations for latitude were taken at a number of points, and considerable exploration was also completed by the staff of the main section, and a very valuable report on the capabilities of a large portion of the country west and
south-west of Fort Pelly was submitted by Mr. A. L. Russell, in charge of this division of the survey.

Season of 1877.
Comparatively few surveys were undertaken during this season, the surplus of township lands previously laid out having rendered any further immediate supply unnecessary.

Seventeen surveyors were engaged in field work, distributed as follows:-two in charge of divisions of the special survey; one in surveying roads; six in surveying Indian reserves; five on subdivision surveys; and three in settlement belt or "outer two miles" surveys.

The staff being small, only a limited amount of work was completed. Exclusive of the operations of the special survey and the parties engaged in road and settlement surveys, seven townships were subdivided and thirteen Indian reserves laid out.

Very satisfactory progress was made in the work of the special survey, as will be seen by the following description of the season's operations. The survey was divided into two sections, the eastern section being in charge of Mr. A. L. Russell, and the western section in charge of Mr. W. F. King.

The eastern section was engaged in extending the 102 nd meridian (2nd initial meridian) northward to the located line of the Canadian Pacific Railway and telegraph line, the intention being to use this point when establishing the longitudes by means of telegraphic signals. They then produced a system of base and meridian lines as far west as the 106 th meridian (the 3rd initial meridian), which was carefully established and produced 72 miles north to the North Saskatchewan River. A portion of the 12 th correction line was then run east from the meridian, and some meridians and outlines in the vicinity of Prince Albert settlement, and of the Indian settlement on the South Branch of the Saskatchewan River, and some of the trails in the vicinity were explored and roughly traversed.

This section of the survey surveyed and marked about 300 miles of line during the season, and also effected considerable exploration in the vicinity of the line run. When on their way home in the fall, Mr. Russell, accompanied by an Indian, made a rapid trip through the Carrot River district, and was thus able to report regarding what proved to be an excellent district.

The western section of the survey proceeded to Edmonton, having while on the way established the latitude of certain points by astronomical observation. They also while en route provided for the guidance of future travellers by marking the crossings of the leading thoroughfares between Manitoba and Battleford by other important trails, with painted finger boards on posts erected at the several intersections in question.

The intention was that Mr. King should make a survey of the settlements in the vicinity of Edmonton, and should establish and survey the 114th or 5th initial meridian, in connection with which it was hoped to employ the telegraph line in interchanging signals as a means of determining the longitude. This, however, in common with all other attempts to make any use of this worse than useless telegraph line, proved a complete failure, and the initial meridian was established by Mr. King by using the longitude of Edmonton as determined by the Canadian Pacific Railway survey.

This section of the survey wintered at Edmenton, and during their stay there they completed the preliminary survey of several of the adjacent settlements. The results accomplished by this division are, however, more fully treated of further on.

Under amendments to the Geological Survey Act, the Survey became a branch of the Tepartment of the Interior during this season, and the Museum was moved from Montreal to Ottawa.

Season of 1878.
In his report of this year the Surveyor General said, speaking of surveys :-

[^3]Including the staff of the special survey, twenty surveyors in all were employed during this season.

In reference to work they were divided as follows:-
Four in charge of sections of special survey.
Nine in surveying Indian reserves.
Three in subdividing townships.
One surveying boundaries of Manitoba.
One surveying public highways in Manitoba.
One surveying parish of Ste. Agathe.
One acting inspector of surveys.
The subdivision surveys covered only ten townships, which were all situated in the vicinity of Prince Albert settlement.

The survey of part of the boundary of the Province of Manitoba was completed and properly marked.

Thirteen Indian reserves were laid out in Treaties 2, 3 and 4.
A large amount of important work was accomplished by the four sections of the special survey, a short resume of which is here given.

Section 1 was, as it had been since the formation of the survey, under the charge of Mr. A. L. Russell, D.L.S. The greater part of the season's work consisted in preparing the way for subdivision surveys in the Prince Albert district, 133 miles of outlines being surveyed and marked. In addition to this considerable exploring was done by Mr. Russell in parts of the country which were as yet outside the surveys.

Section 2 of the survey, which was more properly called the astronomical section, was under the charge of Mr. W. F. King, D.T.S. This division had, as already described, proceeded during the provious season to Edmontou for the purpose of establishing the longitude in co-operation with Mr. Lindsay Russell by means of the telegraph line, and to fix the position of and survey the 114th or 5th initial meridian.

On the way to Edmonton during 1877, Mr. King determined the latitude at several points, and also placed painted finger boards at the following points:-
(1.) Near Shoal Lake (Mounted Police station), to indicate the trail to Fort Pelly and Swan River barracks.
(2.) On the north side of the Qu'Appelle River, beyond Fort Ellice, to show the trail to Fort Pelly.
(3.) On the Pheasant Plain, at the point where the trail from Port Pelly to Fort Qu'Appelle crosses the main trail.
(4.) Near Touchwood Hills trading post, to mark the trail to Fort Qu'Appelle.
(5.) At the "Forks of the trail" (Humbolt), where the trails separate going to the various ferries on the South Saskatchewan River.
(6.) On Gabriel's trail at the telegraph line, at which point branches off a new trail crossing the south branch at the telegraph line crossing.
(7.) On the hills west of Gabriel's, where two posts are planted, one to indicate the trail to Carlton, the other at the separation from the Battleford trail running south to the Cypress Hills.
(8.) In the valley of Eagle Creek, at the junction of the plain and river trails to Battleford.

After reaching Edmonton a careful series of observations for latitude were taken, after which the 14 th base line was established by producing a meridian north from the observation point to the latitude of the base, and from the latter point a system of chords was run to the west for about 13 miles, and the 114th or 5th initial meridian established; the longitude of Edmonton, as fixed by the Canadian Pacific Railway survey, being used in the determination of the position of this meridian.

A portion of the initial meridian was surveyed by Mr. King at this time.
This section of the survey remained in winter quarters at Edmonton until February, during which month a traverse of the Big Lake settlement was made. At the end of February, a further and last attempt was made to determine the longitude by interchanging telegraphic signals with Winnipeg or Fort Pelly, but the attempt, owing to the wretched condition of the telegraph line, was a failure.

From this date until May the party was engaged in exploratory and settlement surveys.

On the 25th of May the party started for home, but shortly after leaving Edmonton received instructions to return to Edmonton and complete the settlement surveys. After work in the Edmonton district was finished the party moved to Prince Albert, some members of the party proceeding down the river in a boat, and carrying the chronometers so as to effect a longitude tie with the 3rd initial meridian at Prince Albert.

The remainder of the season was spent in surveying outlines near Prince Albert, the party reaching Winnipeg on the return journey in November, having been absent 18 months.

The 3 rd section of the survey was under the charge of Mr. J. S. Dennis, jun., D.T.S., and was employed in establishing the 4th initial meridian. This was accomplished by producing the 10th and 11th bases westward from the 3rd to the 4th initial meridians. In doing this the latitude post which had been previously established at Battleford by the astronomical section was tied in. The production of this line into Battleford proved that place to be in error in longitude, as shown by the Canadian Pacific Railway surveys, about eleven miles.

Section No. 4 of the survey was employed during the season under Mr. M. Aldous, D.T.S., in surveying the settlements of Prince Albert and St. Laurent.

In the fall of this year one of the first important changes regarding the administration of the surveys was made. In November the Surveyor General, Col. Dennis, was promoted to the position of Deputy Minister of the Interior, and Mr. Lindsay Russell, the Assistant Surveyor General, became Surveyor General.

Season of 1879.
The surveying operations of the department were on a somewhat more extended scale during this season than they had been during the previous two or three years. Thirty-two surveyors were employed. Of these twenty were engaged in the survey of outlines and subdivision of townships. Nine were employed in surveying Indian reserves, and three in locating and surveying timber limits.

A very considerable amount of work was completed, 51 townships being subdivided, and 875 miles of outlines surveyed and marked.

During the season the 5 th initial meridian was established by a section of the special survey, under charge of Mr. M. Aldous, D.T.S. He produced the 4th initial meridian north from the 11th base, the point where it had been established during the previous season, and then ran west on the 14 th base and adjoining lines to the 5 th initial meridian.

The astronomical section of the special survey was, as in past seasons, under the charge of Mr. W. F. King, D.T.S. The season was spent in moving from point to point, and establishing the latitude carefully by astronomical observation. In this way the following stations were established:

No. 7. Near the north-east corner of section 25, township 35, range 17, west of 2 nd initial meridian.

No. 8. Near north-east corner of section 52, township 46, range 20, west of 2nd initial meridian.

No. 9. Near a post on the 10 th base, $58 \frac{1}{2}$ sections west of the 3 rd initial meridian.

No. 10. On the 11th base, near its intersection with the 4th initial meridian.
No. 11. On the 14th base, about 64 sections west of the 4 th initial meridian.
These observations were taken for the purpose of furnishing a check on the line surveys then in progress, and corrections were from time to time made in positions of posts on the initial meridians and intermediate base lines, to make then agree with the latitudes astronomically determined.

Besides the determination of the latitudes at the above stations, the season's work included a number of micrometer and track surveys made for the purpose of better locating the main topographical features of the country. The results of many of these track surveys, where they were taken along the main trails, were scheduled, giving distances from point to point, and subsequently proved a great convenience to persons travelling on these trails.

The explorations which were carried on in addition to the general surveys added very much to the stock of information regarding the topographical and climatic features of the country, and each year's operations proved that previously held estimates of the quantity of arable land in many parts of the Territories were very much below the mark.

In fact it was only after the surveying operations had extended west to the Rocky Mountains, and north to the Saskatchewan River that the full extent of the large areas fit for cultivation and grazing was fully realized. These surveys and explorations exploded the idea, at that time so prevalent, that large portions of the Territories were barren wastes or deserts, and may be said to have settled the question of the adaptability of the larger part of the country as a field for successful farming operations.

In his report of this year the Surveyor General referred to proposed changes in the manner of surveying block outlines, and with the object of reducing, if possible, the average cost per acre of the survey of lands. It was suggested that the square to be surveyed by block surveyors should include sixteen townships, instead of four as had up to this time been the rule.

This proposal was sanctioned and preliminary steps were taken to carry it into effect during the next season. With this in view a memorandum was prepared setting forth in detail the modifications of the process of survey previously employed, necessary to effect the new system, and otherwise instructing surveyors as to the method to be pursued.

Attached to this memorandum was a series of geodetic tables, which were computed by Mr. W. F. King, and azimath tables computed by the Surveyor General for use by surveyors engaged in surveying blocks under the new system.

These tables and memorandum, were subsequently incorporated in the new Manual of Surveys. This, however, will be referred to in its proper place.

SEason of 1880.
This season saw the largest number of surveyors employed that had up to this time been engaged in surveying operations during any one year.

Fifty-five surveyors completed 3,418 miles of Standard meridians, parallel and township outiines, and 11,220 miles of township subdivision.

This showing was an exceedingly creditable one, the season having been unfavourable for surveying operations on account of the continuous wet weather and bad condition of the roads.

Among the most important lines surveyed during this year was the 5 th initial meridian, which was run south from Edmonton to Fort Macleod, a distance of some 350 miles. This line traversed the country along the easterly slope of the Rocky Mountains for a great portion of its length, and the survey furnished reliable information regarding a beautiful tract of country both for cultivation and grazing purposes, and one in which good soil was found to be prevalent, and wood and water abundant.

An important exploration was effected during this season by Professor John Macoun, who was sent to thoroughly examine the Souris River Valley and adjoining region to the west and north. The Professor made a very careful examination of a large portion of the country, and his report did a great deal towards correcting many erroneous ideas about the agricultural capabilities of that district, and also furnisbed valuable botanical and ornithological information.

During this year an important change was made in the department, the Indian Branch was created a separate department, and assumed control of the surveys of the Indian reserves in Manitoba and the North-West Territories, which had hitherto been carried on under the Surveyor General.

Season of 1881.

The surveys of this season again show a considerable increase over those of the previous year, and consequently are in excess of any previous season's operations.

Seventy-three surveyors were engaged in carrying on work, and the large amount of 6,435 miles of Standard meridians and parallels and township outlines, and 16,865 miles of township subdivision lines, or a total of 23,300 miles of line were surveyed and marked.

Some important changes were made this year in the method of laying out Dominion Lands. Road allowances were, throughout, reduced from one chain and a-half to one chain, or sixty-six feet in width; and three of the east and west roads in a township done away with. The effect of this change was to transfer á very large area of land from road allowances into that of land available for purposes of sale and settlement, without detriment to facilities for communication, and also to reduce the cost of survey of a township to such an extent as to make a saving in the survey of the Territories of probably two and a-half millions of dollars.

Incidental changes and improvements in the method of survey were made, and a new edition of the Manual of Surveys became necessary; this was issued in March. It contained very full and detailed instructions to surveyors, and explanations regarding the change in the system, and also several useful tables which had been prepared by Mr. King and Mr. Deville.

In June of this season, Mr. E. Deville and Mr. W. F. King were appointed Inspectors of Surveys. Mr. A. H. Whitcher, who had been one of the inspectors of surveys up to this date, became Agent of Dominion lands at Winnipeg, and Mr. Milner Hart, the other inspector, retired.

The Surveys branch had beeu long and faithfully served by these two gentlemen, and much of the success in carrying on the field operations was due to their exertions and practical experience.

Although large settlements had by this time grown up in many parts of the Territories, and surveys in those localities were urgently needed, the rapid construction of the Canadian Pacific Railway through the Territories necessitated the employment of all available surveyors in surveying the country along the projected line of this road; however, the requirements of the outlying districts were not
altogether overlooked, and in the fall of this year large contracts were let for the subdivision of townships in the vicinity of Edmonton.

Arrangements were also made in the fall to employ two block survey parties, during the winter in producing the 5th and 6th initial meridians in the Peace River country. This portion of our territories having attracted considerable attention as a desirable field for immigration, it was desired to prepare for any subdivision surveys which might become necessary by having the initial meridians defined and marked on the ground.

During this season an exploration was made by Professor Macoun along the western slope of the Duck and Porcupine Mountains, and in the valley of the Red Deer River. This exploration afforded much valuable information regarding this hitherto almost unknown portion of the country.

In the early part of this season Mr. King was engaged in continuation of the work of the verification of the position of governing lines of the surveys, by astronomical observations. A table of the results of the observations which were taken with this end in view is given here.

In the latter portion of the season Mr. King. under his appointment as Inspector of Surveys, supervised the operations in the field of the survey force employed.

STANDARD SURVEY ASTRONOMICAL STATIONS.

When observed.	No.	Place.	Latitude.		Longitude.
Aug.	1	Near iron bar on 4th Correction line,	- " $\quad 1$		' ' "
A		12 miles fast of 1st Meridian	$495306 \cdot 40$		9 $10+1 \cdot 51$
July, 1876	2	On 102 Meridian, near 5th base... .	$512221 \cdot 85$	038	$1020000 \cdot 00$
Aug. \& Sept., isis	3	Battleford.	$524238 \cdot 69$	1.21	108 1659.02
Aug., 1877......	4	On 106 Meridian, on Carlton trail. .	52343269	${ }^{10} 96$	$1060000 \cdot 00$
Sept. \& Oct., 1877.	5	Fort Edumonton, on hill near fort...	53315916	${ }^{10} 16$	$1133028 \cdot 610$
.July, 1878	${ }^{6}$	On river luak near Fort Pitt.	533405.28	$0 \cdot 19$	$1094710 \cdot 00$
July, 1879	7	North of puill Lake............ .	52045988	$0 \cdot 16$	1041814.02
Aug., 1879	*	Un 12th Cinwection line, near Carrot River.	53040238	$0 \cdot 17$	$1045228 \cdot 33$
Aug., 1879	$!$	On 10th base, near Eagle Hill Creek	521107	$0 \cdot 17$	$1072406 \cdot 4$
Aug. \& Sept., 1879	10	Near cmer 11th base and 110th Meridian..............................	$5232154 i$	$0 \cdot 21$	10: 5 \% $39 \cdot 45$
Sept., 1879.	11	On 1 th baste west of the 110th Meridian	533050	$0 \cdot 19$	$11134 \cdot 5 \cdot 53$
May, 1850	12	On 10m Meridian on Ellice and Touchwour trail.	50422974	0.09	101595677
.June, 1880	13	At Swam Fiver barracks............	515421.51	$0 \cdot 16$	101571675
June, 1880	14	Near White Sand River north of Beaver Hills.	513840.71	0.26	$1030757 \cdot 58$
July, 1880	15	Xtar Fort 'ru'Alpelle, in the valley	504615	$0 \cdot 08$	$103+502 \cdot 69$
Aug., 1880.	16	It Willow Creek, near Fort Mac-		0.21 0.29	
Stpp, 1850.	17	On 114th Meridian, nut Calgary...	51 53 53 32	0.29 0.27	114000000 113 0
Oct., 1880.	18	At Edmonton, in Valley	531828129	$0 \cdot 25$	104153517
Tune, 1881	19	Near Tomehwoud Hills minsiom ${ }^{\text {a }}$ -	511831	0.	
July 1881	20		505054	${ }_{0}^{0.23}$	$1055921 \cdot 55$
July \& Aug., 1881.	21	Two miles north of Red Deer Forks	50.375762	$10 \cdot 2$	10956 CH

Season of 1882.

Extensive preparations had been made for the prosecution of the surveys during this season, but the beginning of operations was very much delayed in the spring by the high water and floods in Manitoba, and the washouts on the Canadian Pacific Railway and American railroads.

Ninety-two surveyors were employed, divided into the three usual divisions of block, township outline, and contractors.

The work accomplished covered a very large area, the outlines of some 800 townships being surveyed, about 430 of which were subdivided into sections.

In May of this year Mr. Deville was appointed Chief Inspector of Surveys, and took charge of the Survey Branch of the Department. This change become necessary owing to the promotion of the Surveyor General, Mr. Lindsay Russell, who became Deputy Minister of the Department on the 1st of January, Colonel Dennis having been superannuated on account of ill-health.

In Colonel Dennis's retirement the department lost an officer who had been associated from their inception not only witb the surveys but also with the land administration branch, and one who owing to his large professional experience and deep interest in all things pertaining to the welfare of Manitoba and the NorthWest Territories had devoted his best energies with very material results to the advancement of both.

Mr. King, the Inspector of Surveys, had charge of operations in the field, and during part of the season established his headquarters at the Forks of the Red Deer and South Saskatchewan Rivers.

Owing to the lack of wood in the western portion of the Territories, and the consequent difficulty in procuring wood posts, some other provision had to be made for marking the surveys. To meet this difficulty iron posts were substituted for the wooden posts for marking section corners. These were of half-inch gas pipe, 3 feet 8 inches in length, the numbers used to indicate the section, township and range, being stamped on a tin square placed on top of the post.

Before the opening of the season's operations in the field a large number of these posts had been manufactured in Montreal and shipped to Winnipeg and from there were distributed.

In consequence of the delays which had up to this time occurred owing to surveyors delaring in completing the subdivision of townships allotted them, and in preparing the returns of their surveys after the completion of the field work, two rules were adopted having in view the correction of these delays. The first was to give a bonus of 15 per cent to surveyors filing in the department before the end of the year the plans and field notes of the whole of their survey. The other was to require all contract surveyors to reportat a certain date their presence in the field, and to allot the work of the missing ones among those on the ground.

These rules were found to work well, and their enforcement materially assisted in enabling the large amount of work accomplished this season to be successfully completed, and the results in the shape of complete township maps to be put into the hands of the land agents throughout the Territories.

In order to prepare the required copies of township plans for use by land agents and in the department, and in consequence of the large number of these plans required, it was found necessary during this year to establish a lithographic office in connection with the Surveys Branch of the department.

In view of the increasing population, and for greater convenience in regard to postal and other matters, an Order in Council was passed on the 8th of May of this year, dividing the North-West Territories into four provisional districts, called respectively Assiniboia, Saskatchewan, Alberta and Athabasca.

$$
\text { SEason of } 1883 .
$$

The surveys of this season were conducted upon what may be termed a gigantic scale.

One hundred and nineteen surveyors were employed, classed as follows:-
Ten surveyors of base lines, twenty-one of township outlines, four examiners of contract surveys, eighty-two contractors for subdivision surveys, one settlement belt surveyor, one town plot surveyor.

This large number of surveyors, together with the necessary assistants, labourers, teamsters and cooks, comprised a small army of men, and required for transport a large number of horses, carts, buckboards, de.

The extensive surveying operations during this and the previous season became necessary owing to the rapid construction of the Canadian Pacific Railway, which in the fall of this year reached the Rocky Mountains.

During this year 11,300 miles of township lines were surveyed, and some 1,221 townships were subdivided, involving the survey of some 70,000 miles of line. The results of the season's operations, which provided about $27,000,000$ acres of land ready for the agriculturist, probably stand unrivalled in the history of land subdivision in any country.

The surveys covered the country between the Touchwood Hills and the Rocky Mountains, and extended north from the second base line to the North Saskatchewan River, and one of the immediate effects of the information derived from the actual survey of this immense district, was the proof of the fact that only a very small portion of the district was unsuited to settlement.

In the early part of this year it was found that the business of the Department of the Interior had become so extensive that the offices of Deputy Minister and Surveyor General, which had been combined in the person of Mr. Lindsay Russell, were separated. Mr. Russell retained the supervision of the technical branch as Surveyor General, and Mr. A. M. Burgess became Deputy Minister.

The supervision of the surveys at headquarters was under control of Mr. Deville, Chief Inspector of Surveys, while Mr. King, Inspector of Surveys, had the direction of the operations in the field.

Mr. King established his office at Medicine Hat, on the South Saskatchewan River, which proved a great convenience to surveyors, who were thus enabled to confer with an officer of the department, without the delay of correspondence with Ottawa, and this convenience was augmented by the continuance of a system which had been inaugurated during the previous season, of a corps of mail carriers, who visited the different parties in the field, distributing the mail and carrying despatches to and from headquarters.

In May, a third edition of the Manual of Surveys was issued, which contained very full instructions to Dominion Land Surveyors regarding all operations to be performed by them, and also many valuable tables to assist them in their work.

Season of 1884.
The large area which had been surveyed and made available for settlement by the operations of the seasons of 1882 and 1883 was now found to be fully equal to the immediate requirements, and it was considered advisable to curtail operations in the field, as experience had shown that the posts and mounds in unsettled districts are from various causes obliterated, and in some cases the resurvey of the townships had been found necessary.

The surveys of this season were conducted chiefly in the districts between Carlton and Fort Pitt, between Edmonton and Calgary, and in the vicinity of Fort Walsh, about 300 townships in all being subdivided.

Seventy-one surveyors were employed, of whom forty-eight were engaged on subdivision surveys, thirteen in surveying township outlines, two in examining contract surveys, and the remaining eight on miscellaneous surveys at different points.

Among the surveys, other than those having in view the subdivision of land into agricultural holdings, which had from time to time been undertaken by the department, may be mentioned the survey of the old trails or roads, which was begun this season, the intention being to continue the survey from time to time of the important trails in the Territories.

These trails were surveyed and permanently located at the request of the Lieutenant Governor of the North-West Territories, and in accordance with the provisions of the North-West Territories Act.

A complete schedule of the trails which have been surveyed in the Territories, and also those surveyed in Manitoba, will be found in the appendix.

During the season of 1883 the township lines had reached the Peace River district, but owing to the distance from the main line of communication, the survey of these lines proved so expensive that they were discontinued, and exploratory surveys were undertaken for the purpose of obtaining general information regarding that country. With that end in view an exploration with micrometer traverse was made during this season of the Peace and Athabasca Rivers, and also of the Saskatchewan and Nelson Rivers from Prince Albert to York Factory.

A complete schedule of the exploratory and micrometer surveys performed by the department during the period treated of in this history will be found in the appendix.

The passage of the Settlement Act by the Legislature of British Columbia, and the transfer under its provisions to the Dominion Government of a belt of land 20 miles in depth on both sides of the Canadian Pacific Railway through that province, necessitated the opening of an office in Victoria, B.C., for the disposal of the land thus acquired, and also the initiation of the survey of the lands within the belt.

These surveys were begun in the vicinity of Port Moody and St. Mary's Mission, two surveyors being employed in subdivision surveys at these points; and two others were occupied in determining and laying down, as a general base for the surveys, the line of the Canadian Pacific Railway from Port Moody eastward.

The Dominion Lands surveys in British Columbia, and the amendments to the system in foree in Manitoba and the North-West Territories, rendered necessary in order to make the system applicable to that mountainous country, are more fully treated of further on.

On the 30th of June of this year, Mr. Lindsay Russell, the Surveyor General, retired from the service on account of failing health.

In Mr. Russell's retirement the department lost a gentleman whose great abilities and professional skill were universally recognized, and the Dominion Land Surveyors lost a chief who was ever ready to assist by advice and encouragement all efforts towards improvement in methods and knowledge.

Mr. Russell had been associated with the Dominion Lands surveys almost from their inception, and his knowledge and indefatigable exertions very materially assisted in the successful prosecution of the surveys, and in developing their scientific and exact character.

Season of 1885.
The surveys of this season were on a very limited scale when compared with those of the two previous years.

The proposed operations were somewhat interfered with by the troubles which occurred in the northern part of the Territories in the spring of the year, but in any case the surveying operations would probably have been limited, as the requirements of immigrants and the demand for subdivision surveys had been very fully provided for by the extensive surveys effected during the previous three years.

Thirteen surveyors only were employed, who were allotted work as follows:-
Two astronomers, one surveyor of railway line in British Columbia, one subdivider in British Columbia, one surveyor of trails, one explorer, three surveyors of town plots, and four subdivision contractors.

The two astronomers, Messrs. O. J. Klotz and Thos. Drummond, Dominion Topographical Surveyors, were engaged during the season in the important work of determining by means of the interchange of telegraphic signals, the longitudes of several points along the line of the Canadian Pacific Railway in British Columbia, and also the latitudes of these points by astronomical observation. These points were to be used for the purpose of fixing the positions of the initial meridians of the railway belt. At the same time Mr. Wm. Ogilvie was engaged in making a survey of the railway line to be used as a base for the future subdivision surveys at points along the line.

It may be well to refer here, briefly, to the system adopted for the survey of the lands within the railway belt, and the proposed method of making the surveys on the ground.

Owing to the mountainous nature of the railway belt it was seen that the system in force in the Territories required some amendments to make it applicable to this district. The chief amendment adopted was in reference to the road allowances, which instead of being provided on certain lines, as in the general system, were provided for by an allowance being made in the acreage of each section.

It would be an impossible undertaking to try and follow the usual method of projecting base lines and township outlines in a mountainous country, therefore some other base for survey operations throughout the belt had to be provided, and as the roadbed of the Canadian Pacific Railway afforded an easy route for a survey, an accurate instrumental traverse along this line was adopted, as a most convenient and accurate method of establishing points of reference, from which the surveys at different points throughout the belt could be started. The portion of this traverse between Port Moody and Revelstoke was completed by Mr. Ogilvie during this season as above mentioned.

The methods followed in effecting this traverse, and in putting the results in such shape as to be ready for reference in carrying on dependent surveys are very interesting; but any description of them would be out of place here: both subjects will be found ably treated of in section II of this report.

In the latter half of this season, Mr. Thas. Fawcett, D.T.S., made an exploratory survey from the Lake of the Woods to Cat Lake, viâ the English, Albany and Cat Lake Rivers, and his 'report furnished much valuable information regarding this portion of unsurveyed territory.

In consequence of the retirement of Mr. Lindsay Russell, already referred to, the position of Surveyor General became vacant. This vacancy was filled in March. by the promotion of Mr. Deville, the Chief Inspector of Surveys.

In the fall Mr. Dennis was appointed to carry on the work of making the necessary corrections to existing surveys, resulting from errors which had been made at certain points. The work done in this connection will be found more fully treated of further on.

Season of 1886.
Forty-three surveyors were employed during this season. They were divided as follows:-

Two astronomers, one topographer, one surveyor at Banff Hot Springs, three subdividers in British Columbia, two subdividers in the North-West Territories, four surveyors correcting old surveys and examining contract surveys, twenty subdivision contractors, and nine surveyors of trails.

The astronomere, Messrs Klotz and Ogilvie, were engaged in the continuation of the work of determining the latitudes and longitudes of various points along the line of the Canadian Pacific Railway, and in the North-West Territories. In addition to this work, Mr. Klotz completed the traverse of the railway line from Revelstoke to the summit of the Rocky Mountains, which as already explained was to be used as a base for the extension of the Dominion Lands system of survey in British Columbia.

Mr. D. L. S. McArthur, this season, commenced the work of laying down the topography of the country on both sides of the railway line through British Columbia. He mapned the country between Canmore and Revelstoke, but was much delayed in his operations owing to dense smoke caused by forest tires. This work involved very hard labour and considerable danger in climbing to the top of the high mountain peaks.

A large number of the old trails in Manitoba and the Territories were surveyed during this year, pine parties being employed on that work. These trails were defined and marked under the provisions of the North-West Territories Act, and
many difficulties arose in surveying them, owing to the settlers having fenced up the original trails; these difficulties were however settled by reference to the Lieutenant Governor of the Territories.

The only other surveys out of the ordinary run of season's operations carried on during this year was a micrometer traverse of the shores of Lake Winnipeg by Mr. Wilkins, D.T.S. ; the commencement of the topographical surveys at Banff Hot Springs, by Mr. G. A. Stewart, D.L.S. ; and the initiation of the work of effecting corrections where required to existing surveys.

An attempt was made during this jear to introduce photography on the surveys, a number of surveyors being supplied with cameras. It was proposed to illustrate surveyors' reports by reproducing their photographic views, and it was desired to test the usefulness of photographs in providing topographical information.

In July of this year, Mr. W. F. King, Inspector of Surveys, was promoted to the position of Chief Inspector, rendered vacant by the promotion of Mr. Deville.

As it had been found that in the grazing districts of the Territories, the cattle and horses destroyed the marks of the surveys, by knocking down the posts and tearing down the mounds by pawing, it was decided during this season to try and prevent the obliteration of the marke of the surveys in these districts, by dispensing with the mounds, and using a large iron post firmly driven into the ground, four pits being dug as usual, but the earth from these being scattered about instead of being made into a mound.

Season of 1887.
Compared with the previous year there was a decrease in the surveying operations during this season.

Thirty-nine surveyors in all were employed, and the work effected was as follows:-

The determination of the latitudes and longitudes of certain points was carried on under the charge of Mr. W. F. King, Chief Inspector of Surveys, Mr. O. J. Klotz, D.T.S., being associated with Mr. King in this important work. During the season the position of Wapella, Kalmar and Port Arthur were accurately fixed.

In British Columbia five parties were engaged in subdivision surveys, the work performed being in the New Westminster, Kamloops, Thompson River, Little Shuswap Lake and Spellumcheen districts, and Mr. Dominion Land Surveyor Belanger was employed in planting section and quarter section posts in the vicinity of the railway line from the summit of the Rocky Mountains westward.

Mr. J. J. McArthur and Mr. W. S. Drewry continued the topographical surveys in the vicinity of the railway line. This work was carried on under a somewhat different system from that in vogue up to this time. The surveyors were provided, in addition to the ordinary surveying instruments, with small cameras with which views were taken from different points, the positions of which were fixed by rough triangulation ; in mapping the district explored, the topographical details are supplied from the photographs.

This "photo-topographical" system of surveging was found to give good results, and allowed of large districts, which owing to their mountaincus nature could not be surveyed by ordinary methods, being accurately mapped at a very small cost.

The development, enlargement, \&c., of the large number of photographs taken in connection with these photo-topographical surveys, necessitated the employment of a professional photographer at headquarters, which position was filled in April of this year by the appointment of Mr. H. N. Topley.

Seven surveyors were engaged during the season, under the direction of Mr. Dernis, who, on the 7th of May, had been appointed Inspector of Surveys, in effecting corrections to existing surveys at different points in the Territories, and in examining subdivision contracts.

Ten contracts were let for subdivision surveys. This number, though small, provided for ail immediate wants, as the subdivision surveys were found to be well in advance of settlement.

Until the previous year that part of the North-West Territories adjoining Alaska had not been visited by any parties under instructions from the Government, and the information regarding that vast district, derived as it was from travellers or foreign sources, was necessarily very vague.

During this year it was decided to send a joint geological and surveying expedition to make an examination of its resources. The expedition was in charge of Dr. Dawson, Assistant Director of the Geological Survey, with whom was associated Mr. W. Ogilvie. D.L.S., who, under instructions from the Surveyor General, was entrusted with the work of surveying the Pelly and Yukon Rivers, and defining the point where the 141st meridian (the international boundary between Alaska and Canada) intersected that river.

Mr. Ogilvie was instructed to winter at the boundary line, in order to complete the necessary astronomical observations at that point, and in the spring of 1888 was to start for the mouth of the Mackenzie River, by way of Porcupine River and Fort McPherson, and then ascend the Mackenzie River to Fort Chipewayan, at which place he would connect with his exploratory survey of the Peace and Athabasca Rivers, performed as already mentioned in 1884.

In June Mr. Ogilvie reached Cbilkoot Inlet, in Alaska, and commenced his survey at one of the United States coast surver stations. He then crossed Taiya Pass, a distance of 18 miles, to Lake Lyndeman, the head of the Lewes River, and from there carried his survey down stream to the international boundary line.

This was much the most important and extensive exploration which had up to this time been undertaken by the department, and the results were looked forward to with a great deal of interest.

During this season Mr. Dominion Land Surveyor St. Cyr was engaged in defining the boundaries of the Rocky Mountains Park at Banff. Mr. Dominion Land Surveyor Miles located and surveyed reserves for the Mounted Police at different points in the Territories; and Mr. Dominion Land Surveyor Wilkins was detailed to survey certain lands occupied by the Methodist Church Missionary Society, adjoining or inside the boundaries of Iudian reserves.

Season of 1888.

The operations during this year, both in number of surveyors employed and work undertaken, shows a decrease as compared with 1887.

Thirty-five surveyors were employed, being distributed as follows:-

ASTRONOMICAL WORK.

The determination of the latitudes and longitudes was continued under the direction of Mr. King, Chief Inspector of Surveys, assisted as formerly by Mr. Klotz. During the winter a large astronomical transit and sidereal clock, with electric attachment, both by the well known makers Messrs. Cook \& Sons, had been procured, and in the spring these instruments were set up in Winnipeg where Mr. King was located. Mr. Klotz during the summer occupied stations at Edmonton and Fort Pitt.

EXPLORATIONS.

Mr. Ogilvie continued his exploratory expedition in the Mackenzie district.
Iu the early spring he crossed over from his winter quarters on the Yukon to the Mackenzie River by way of the Porcupine, and from Fort McPherson began his survey of the Mackenzie. By the fall he had reached Fort Simpson.

An exploratory party under charge of Mr. D. T.S. Fawcett started in May from Athabasca Landing for the mouth of the Clearwater River, the object being to
connect the surveys of the Athabasca and Nelson Rivers by a survey down the Churchill River.

Mr. Fawcett was unable to reach the Nelson River. He finally reached the Saskatchewan by way of Cumberland, and descended that stream to Grand Rapids, and then by way of Lake Winnipeg to Winnipeg.

CORRECTION SURVEYS.

Five parties, under the direction of the Inspector of Surveys, were engaged during this season in carrying on correction surveys, among the most important of which may be mentioned the resurvey of the greater portion of the 5th initial meridian and part of the 4 th initial meridian by Mr. D. L.S. Belanger.

BRITISH COLUMBIA.

In British Columbia the work of re-establishing the reference marks of the traverse of the Canadian Pacific Railway, and the marking of the nearest section and quarter section corners, was completed by Messrs. Fawcett, Dufresne, Garden and Cotton.

Mr. McLatchie and party were employed in effecting subdivision surveys in the valley of the Spellumcheen River, which is one of the best agricultural districts in that province.

Various subdivision surveys and resurveys were made by Mr. Cotton in the New Westminster District, and he also, by means of a traverse survey, established the limit of the railway belt on Pitt and Slave Lakes.

Mr. St. Cyr, who in the early part of the season completed the survey of the limits of the Rocky Mountain Park, and also some minor surveys in the Bow Pass, spent the latter part of the season in effecting a survey of the Columbia River for the purpose of defining the southern limit of the railway belt.

MANITOBA AND NORTH-WEST TERRITORIES.
Fourteen contracts were let for subdivision surveys in Manitoba and the Territories during this season, the larger number of the townships subdivided being north-east of Calgary.

Mr. Lestock Reid was engaged in surveying the Carrot River trail in the Prince Albert district, and also a main trail on the south side of the Saskatchewan River.

Mr. John Bourgeois made a survey of the trail from Carlton to Green Lake.
Mr. Green completed the survey of the more important trails in the Calgary district, and also effected the resubdivision of some townships in Southern Manitoba.

The highway from Westbourne to Gladstone, along the line of the Manitoba and North-Western Railway, was surveyed by Mr. C. P. Brown.

TOPOGRAPHICAL SURVEYS.

The "photo-topographical" survey of the Rocky Mountains was continued by Messrs. McArthur and Drewry, the former working in the Bow Pass from Copper Mountain eastward, and the latter being engaged in the Crow's Nest Pass.

The methods and instruments were considerably improved during this season, and a large tract of country was accurately surveyed.
note.
In the foregong history of the surveys performed under the Dominion Lands system an attempt has been made to consolidate the information relating thereto, which is now only to be found by reference to annual reports of the department, or to documents on record in the department. It will be understood that at best this narrative is only a compilation of information in a connected manner, so as to be
useful for reference by those engaged in or incerested in the survey operations of the department.

To refer briefly to some points connected with these surveys, and to the benefits which have accrued from their prosecution, may not be out of place.

When the vast country, now known as Manitoba and the North-West Territories, was acquired by the Dominion, the information possessed regarding its topography, soil and climatic conditions was very vague. It is true the greater portion of it had been explored by the hardy pioneers connected with the Hudson's Bay and NorthWest Fur Companies, and exploratory surveys had been made by Captain Palliser and others, which afforded much valuable information; but in so far as reliable data or statistics, of use in inducing immigration, were concerned, the Government practically knew nothing.

The primary consideration, having in view the future welfare of the country, was to devise a system under which the country could be rapidly and accurately subdivided into farm holdings. The system adopted and the manner of carrying it into effect have been treated of in the preceding pages.

The prosecution of these surveys has resulted not only in the subdivision of the country in a thorough and accurate manner, but also in the acquirement of a mass of reliable information which has enabled us to affirm that in Manitoba and the North-West Territories, the Dominion possesses an heritage which, for healthy climate, richness of soil and general adaptability for agricultural pursuits, compares favourably with any country on the habitable globe.

The manner in which the surveys have been performed, both as regards the quantity of work done and the accuracy of results accomplished, reflects the greatest credit upon those connected with the administration of the survey operations; and we are able to boast that never in the history of any country has so large a quantity of work been so successfully accomplished in the same space of time, and further that our land subdivision surveys, under the Dominion Lands system, stand unrivalled for accuracy and permanency of marking.

In the appendix will be found a schedule for each season, giving the names and residences of the surveyors employed, the character of the work upon which each one was engaged, and details of the work completed.

Schedules showing the trails surveyed, the reserves surveyed for the Hudson's Bay Company, Indian reserves surveyed by the Department of the Interior, micrometer and exploratory surveys performed, correction or resurveys completed, the acreage of the yearly surveys, and all settlement, townplot and miscellaneous surveys effected, are also appended.

APPENDIX.

SCHEDULES.

Schedole (No. 1) showing Surveyors employed and work performed by each, during the year 1869.

Name.	Residence.	Description of Work performed.
Dennis, Lt. -Col. J.	Toronto, Ont	Superintendence and direction of surveys.
	St Mary's, Ont	Survey of part of Winnipeg Meridian and of outlines east of the
L.S.	St. Mary's, Ont	Survey of part of Winnipeg Meridian and of outlines east of the same.
Webb, A. C......	Brighton, Ont ...	Survey of part of Winnipeg Meridian and of outlines east and west of same: also settlement survey on north side of the Assiniboine River.

Schedule (No. 2) showing Surveyors employed and work performed by each, during the year 1871.

Schedule (No. 2) showing Surveyors employed and work performed by each, during the year 1871--Continued.

Name.	Residence.	Description of Work performed.
Hermon, R. W...	Listowel, Ont.	
Johnston, J.	Hull, Que.	
Kennedy, L	Toronto, Ont.	
Magrath, B.	Aylmer, Que.	North boundary Township 12, Ranges 1 to 6 inclusive. North do do 14, do 4 and 6. East do Townships 13 and 14, Ranges 4 and 6. Part of east boundary Township 13, Range 2. (All east of the Principal Meridian.)
McLatchie, John	Templeton, Que.	Sub-division Township 12, Range 7. Part do do 14, do Pest boundary do 12, do Wer 7. South do do 12, do South 7. East do do 13, do East \quad do do 13, do ${ }^{8}$. ${ }^{8}$. Sub-division south $\frac{1}{2}$ Township 10, Ranges 1 and 2. North boundary 9, Ranges 1 to 4 inclusive. East do 9 and 10, Ranges 1 and 3. Part of eastern boundary of 10 , Range 2. (All east of the 1st Meridian.)
McPhillips, Geo., sen.	Winnipeg, Man	Survey of St. François-\avier, Baie St. Paul and Headingly Along settlements.
McFadden, M.... Staunton, F. H.	Newry, Ont. Dundas, Ont.	North and east brundaries Township 13, Range 10. East boundary Township 14, Range 10. Part of sub-division of Township 14, Range 10. (All west of the Principal Meridian.) Sub-division of Townships 9 and 10, Ranges 3 and 4. (All east of the Principal Meridian.)
Sinclair, Donald	Winnipeg, Man..	Sub-division of Township 14, Range 8. North boundary do 13, Ranges 7 and 8 . (All west of the Principal Meridian.) Sub-division of Township 11, Range 3. do Townships 11 and 12, Range 4. North boundary of Township 11, Ranges 3 and 4. East do Townships 11 and 12, Range 3. (All east of the Principal Meridian.)
Sarler, David.	Dalhousie, N.B.	East boundary do 9, 9, Range 3. Sub-division Township 13, Range 8, west of the Principal Meridian. Sub-division Township 12, Range 8.
Wagner, William	Toronto, Ont.	Sub-division do 13 do 9. do do 13 do 8. South houndary do 12 do do 13 do 9. North (All west of the Principal Meridian.) Sub-division Townships 11 and 12 , Range 1, east of the Principal Meridian.

Schedule (No. 2) showing Surveyors employed and work performed by each, during the year 1871-Concluded.

Name.	Residence.	Description of Work performed.
Webb, A.C......	Brighton, Ont. .	North boundary 'Township 12, Ranges 1 to 10 inclusive.
		North do do 14 do 1 to 5 do
		North do do 14 do 9 to 12 do
		East do Townships 11, 12, 13 and 14, Range 3.
		East do do 13 and 14, Range 5.
		East do do 13 and 14 do 11.
Sinclair, Duncan..	Ottawa, Ont.	Survey part of the parishes of St. John, Kildonan and St. Paul.

Schedule (No. 3) showing Surveyors employed and work performed by each, during the year 1872.

Bray, Edgar..	Oakville, Ont.	Sub-division of Townships 9 and 10, Range 5. North boundary Township 9, Range 5. East do Townships 9 and 10, Range 6. (All west of the Principal Meridian.) North boundary Township 10, Ranges 5, 6, 7 and S . South do do 11 do 5, 6, 7 and 8 . $\begin{array}{lll}\text { North } & \text { do } & \text { do } 12 \text { do } 7,8 \text { and } 9 . \\ \text { Last } & \text { do } & \text { Townships } 11 \text { and 12, Ranges } 6 \text { and } 8 .\end{array}$ (All east of the Principal Meridian.)
Beatty, W	Delta, Ont.	
Beatty, W. \& D.	do	
Brown, C. P.	Fredericton, N.B.	(All west of the Principal Meridian.) Sub-division of Township 15, Ranges 11 and 12. do do 16 do 11 and 12. East boundary Townships 15 and 16, Range 12. North do Township 15, Ranges 11 and 12. (All west of the Principal Meridian.)
Burke, W	Cobourg, Ont.	Sub-division of Township 3, Ranges 3 and 4. do 4 do 3 and 4. North boundary of Township 3, Ranges 3 and 4. East do 3 and 4, Range 4. (All west of the Principal Meridian.) Sub-division of Township 4, Range 5 . East boundary of Townships 3, 4,5 and 6, Range 5. North do 3, Range 5. (All east of the Principal Meridian.)
Bouchette, C. J.	Montreal, Que	

* The township was completed in 1873 by Bouchette.

Schedule (No. 3) showing Surveyors employed and Work performed by each, during the year 1872-Continued.

Name.	Residence.	Description of Work performed.
Bayne, G. A... ..	Pictou, N.S.	Sub-division of Townships 13 and 14, Range 6. do part of Townships 13 and 14, Range 5. East boundary of Townships 13 and 14, Range 5. North do Township 13, Range 6. Part of north boundary of Township 13, Range 5. (All east of the Principal Meridian.)
Campbell, D. S..	Mitchell, Ont.	Sub-division of Township 9, Range 2. North boundary of Township 9, Range 2. (All west of the Principal Meridian.)
Cooper, T. W....	Guelph, Ont.	Sub-division of Townships 9 and 10, Ranges 3 and 4. North boundary of Township 9 do 3 and 4. East do of Townships 9 and 10, Range 4. (All west of the Principal Meridian.)
Chapman, C. F.	Preston, Ont..	Sub-division of Township 11, Ranges 3 and 4. do \quad south $\frac{1}{3}$ of Township 12, Range 4. do north-east part of Township 12, Range 3. East boundaries of Townships 11 and 12, Range 4. North do Township 11, Ranges 3 and 4. (All west of the Principal Meridian.)
Cheeseman, Thos.	Mitchell, Ont.	Sub-division of Townships 7 and 8, Ranges 5 and 6. North boundary of Township 7 do 5 and 6. East boundaries of Townships 7 and 8, Range 5. Sub-division of Township 14, Range 4. do part do 13, Ranges, 3 and 4. East boundaries of Townships 13 and 14, Range 3. North do Township 13, Ranges 3 and 4. South do do 7 do 5 and 6. (All east of the Principal Meridian.)
Caddy, E. C ...	Cobourg, Ont	Sub-division of Township 15, Range 1. do do 14, Ranges do and 3. do do 13,
Davidson, O. B.	Amherst, N.S.	Sub-division of Township 5, Ranges 9 and 10. do do 6, Range 10. North boundary do 5, Ranges 9 and 10. East do Townships 5 and 6, Range 10. Sub-division of Township 9, Range 1. North and west boundaries of Township 9, Range 1. (All west of the Principal Meridian.)
Doupe, Joseph.	Angus, Ont.	
Dennis, John. ...	Weston, Ont....	Exploration-Country on Brokenhead River, and towards the foot of the Lake of the Woods.
Grant, John . .	Winnipeg, Man.	Sub-division of Townships 3 and 4, Ranges 1 and 2. North boundary of Townshp 3 do 1 and 2. East do Townships 3 and 4, Range 2. (All west of the Principal Meridian.) Sub-division of Township 14, Range 1. East boundary do 14 do 1. Suti-division do 4 do 6. (All east of the Principal Meridian.)
Harris, M $13-3 \frac{1}{2}$	Thunder Bay; Ont.	Exploration-Duck Mountains, Dauphin Lake, west shore of Lake Manitoba, south of Manitoba House.

Schedule (No. 3) showing Surveyors employed and Work performed by each, during the year 1872-Continued.

Name.	Residence.	Description of Work performed.
Hermon \& Bolton.	Listowel, Ont.	
Johnston, John.	Hull, Que	Sub-division of Township 13 Range 7. East boundary do 13 do 7. South do do 7 do $1,2,3$ and 4. North do do 8 do 9 and 10. East do do 7 and 8 , Ranges 6,8 and 10. East do do 9 and 10 do 8 and 10.
Kennedy, L	Toronto, Ont....	
Lawe, Henry......	Dunnville, Ont...	
Lippé, A. W......	Acton, Que.	
Le-Ber, Charles.	Montreal, Que....	Sub-division of Townships 5 and 6 , Ranges 3 and 4. North boundary do 5, Ranges 3 and 4. East do do 5 do 3. (All east of the Principal Meridian.)
LeBer, H.	St. Wenceslas, Que	Sub-division of Townships 3 and 4, Ranges 11 and 12. North boundary do 3, Ranges 11 and 12. East do do 3 and 4, Range 12.
Murris, John......	Perth, Ont.......	(All west of the Principal Meridian.) Sub-division of Township 13, Range 2. North and east boundaries, Township 13, Range 2. (All east of the Principal Meridian.) Sub-division of Townships 5 and 6, Ranges 1 and 2. $\begin{array}{lll}\text { North boundary do } & 5 \text {, Ranges } 1 \text { and } 2 . \\ \text { East do } & \text { do } & 5 \text { and } 6, \text { Range } 2 .\end{array}$
Martin, A. F..	Bic, Que	(All west of the Principal Meridian.) Sub-division of Townships 7 and 8, Range 7.
McGuin, S. O...	Loughboro, Ont...	Sub-division of Townships 3 and 4, Ranges 3 and 4. North boundary do 3, Ranges 3 and 4. (All east of the Principal Meridian.)

Scheddle (No. 3) showing Surveyors employed and Work performed by each, during the year 1872-Continued.

Name.	Residence.	Description of Work performed.
McLatchie, John .	Templeton, Que...	Sub-division of Townships 15, 16, 17 and 18, Ranges 13 and 14.
		South boundary do 15, Ranges 15 and 16.
		North do do 15 do 13 and 14.
		North do do 16. do 11, 12, 13, 14, 15 and 16.
		Part north boundary Township 16, Range 17.
		North boundary Township 17, Ranges 13 and 14.
		Nast do do do 15, 16, 17 and 18, Ranges 13, 14 and 15.
		East do do 15 and 16, Range 1i.
		5 miles in Township 17, Range 11.
	'Newry, Ont. .	(All west of the Principal Meridian.) Survey of part of Parishes of Baie St. Panl, Poplar Point, High
McFadden, M McArthur, Jas.	Newry, Ont.	Bluff and Portage la Prairie.
	Aylmer, Que.	Sub-division of Townships 3 and 4, Ranges 7 and 8.
		North boundary do 3, Ranges 7 and 8.
		East do do 3 and 4, Range 8.
McPhillips, G., sr.	Seaforth, Ont.	Survey of part of Parishes of St. Charles, Headingly, St. Anne's and St. Francois Xavier.
Newcomb, Geo. F.	King's Co., N.S. .	Exploration of west shore of Lake Winnipeg, including islands and rivers as far north as the Narrows.
Otty, W. \& J. Met ${ }^{\text {r }}$.	St. John, N. B.	Sub-division of Townships 5 and 6, Ranges 5 and 6.
		do do 3 and 4 do 13 and 14.
		North boundary do 5 do 5 and 6.
		East do do 5 and 6 do 6 .
		North do do 3 do 13 and 14.
		East do do 3 and 4 do 14.
		(All west of the Principal Meridian.)
Reid, J. Lertock.	Bowmanville, Ont.	North boundary, Township 10, Ranges 5, 6, 7 and 8.
		East do 9 and 10 do 5 and 7.
		$\begin{array}{lll}\text { East } & \text { do } & 10 \\ \text { East } & \text { do } & \\ 9\end{array}$
		East $\quad \begin{gathered}\text { do } \\ \text { (All west of the Principal Meridian.) }\end{gathered}$
		(All west of the Principal Meridian.)
		North boundary, Township 14, Ranges 13 and 2.
		(6 miles of Township 14, Range 2. (All east of the Principal Meridian.)
Rainboth, G. C...	Aylmer, Que.	Exploration of east shore of Lake Winnipeg, including rivers as far north as Beren's River.
Richard, J. B.....	Wotton, Que......	Sub-division of Townships 3 and 4, Range 1.
		do do 7 and 8 do 1 and 2.
		do $\quad 5$ do 6.
		North boundary, Township 3 do 1.
		North do do 1 and 2.
Russell, A. L...	Ottawa, Ont.	South boundary, Township 11, Ranges 5, 6, 7 and 8.
		East do 11 and 12 do 5.
		East do 11. do 7 and 9.
Sinclair, Duncan.	Wimnipeg, Man.	(All west of the Principal Meridian.) Part of Parishes of St. James, St. Charles, St. John, Kildonan, St. Paul, St. Boniface, St. Vital and St. Norbert.
Snow, John A	Hull, Que......	Sub-division of Townships 7 and 8, Ranges 1, 2, 3 and 4.
		North boundary do 7 do 1, 2, 3 and 4.
		East boundaries do 7 and 8 do 2 and 4.
		(All west of the Principal Meridian.) Sub-division of Townships 5 and (6, Ranges 1 and 2.
		North boundary do 5 do 1 and 1 milein Range
		(All east of the Principal Meridian.) East boundary of Township 6, Range 1. East do 5 do 1. (All east of Principal Meridian.)

Scbedule (No. 3) showing Surveyors employed and Work performed by each, during the year 1872-Concluded.

Name.	Residence.	Description of Work performed.
Sadler, David.....	Dalhousie, N.B. .	Sub-division of Townships 13 and 14, Ranges 1 and 2.
		North boundary do 13 do 1 and 2.
		. East do do 13 and 14 do 2.
		Sub-division of Township 6, Range 6.
		South boundary do 6 do 6.
		Sub-division do 12 do 5.
		East boundary do (All east of the Principal Meridian.)
Staunton, F. H. L.	Dundas, Ont.	Sub-division of Townships 7 and 8, Range 5.
		North boundary do 7 do 5 and 6.
		${ }_{\text {East }}$ do do 7 and 8, do 6.
		Sub-division of parts do 14 do 9 and 10.
Svenkernd, H.	Ottawa, Ont.	Exploration of the Lake of the Woods and Lake Roseau.
Smith, H. B......	Ottawa, Ont.	Explorations on Lakes Winnipeg, Manitoba and Winnipegosis, and
Vaughan, A. H...	Bury, Que........	survey for canal at Meadow and Mossy Portages. Sub-division
		East boundary do 10 do 2.
		North do do 10 do 2.
		(All west of the Principal Meridian.) P
Warren, J........	Acton, Ont..	Sub-division of Township 9, Range 7, east of the Principal Meridian. Sub-division of parts of Townships 11 and 12, Ranges 1 and 2.
		East boundary do do 11 and 12 do 2.
		North do do 11 do 1.
		Sub-division do 11 and 12 do 9.
		North boundary , do 11 do 9.
		East do do 11 and 12 do 10.
Webb, A. C.	Brighton, Ont.	(All west of the Principal Meridian.) North boundary of Township 12, Ranges 11,12,13 and 14
		North do 14 do 13 and 14.
		East do 11 and 12 do 11.
		East do 11, 12, 13, and 14, Ranges 13 and 15.
		South do dill 15 , Ranges 13 and 14.
Wagner, W.....	Toronto, Ont.	(All west of the Principal Meridian.) Sub-divisions of Townships 15, 16 and 17, Ranges 1, 2, 3 and 4. do part of Township 15, Range 5. North boundary
		East do do 17 (2 miles.)
		East do 15 and 17 do 2.2
		East do 15, 16 and 17 do 4.
		East do do 5.
		(All west of the Principal Meridian.) East shore of Lake Manitoba
		East shore of Lake Manitoba, from Province Lines to the Narrows. Part of Oak Point Settlement.
		Part of Settlement of St L

Scheddle (No. 4) showing Surveyors employed and Work performed by each, during the year 1873.

Schedule (No. 4) showing Surveyors employed and Work performed by each, during the year 1873-Continued.

Name.	Residence.	Description of Work performed.
Beatty, W. \& D...	Delta, Ont.	South boundary, Township 7, Ranges 13 and 14.
		North do 8 do 13 and 14.
		South do 11 do 13 and 14.
		$\begin{array}{lll}\text { North } \\ \text { East } & \text { do } \\ \text { do } & -1,8,9,10 \\ \text { do }\end{array}$
		East do 7 and 8 do 14 and 15.
		East do 11 and 12 do 14.
		North do 13 do 17.
		North do 15 do 17.
		East do 13, 14, 15, 16 do 18.
		$\begin{array}{lllll}\text { North } & \text { do } & 15 & \text { do } 19 .\end{array}$
		East do 16 do 19. Eorth do 15 do $21,22,23,24,25$ and 26.
		East do 15 and 16 do 22, 24 and 26.
Bayne, G. A.	Pictou, N.S.	(All west of the Principal Meridian.) Sub-division of Townships 11 and 12 and part of 13, Range 10.
		North boundary, Township 11, Range 10. Sub-division of do 20 do 16.
		South boundary do 20 do 16.
		(All west of the Principal Meridian.)
		Sub-division of Townships $9,10,11$ and 12, Range 7. do do do
		East boundary, Townships 9, 10, 11 and 12 do 7.
		North do 9, Range 7.
		North do 11 do 7 and 8.
Burke, W.	Winnipeg, Man.	Sub-division of Townships 17 and 18, Range 17.
		East boundary do 17 and 18 do 18.
		(All west of the Principal Meridian.)
Bouchette, C. J...	Montreal, Que...	Sub-division of Townships 9 and 10, Range 7.
		$\begin{array}{lll}\text { do } & \text { do } & \text { do } \\ \text { do } & 11 & \text { do } \\ 8\end{array}$
		North boundary do 9 do 7 and 8.
		East do do 9 do 8.
		East do do 11.
		Sub-division do 17 and 18 do 15.
		North boundary do 17 do 15.
		East do do 17 and 18 do 16.
		(All west of the Principal Meridian.)
Bray, E.......	Oakville, Ont....	South boundary of Township ${ }_{20}^{19,}$ Ranges ${ }^{\text {do }} 11,12,13$ and 14.
		North do ${ }^{\text {do }}$ do do 11, 12, 13 and 14.
		North do 19 and 20, Range 11.
		${ }_{\text {East }}^{\text {East }}$ - do 19,
		(All west of the Principal Meridian.)
	Winnileg, Man.	Sub-division of Townships 15, 16, 17 and 18, Range 9.
Brown, C. P.....		do do 15, 16, 17, 18, 19 and 20, Range 10.
		North boundary do 15, Ranges 9 and 10.
		do do
		do do 17, Ranges 11 and 12.
		do Part east boundary do do
		$\begin{array}{ll}\text { Part east boundary do } \\ \text { East boundary } & \text { do } \\ \text { do }\end{array}$
		do do 18, Range 11. 12.
		do do 17 and 18, Range 12.
		Part of sub-division do 16 and 17 do 8.
		North boundary do 16 do do 8.
		(All west of the Principal Meridian.)
Caddy, E. C...	Cobourg, Ont.	Sub-division of Township 16, Range 1. do do 15 and 16, Ranges 2 and 3.
		do East half of Township 14, Range 3.
		North boundary of Township 16, Ranges ${ }_{\text {do }} 15$ and 2.
		$\begin{array}{llll}\text { do } \\ \text { do } & \text { do } & 14 & \text { do } \\ 2 & 2 \text { and } 3 .\end{array}$
		East boundary do 16 do 1.
		do do 15, 16 do 2.
		South boundary (All east of the Principal Meridian.)

Schedule (No.4) showing Surveyors employed and Work performed by each, during the year 1873-Continued.

Schedule (No. 4) showing Surveyors employed and Work performed by each, during the year 1873-Continued.

Scaedule (No. 4) showing Surveyors employed and Work performed by each, during the year 1873-Continued.

Name.	Residence.	Description of Work performed.
Otty, Wm........	St. John, N.B..	East boundaries of Townships 7 and 8, Range 12.
		do \quad Township 12, Range 18.
		$\begin{array}{lllll}\text { do } & \text { do } & 12 & \text { do } & 20 . \\ \text { do } & \text { do } & 11 & \text { do } & 22 .\end{array}$
		North boundaries of Township 7, Range 12.
		$\begin{array}{llll}\text { do } & 11 & \text { do } & 20 . \\ \text { do } & 11 & \text { do } & 18 .\end{array}$
		South boundaries of Township 7 do 12.
Otty, J.	St. John, N.B.	(All west of Principal Meridian.)
		Sub-division of Township 12, Range 22.
		, do do 21 do 16.
		Sub-division of Townships 11 and 12, Range 17.
		North boundaries, Township 7, Range 11.
		$\begin{array}{llll} \begin{array}{lll} \text { do } \\ \text { do } \end{array} & & 11 & \text { do } \\ \text { do } \end{array}$
		do 11 do 17.
		dn 11 do 23.
		South boundaries, Township ${ }^{7}$ do 11.
		East boundaries of Townships do Township 12, Range 22.
		do Townships 21 and 22, Range 16.
		do do $\quad \begin{gathered}\text { Township 11, } \\ \text { 11 } \\ \text { Range } \\ \text { do } \\ 18\end{gathered}$
Reid, J. L.	Port Arthur, Ont..	(All west of Principal Meridian.) South boundaries of Township 19, Ranges 15, 16, 17 and
		North do dound 20 do 15, 16 and 17.*
		East boundaries of Townships 19 and 20, Range 15. do $19,20,21$ and 22, Range 17.
Reiffenstein, J. H.	Ottawa, Ont	(All west of Principal Meridian.) Sub-division of Townships 13 and 14, Range 16.
		do Township 12, Range 25. do Townships 13 and 14, Range 22.
		East boundaries of Townships 13 and 14, Range 16.
		do 13 and 14 do 22.
		North boundaries of Township 13, Range 16.
		South boundaries of Township 12 do 25.
Richard, J. B.....	Wotton, Que.	(All west of Principal Meridian.) Sub-division of Townships 13 and 1t, Range 15.
		Sub-division of Townships 13 and $1 t$, Range 15. do Township 12, Range 23.
		do do $\quad \begin{gathered}\text { Townships } \\ \text { do } \\ 11\end{gathered} 3$ and 14, Range 18.
		North boundaries of Township 13, Ranges 15 and 18.
		do 11, Range 24.
		East boundaries of Townships 11 and 12, Range 24.
Russell, A. L.	Port Arthur, Ont.	Sub-division of Township 1, Ranges 3 and 4.
		East boundaries of Township 1, Ranges 3 and
Sinclair, Duncan..	Winnipeg, Man...	Sub-division of Township 5, Range 8.
		North boundary do 5 do 8.
Vaughan, A. H...		S (All east of Principal Meridian.)
	do	Sub-division of Township 17, Range 2. do do 17 Ranges 3
		do do 18 do 3 and 4.
		East boundary do 17 do 1,2 and 3.
		East do do 18 do 2 and 3.
		North do do 17 do 2, 3 and 4.
		South do do 17, Range 3 .
		(All east of Principal Meridian.)
		Survey of part of Red River and Indian Settlement, in the Parish of St. Peter.
		Survey of part of Indian Reserve line in the Parish of St. Peter.

Schedule (No. 4) showing Surveyors employed and Work performed by each, during the year 1873-Concluded.

Name.	Residence.	Description of Work performed.
Webb, A. C.	Brighton, Ont	
Warren, J.......	Kincardine, Ont..	Sub-division of Townships 11 and 12, Ranges 15 and 21. East boundary do 11 and 12, Range 16. North do do 11, Ranges 15 and 21. (All west of Principal Meridian.)
Wagner, Wm.....	Ossowa, Man.	

Schedule (No. 5) showing Surveyors employed and Work performed by each, during the year 1874 .

Albright, G. N. . .	Portage la Prairie.	Sub-division of Townships 7 and 8, Range 6. North boundary do 7, Range 6. (All west of Principal Meridian.)
Bolton, L.	Listowell, Ont....	Sub-division of Township 8, Ranges 9 and 10.
		North boundary do 7 do 9 and 10.
		Fast do do 8 do 10..
		(All west of Principal Meridian.)
Burke, W..	Winnipeg, Man	Sub-division of Township 17, Range do do de
		North boundary do 17 do 19 and 20.
		East do do 18 do 20.
		East do do 17 do 20.
		Sub-division do 17 do 19.
		(All west of Principal Meridian.)
Brown, C. P... .	do	Sub-division of Townships 19 and 20, Ranges 9, 11 and 12.
		North boundary do 19, Ranges 9, 11 and 12.
		East do do 19 and 20, Range 12.
		South do do 18, Range 9.
		(All west of Principal Meridian.)
Doupe, Jos..	do	Sub-division of Township 7, Range ${ }^{7}$.
		East boundary of Township 7, Range 8.
		(All west of Principal Meridian.)
Grant, John. .	do	Sub-division of Township 10, Range 8.
		North boundary do 10 do 8.
		(All east of Principal Meridian.) ${ }^{\text {a }}$ (${ }^{\text {a }}$ (t. John, St. James, St.
Harris, J. W .	Port Arthur, Ont..	Part of outer 2 miles in the Parishes of St. John, St. James, St. Charles (north), Kildonan and St. Paul (west).
.Johnston, J.	Hull, Que	Sub-division of Township 16, Range 18.
		(West of Principal Meridian.)
		Sub-division of Townships 15 and 16, Ranges 6 and do do do
		North boundary do 15, do 6 and 7.
		North do do 16, do. 7.
		North do do 17, do 7.
		East do do 15, do 5.
		Hast do do 15 and 16, do 6 and 7.
		(All east of Principal Meridian.)

Schedule (No. 5) showing Surveyors employed and Work performed by each, during the year 1874 -Concluded.

\begin{tabular}{|c|c|c|}
\hline Name. \& Residence. \& Description of Work performed. \\
\hline Kemmedy, L \& Toronto, Ont. \& Sub-division of Township 1, Ranges 1 and 2. \\
\hline McPhillips, Geo. \& Winnipeg, Man. \& \begin{tabular}{l}
Sub-division of part of Township 11, Kange 7. \\
(West of Principal Meridian.) \\
Part of the Parish of St. Agathe, 2 mile lines in Parishes of Headingly, St. Vital, Baie St. Paul, St. François Xavier.
\end{tabular} \\
\hline Martin, A. \& Emerson, Man.... \& River lots in the outer 2 mile limit in the Parishes of St. Norbert, St. Charles, St. Boniface, St. Vital and High Bluff. \\
\hline Pearce, Wm \& Calgary, Alberta.. \& \begin{tabular}{l}
Sub-division of part of Townships 11 and 12, Range 4. \\
South boundary of Township 11, Range 4. \\
(All east of Principal Meridian.) \\
Survey of the outer 2 miles in the Parishes of Headingly and St. François Xavier.
\end{tabular} \\
\hline Reiffenstein, J. H. \& Ottawa, Ont. . \& Sub-division of Townships 15, 16 and 17, Range 8. \\
\hline Reid, J. L \& Port Hope, Ont \& \begin{tabular}{|llllll}
Sub-division of Townships 9 and 10, \& Ranges 11 and 12. \\
North boundary \& do \& 9 and 10, \& do \& 11 and 12. \\
North \& do \& do \& 20, \& do \& \(17,18,19\) and 20. \\
East \& do \& do \& 9 and 10, \& do \& 12. \\
Fast \& do \& do \& 19 and 20, \& do \& 19 and 21. \\
South \& do \& do \& 19, \& do \& 19,20 and 21.
\end{tabular} \\
\hline Russell, A.L. \& Port Arthur, Ont.. \& South boundary of Township 7 , Ranges 18 and 19.
Fast do \(\quad\) do 7 and 8, do 18.
North do \(\quad\) do do 19, 20, 21 and 22.

(All east of Principal Meridian.)

\hline .Sinclair, Duncan. \& Winnipeg, Man. \& | Sub-division of 'Townships 5 and 6, Range 7. |
| :--- |
| (All east of Principal Meridian.) |
| Survey of the rear widths of the Parisher of Kildonan, St. Paul, St. John, St. James, St. Charles and St. Boniface. |

\hline Vaughan, A. H... \& Wimnipug. Man. \&

\hline Wagner, Wm.... \& Ossowa, Man. \& | Sub-division of E1 $\frac{1}{2}$ of Township 17, Range 1. |
| :--- |
| Part of North boundary of Township 17, Range 1. |
| (All west of Principal Meridian.) |
| Survey of part of settlements of Oak Point and St. Laurent. |
| South boundary of Township 19, Range 5. |

\hline
\end{tabular}

Sche dule (No. 6) showing Surveyors employed and Work performed by each, during the Year 1875.

Bayne, (1. A....	Pictón, N S.	Sub-division of Township 7, Rang
		South boundary do 7 do 9 and 10.
		Fast do do ? do 9 and 10.

Schedule (No. 6) showing Surveyors employed and Work performed by each, during the year 1875-Continued.

Schedule (No. 6) showing Surveyors employed and Work performed by each, during the year 1875-Concluded.

Name.	Residence.	Description of Work performed.
Miles, C. F.	Toronto, Ont..... Winnipeg, Man.	Traverse of White Fish District. do Sabaskong do (Lake of the Woods).
McPhillips, G . . .		Survey of part of the Parish of Portage La Prairie. Town plot of Ginili. Parish of Ste. Anne and Oak Point, and part of the Parishes of St
Ogilvie, Wm......	Ottawa, Ont	Norbert and St. Boniface. North boundary Township 22, Ranges 19, 20 and 21. North - do 20 do 21 and 22
		East do 21 and 22 do 21 .
		East do 19, 20, 21, 22 do 23.
Pearce, Wm......	Calgary, Alberta. .	(All west of Principal Meridian). South boundary Township 7, Ranges 11 to 17.
		North do do 8, do 11 to 18.
		North do do 10, do 17 to 22.
		$\begin{array}{lll}\text { East } \\ \text { East } & \text { do } & \text { do } \\ \text { do }\end{array} \quad$ do and 10, Ranges 18 and 20.0 ,
	Port Arthur, Ont.	East do do 7, 8, 9 and 10, Ranges 12, 14 and 16. (All east of Principal Meridian.)
Russell, A. L.....		Sub-division of Township 1, Ranges 23 and 24.
		$\begin{array}{ll}\text { East boundary do } \\ \text { East do } & \text { do } \\ \text { do } \\ \text { dond }\end{array}$
	Port Holue, Ont...	(All east of Principal Meridian.)
Reid, J. L.		South boundary of Township 1, Ranges 25 to 28.
		South do do 2, South Ranges 21 to 26.
		East do do 5 South do 28.
		East do part do 6 South Range 28.
		East do do 1 to 6, Range 26.
		East do do 1 and 2, and 3, South Range 22.
		East do do 3 and 4 South Ranges 22, 24 and 26.
		East do do 5 South Ranges 26 and 30. North do do do 25 to 31.
		Sub-division of Township 3 South Ranges 21 to 26.
	Winnipeg, Man. .	Sul (All east of Principal Meridian.)
Sinclair, Duncan. .		Sub-division Townships 17 and 18, Ranges 21 and 22. East boundary Townships 17 and 18, Range 22. North do do 17 Ranges 21 and 22
		(All west of Principal Meridian.) Survey of rear line of settlements Cout
Vaughan, A. H...	do	Survey of rear line of settlements, County of Lisgar, and part of the Parishes St. Andrews, St. Clements, and St. Peters. Outer two miles and four miles line, Parish of St. Andrews and St. Clements, west.
Wagner, Wm..... Webb, A. C.....	Ossowa, Man. Brightor, Ont.	Rear lines of the Parishes of Poplar Point and Baie St Paul and north boundary of Township 17, Range 5, west of Principal Meridian. North boundary Township 22, Ranges 2728 and 20
Webb, A. C.....	Brighton, Ont.	North boundary Township 22, Ranges 27, 28 and 29.
		North do do 20 do 27 to 30.
		North do do 16 do 29 and 30
		East do do 15 to 22, Range 29.
		East do do 15 to 18, do do 31.
		South do do 15, Ranges 29 and 30.
		South do do 19 do 27 to 30.
		(All west of Principal Meridian.)

Schedule (No. 7) showing Surveyors employed and. Work performed by each, during the year 1876.

Sub-division part of Township 7, Range 8, west of Principal Meridian.

Sohedule (No. 7) showing Surreyors employed and Work performed by each, during the year 1876-Concluded.

Name.	Residence.	Description of Work performed.
Forneri, C. C.....		Sub-division T'ownships 4 and 5 South Range 27.
		do do 4 South Range 25.
		do do 4 and 5 South Range 26. do do 4 South Ranges 23 and 24.
		East boundary Township 4 South Ranges 24 and 25.
		East do do 4 do 23.
		East do do 3 do 21.
		East do do 5 do 27.
		North do do 4 do 22.
		Sub-division Township 3 South Range 22.
Kennedy, L.	Toronto, Ont.	Sub-division Township 1, Ranges 7, 8 and 9.
		South boundary Township 1, Kanges 7, 8 and 9.
McPhillips, Geo..		(All west of Principal Meridian.)
	Winnipeg, Man...	Survey of villages of Sandy Bar and Rivertown.
		Subdivision Townships 21 and 22, Range 4.
		North boundary Township 21, Range 4. (All east of Principal Meridian.)
Martin, A. F	Emerson, Man	Survey of Water Hen River Indian Reserve, St. Martin's Lake Indian Reserve, Fairford Mission Indian Reserve.
Pearce, Wm	Calgary, Alb.	Survey of outer 2 miles in the Parishes of St. Andrews, St. Clements, St. Boniface, Kildonan, St. Paul.
Russell, A. L. . . .	Port Arthur, Ont.	South boundary Township 29, Ranges 6, 7 and 8.
		East do 29 to 32, Range 9.
		East do 16 to 29 do 1.
		North do 32, Ranges 9, 1011.
		North do 28 do 1 to 5 .
		(All west second Initial Meridian.)
		North boundary Township 16, Ranges 31, 32 and 33.
Stewart, E.	Collingwood, Ont.	(West of Principal Meridian.) Sub-division Township 3 South Ranges 23, 24 and 25.
		$\underset{\text { do }}{\text { Sub-division Township }} 3$ South Ranges 23,24 and 25.
		East boundary Township 3 do 23 and 25.
		Sub-division do 4 do 26.
		North boundary do 4 do 23, 24 and 26.
		(All east of Principal Meridian.)
Sinclair, Duncan.. Wagner, Wm.....		
	Ossowa, Man.	Survey of Qu'Appelle River from 102nd Meridian.

Sceedule (No. 8) showing Surveyors employed and Work performed by each, during the year 1877.

Beatty, W.	Delta, Ont.	Sub-division of Township 24, Range 4.
		North boundary do 24 do 4.
		East do do 24 do 4.
		(All east of Principal Meridian.)
Bray, E	Oakville, Ont.... Winnipeg, Man. .	Survey of highways in Manitoba.
Doupe, J .		Sub-division of Township 20, Range 3.
		Part of sub-division of Townships 19, 20 and 21, Range 4.
		North boundary of Township 20, Range 3.
		East do do 20 do 3.
		West do do 20 do 3.
	Ottawa, Ont.	(All east of Principal Meridian.)
King, W. F.......		Survey of the 5th Initial Meridian, Townships 52, 53 and 54.
		North boundary of Townshipdo do thence south 5 , Range 1, west of thes miles east from 5 Meridian. Meridian,
	Winnipeg, Man..	Survey of part of the Parish of Lorette.
Mc.Phillips, Geo ..		Sub-division of Township 19, Range 3.
		do do 19 and 20, Range 4.
		North boundaries Township 19, Range 3.
		North do do 19 and 20, Range 4.
		North do do 18, Range 4.

Schedule (No. 8) showing Surveyors employed and Work performed by each, during the year 1877-Concluded.

Name.	Residence.	Description of Work performed.
McPhillips, Geo..	Winnipeg, Man.	East boundary of Township 19, Range 3. East do do 19 do 2. South do do 19 do 3 . (All east of Principal Meridian.)
Pearce, Wm.	Calgary, Alb..	Traverse of portion of lake, and Winnipeg River. South boundary of Township 1, Range 8, 9 and 10. East do do 1 and 2, Range 10. (All east of Principal Meridian.)
Russell, A. L.....	Port Arthur, Ont.	3rd Initial Meridian, Townships 43 to 47. North boundary of Township 46, Ranges 25, 26 and 27. South boundary of Township 47, Ranges 25, 26 and 27. North boundary of Township 46, Range 1, west of 3rd Meridian. $\begin{array}{lllll}\text { South do } & \text { do } & 47 & \text { do } 1, ~ d o ~ d o r d ~ d o ~ \\ \text { North do } & \text { do } & 36 & \text { do } 17 \text { to 3rd Meridian. }\end{array}$ 3rd Meridian, Township 37 to 42 inclusive. 2nd do do 30 to 34 do
Stewart, E.......	Collingwood, Ont.	South boundary of Township 1, Ranges 10, 11 and 12. West do do 1 do 10, 11 and 12 . Sub-division of Township 1, Ranges 10, 11 and 12. (All west of Principal Meridian.

Schedule (No. 9) showing Surveyors employed and Work performed by each, during the year 1878.

Schedule (No. 9) showing Surveyors employed and Work performed by each, during the year 1878-Concluded.

Schedule (No. 10) showing Surveyors employed and work performed by each during the Year 1879.

Scheddle (No. 10) showing Surveyors employed and Work performed by each, during the year 1879-Concluded.

Schedder (No. 11) showing Surveyors employed and Work performed by each, during the year 1880.

Name.	Residence.	Description of Work performed.
Abrey, G. B....	Little Current,Ont	Sub-division of Townships 9 and 10, Ranges 19 and 20.
		Sub-division do 15 and 16 do 31.
		East boundary do 9 and 10 do 20.
		East do do 16 do 32.
		North boundary do 9 do 19 and 20.
		$\begin{array}{llll}\text { North do do } 15 & \text { do 31. } \\ \text { North }\end{array}$
		(All west of the Principal Meridian)
Aldous, M.......	Winnipeg, Man...	East boundaries of Townships 1 to 12, Range $\mathbf{2 5}$.
		North do do 4 do 25. North do do 12 do 25 to 29.
		(All west of the 4th Initial Meridian.)
		5th Initial Meridian from Township 13 to Township 48. Sub-division of Township 17, Ranges 27 and 28
Armstrong, F. W.	Orillia, Ont.	Sub-division of Township 17, Ranges 27 and 28. North boundary do 17 do a
		Nast do do 17 do 28.
		(All west of Principal Meridian.)
Bolger, F........	Ottawa, Ont.....	Part of sub-division of Township 21, Range 31. (West of Principal Meridian.)
		Sub-division of Townships 5 and 6, Ranges 21 and 22.
		Sub-division do 9 and 10 do 25 and 26.
		North boundary do 5 do 21 and 22.
		North do do 9 do 25 and 26.
		East boundary do 5 and 6 do 22.
		East do do 9 and 10 do 26:
		(All west of Principal Meridian.)
Brabazon, S. L...	Portage du Fort, Que.	Sub-division Township 5, Ranges 25 and 26.
		Sub-division do 6 do 26.
		Sub-division do 2 do 31 and 32.
		Sub-division do 1 do 32 and 31.
		North boundary Township 5 do 25 and 26.
		North do 1 do 31 and 32.
		East do 5 and 6 do 26.
		East do 1 do 32.
		Part east do 2 do 32.
Bray, Edgar	Oakville, Ont....	(All west of Principal Meridian). East boundary Townships 19 to 22, Ranges 31 and 33.
		East do 20 to 26 do 31.
		North do 22 do 29 to 33.
		North do 20 and 26 do 31, 32 and 33.
		North do 19 and ${ }_{23}^{4}$ do 31, 32 and 33.
		South do 19 and 23 do 31, 32 and 33.
		(All west of Principal Meridian). ${ }^{\text {a }}$ (28.
Beatty, W. \& D . .	Delta, Ont..	Sut-division Townships 23 and 24, Ranges 27 and 28. North boundary do 23 do 27 and 28.
		East do do 23 and 24 do 28 :
		East (All west of Principal Meridian).
Beatty, W	Delta, Ont.	Sub-division Townships 17 and 18, Ranges 29 and 30.
		North boundary do 17 do do 29 and 30.
		East do do 17 and 18 do 30 .
	L'Islet, Que	(All west of Principal Meridian). Sub-division Townships 9 and 10, Range 18.
Breen, Thos . ..		Sorth boundary do 9 and 9 do ${ }^{\text {S }}$, 18.
		East do do 9 and 10 do 18.
		(All west of Principal Meridian).
	Portage la Prairie,	Sub-division Township 23, Range 2.
Bemister, Geo.	Man.	Sub-division Townships 23 and 24, Range 1. (West of 2nd Initial Meridian).
Cotton \& McAree.	Ottawa, Ont	Sub-division Townships 2, 7 and 8, Range 22.
		Sub-division do 5 and 6 do 17 and 18.
		Sub-division do 7 and 8 do 21.
		North boundary Township 5, Range 17 and 18.
		North do 7 do 21 and 22.
		East do 5 and 6 do 18.
		East do 7 and 8 do 22.
		Sub-division Townships 19, 20 and 21, Ranges 1 and 2.
Clementi, T. B..	Peterboro', Ont...	Sub-division (West of 2nd Initial Meridian).
$13-4 \frac{1}{2}$		

Sohedule (No. 11) showing Surveyors employed and Work performed by each, during the year 1880-Continued.

Name.	Residence.	Description of Work performed.
Caddy \& Hewson.	Cobourg, Ont....	Sub-division Townships 7 and 8, Ranges 17 and 18.
		North boundary do 7 do 17 and 18.
		East do do 7 and 8 do 18.
	Orangeville, Ont.	(All west of Principal Meridian). Sub-division Township 1, Range 23.
Carbert, J. A.		Sub-division Townships 1 and 2, Range 24.
		North boundary Township 1, Range 23 and 24.
		East do do $1 \& 2$ do 24.
Doupe, Jos.......	Winnipeg, Man.	Sub-division Township 18, Range 20.
		Sub-division do 14, Ranges 29 and 30.
		Sub-division Townships 15 and 16, Ranges 27 and 28.
		North boundary Township 15, Ranges 27 and 28.
		$\begin{array}{lll}\text { East } & \text { do } & 15 \\ \text { Le }\end{array}$
		East and south do 18 do 20.
		South do 14 do 29.
Deville, E	Ottawa, Ont	(All west of Principal Meridian). South boundary of Township 27
		South boundary of Township 27, Ranges 13 to 16.
		$\begin{array}{llll}\text { North } & \text { do } \\ \text { East } & \text { do } & 37 \\ \text { to } 32 & \text { do } & \text { do } & 13\end{array}$
		Hast do 27 to 30 do 17.
Drummond, Thos..	Montreal, Que	(All west of 2nd Initial Meridian.)
		North boundary of Township 23, Ranges 3 and 4.
		North do 25 do 5.
		North do 24 and 25 do 3 and 4.
		North do 23, 24 and 25 do 11 and 2.
		South do 25 do 5,6 , and 7 .
		$\begin{array}{lll}\text { East } & \text { do } & 23 \\ \text { Easto } 26 & \text { do } & \\ \text { do }\end{array}$
Evans \& Bolger...	Belleville, Ont...	(All west of 2nd Initial Meridian.) ${ }^{\text {do }}$.
		Sub-division of Townships 13 and 14, Ranges 27 and 28.
		Sub-division do 21 and 22 do 32 and 33.
		North boundary Township 13 do 27 and 28.
		North do 21 do 32 and 33
		East do 13 and 14 do 28.
		East do . 21 and 22 do 32.
Forrest, A. G. Garden, J. F..		(All west of Principal Meridian.)
	Ottawa, Ont Toronto, Ont.....	Survey of timuer limits on the Winnipeg River.
		Sub-division of Townships 5 and 6, Ranges 23 and 24. Sub-division do do and do
		North boundary Township 5 do 23 and 24.
		North do 1 do 29 and 30.
		East do 5 and 6 do 24.
		East do 5 do 23.
		East do 1 do 29 and 30.
		West do do do 29 and 30.
Hart \& Ryley.	Ottawa, Ont.	(All west of Principal Meridian.) South boundary of Township 3, Ranges 25 and 26
		North boundary of Township 3, Ranges 25 and 26.
		East do 3 do 25.
		'East do 3, 4, 5 and 6, Range 27
Hart, M.	St. Mary s , Ont...	' (All west of Principal Meridian.)
		North boundary of Township 4. Ranges 19 to 34.
		$\begin{array}{llll}\text { North } \\ \text { Nortl } & \text { do } & \text { do } & 6 \\ 1 & \text { do } & 27 \text { to } 34 .\end{array}$
		$\begin{array}{llll}\text { South } & \text { do } & \text { do } & \text { do } \\ \text { Sor } & \text { do and } 34 .\end{array}$
		'Fast do 4, 5 and 6, Range 25.
		East do 1 and 2 do 34.
		East do ${ }^{\text {d }}$ do $3,4,5$ and 6 do 29,31 and 33.
Hermon, R. W..	Listowell, Ont....	Sub-division of Townships ${ }^{\text {(All }}$ west Meridian.)
		Sub-division do 27 and 28, Ranges 29 and 30.
		East koundary Townships 21 and 22 do 30.
		East do 27 and 28 do 30.
		North do 21 do 29 and 30.
		North do . 27 do 29 and 30.

Scheddle (No. 11) showing Surveyors employed and Work performed by each, during the jear 1880 -Continued.

Name.	Residence.	Description of Work performed.
Jephson, R.	Bracebridge, Ont.	Sub-division of Townships 1, 2 and 5, Range 27.
		Sub-division do 1, 2, 5 and 6 do 28.
		North boundary Townships 1 and 5 do 28.
		$\begin{array}{llll}\text { Northe west do } & \text { do } & 1 & \text { do } \\ \text { West }\end{array}$
		$\begin{array}{lll}\text { South do } & 2 & 2 \\ \text { do }\end{array}$
		East do do 28.
Klotz, O. J.	Preston, Ont.	(All west of Principal Meridian.) East boundary of Townships 27 to 30, Range 14.
		East do 27 to 30 do 15.
		North do 28 do 13 to 16.
		North do 27 and 29 do 13.
		North do do 14 and 16.
		Sub-division of Townships 27, Sub-division do 28, 29 and a
		Sub-division do 27 and 28 do 16.
		(All west of 2nd Initial Meridian.)
King, W. F Lendrum, R.....	Ottawa, Ont Riceville, Ont.	Astronomical section of special survey, N.-W.T.
	Riceville, Ont.	Sub-division of Townships 27 and 28, Range 2. Sub-division of Township 27, Range 1. (All west of 2nd Initial Meridian.)
Lett, C. A.......	Emerson, Man....	Sub-division of Townships 19 and 20, Ranges 27 and 28. North boundary Township 19 do 27 and 28. East do 19 and 20 do 28.
		(All west of Principal Meridian.)
Lippé, A. W.....	Acton, Que.	Sub-division of Townships 1 and 2, Ranges 25 and 26.
		North boundary Township 1 do do 25 and 26. East do 26.
		(All west of Principal Meridian.)
Morris, J........	Perth, Ont...	Sul-division of Townships 3 and 4, Range 18.
		Sub-division of Township 4 do 11.
		$\begin{array}{lll}\text { South boundary Township } & 4 & \text { do } \\ \text { North } & \text { do } & \text { do } \\ \text { d }\end{array}$
		East do do 3 and 4 do
		(All west of Principal Meridian.)
McArthur, J.....	Aylmer, Que......	Sub-division Townships 3 and 4, Ranges 21 and 23.
		Sub-division do 3 and 4 do 27 and 28.
		North boundary Township $\quad 3 \quad$ do $\quad 21$ and 22.
		Part of east boundary Townships 3 and 4, Kange 22.
		East boundary Townships 3 and 4, Range 28.
		(All west of Piincipal Meridian.) 31 and 32
McPhillips. R. C. .	Winnipeg, Man.	Sub-division Townships 19 and 20, Ranges 31 and 32.
		North boundary Township 19 do 31 and 32.
		East (All west of Principal Meridian.)
McPhillips, Geo..	do	Sub-division Townships 5 and 6, Ranges 19 and 20.
		Sub-division do 9 and 10 do 23 and 24.
		North boundary do 5, Ranges 19 and 20.
		East do do 5 and 6, Range 20.
		North do do 9, Ranges 23 and 24.
		East do do 9 and 10, Range 24.
		(All west of Principal Meridian.)
McAree, J........	Toronto, Ont	Sub-division, Township 1, Range 21.
		North boundary Township 1 Range 21. (All west of Principal Meridian.)
McArthur, J. J...	Aylmer, Que	Sub-division Townships 19 and 20, Ranges 29 and 30.
		Sub-division do 26, Range 31. ${ }^{29}$
		North boundary do 19, do 29 and 30.
		East do Townships 19 and 20, Range 30.
	Ottawa, Ont.....	East boundary Townships 23 and 24, Ranges 27 and 29.
McLatchie, J.		South do do 23, Ranges 27 to 30. Sorth do do 24 do 27 to 30. Nast do do 25 and 26, Ranges 27 and 29.

Schedule (No. 11) showing Surveyors employed and Work performed by each, during the year 1880-Continued.

Schedule (No. 11) hhowing Surveyors employed and Work performed by each, during the year 1880-Continued.

Name.	Residence.	Description of Work performed.
Pearce, Wnı	Winnipeg, Man...	Sub-division part of Township 1, Ranges 6 and 7.
		Sub-division do 2 do 8.
		South boundary do 1 do 1 to 8 .
		North do do 1 do 5 to 8.
		$\begin{array}{lll}\text { North } & \text { do } & \text { do } \\ \text { East } & \text { do } & \text { do do } \\ \end{array}$
		(All west of 2nd Initial Meridian.)
Ryley, G. U....	Ottawa, Ont.	South boundary Township 3, Ranges 27 and 28.
Reid, J. L.	Port Hope, Ont. .	(West of Principal Meridian.) Sub-division of Townships 44 and 45, Range 21.
		Sub-division do 27 to 30 to 15.
		North boundary Township 45, Range 21.
		North do do 29 do 15.
		Part east boundary Township 44, Range 21.
		East and west boundary Township 45, Range 21.
		South boundary Township 28, Range 15. (All west of 2nd Initial Meridian.)
Rainboth, G. C...	Aylmer, Que...	North boundary Township 27, Ranges 1, 2, 3, 4 and 5.
		North do do 29 East do do 1,2 and 3. 27,28 and 29, Range 4.
		East do do 27, 28, 29 and 30, Ranges 2 and 3.
		East do do 27, Range 6.
	Ottawa, Ont.	(All west of 2nd Initial Meridian.)
		Sub-division of Townships 21 and 22, Ranges 27 and 28.
Reiffenstein, J. H.		North boundary do 21, Ranges 27 and 28.
		East do do 21 and 22 , Range 28.
Russell, A. L.....	Port Arthur, Ont.	North boundary Township 30, Ranges 1 to 12.
		North do do 34 do 13 to 23.
		North do do 26 do 1 to 4.
		South do do 31 do 1 to 12.
		South do do 35 do 13 to 23.
		South do do 27 do 1 to 4.
		East do do 27 to 30, Range 5. 9 and 13.
		East do do 33 and 34, Ranges 9 and 13. East do do 35 and 36 do 21.
		(All west of 2nd Initial Meridian.)
	Winnipeg, Man. .	Sub-division of Townships 3 and 4, Ranges 19 and 20.
Sinclair, Dun......		$\begin{array}{lll}\text { do do } 3 \text { and } 4 \text { do } 25 \text { and } 26 . \\ \text { North boundary } & \text { do } 3 \text {, Ranges } 19 \text { and } 20 .\end{array}$
		East do do 3 and 4, Range 20.
		North do do 3, Ranges 25 and 26.
		Wast do do 3 and 4, Range 26.
		(All west of Principal Meridian.)
Staunton \& Jones.	Hamilton, Ont...	Sub-division of Township 17, Ranges 31 and 33.
		North boundary do 17 do 31 and 33. (All west of Principal Meridjan.)
	Winnipeg, Man.	Sub-division of Township 19, Ranges 19 and 20.
Stuart, (ieo.......		North boundary do 19, Range 20.
Snow, J. A.......	Ottawa, Ont.....	Sub-division of Township 19, Ranges 23,24 and 25.
		North boundary do 19 do 23, 24 and 25.
		East do do 20 do 24.
		West do do 19 do 23.
		(All west of Principal Meridian.)
	Moosomin, Ass.	Sub-division of Townships 23 and 24, Ranges 31 and 32 .
Stewart, J........		North boundary do 23, Ranges 31 and 32.
		Wast do do 23 and 24, Range 32.
		North do do 15, Ranges 29 and 30.
		East do do 15 and 16, Range 30.
		(All west of Principal Meridian.)
Thompson, W. T. .	Cannington, Ont	East boundary Townships 19 to 22, Ranges 5, 9 and 13. North do do 19A, Ranges 1 to 12.
		North do do 20 do 13.
		North do do 22 do 5 to 8.

Schedule (No. 11) showing Surveyors employed and Work performed by each, during the year 1880-Concluded.

Schedule (No. 12) showing Surveyors employed and Work performed by each, during the Year 1881.

Aldous, M. . . .	Winnipeg, Man.	Last boundary, Townships 1 to 16, Range 25. East do do 5 to 8 , do 29 $\begin{array}{llll}\text { North do } & \text { do } & 4,8,12 \text { and } 16, \text { Ranges } 25 \text { to } 28 . \\ \text { North do } & \text { do } & 12 \text { and 16, do } 24 \text { and } 30 .\end{array}$ (All west of 4 th Initial Meridian.)
Armstrong, F. W.	Orillia, Ont.	
Abrey, G. B.	Little Current, Ont	

Schedule (No. 12) sbowing Surveyors employed and Work performed by each during the Year 1881-Continued.

Name.	Residence.	Description of Work performed.
Burnett, P.. ..	Orillia, Ont. .	Sub-division Township 4, Ranges 1 to 10. (West of 2nd Initial Meridian.)
Beatty, W. \& D. .	Delta, Ont..	
Belanger, P. R. A. Burchill \& Davis. .	L'Jslet, Que	Sub-division Townships 9 and 10, Ranges 24 and 30. do do do 9, Ranges 33 and 34 . East boundary do 9, Range 34. (All west of Principal Meridian.) North boundary Township 9, Ranges 4 and 5. (All west of 2nd Initial Meridian.) Sub-division Township 15, Ranges 1 to 10. (All west of 2nd Initial Meridian.)
Burrows, J. J.	Ottawa, Unt ..	Sub-division Township 24, Ranges 2 to 9. South boundary Township 24, Kanges 7 and 9.
Breen, T...	L'Islet, Que.	Sub-division Township 9, Range 17. Sub-division Townships 9 and 10 , Ranges 31 and 33 . Sub-division Township 8, Range 31. North boundary Township 9, Range 17. (All west of Principal Meridian.)
Brodie, S.........	Toronto, Ont. . . .	Sub-division Township 7, Ranges 1 to 10.) (West of 2nd Initial Meridian.)
Brabazon, S. L.	Portage du Fort, Que.	Sub-division Township 16, Ranges 1 to 10. (West of 2nd Jnitial Meridian.)
Bray, Edgar	Oakville, Ont....	North boundary Township 24, Ranges 13 to 29. East boundary Townships 23 to 26, Ranges 1i, 21, 25 and 29. (All west of 2nd Initial Meridian.) North boundary Township 24. Ranges 1 to 5. East do Townships 23 to 26, Range 5. (All west of 3rd Initial Meridian).
Carbert, J........	Orangeville, Ont.	Sub-division Township 3, Ranges 1 to 10. (West of 2nd Initial Meridian.) Sub-division Township 2, Range 23. (West of Principal Meridian.)
Caddy, E. C... ..	Cobourg, Ont.....	Sub-division Townships 11 and 12, Ranges 29 and 30. North boundary Township 11, Ranges 29 and 30. East do Townships 11 and 12, Range 30. (All west of Principal Meridian.) Sub-division Township 12 Ranges 1 to 8. (West of 2nd Initial Meridian.)
Clementi\& Hewson	Peterboro', Ont...	Subdivision Township 21, Ranges 13 to 18. Subdivision do 21 do 20 and 21. (All west of 2 nd Initial Meridian.)
Cotton, A. F	Ottawa, Ont.	

Schedule (No. 12) showing Surveyors employed and Work performed by each, during the Year 1881-Continued.

Name.	Residence.	Description of Work performed.
Carre, H	Brockville, Ont. .	North boundary Township 21 and 22, Ranges 1819, 20.
		North do 23 do 18, 19, 20.
		North do 21 and 22 do 17.
		North do 23 do 17.
		North do 25 do 13 to 16.
		North do 26 do 13 to 15.
		North do 27A do 13 to 15.
		East do 21,22 and 23 do 18 to 20.
		Fast do 24 do 18 to 20.
		East do 25 do 13 to 16.
		Hast do 26 do 13 to 16.
		East do 27A do 13 to 15.
Dawson, E. C..... Drummond, T....		(All west of 2nd Initial Meridian.)
	New Glasgow, N.S	Subdivision Township 17, Ranges 1, 2, 6, 7, 8, 9 and 10. (All west of 2 nd Initial Meridian.)
	Montreal	North boundary Township 23, 24, 25, Ranges 1, 2.
		East do do 23, 24, 25, 26, Range 2.
		East do $\quad \begin{gathered}\text { do } \\ \\ \\ \text { (All west of } 2 \text { 2nd Initial Meridian.) }\end{gathered}$
	Lindsay, Ont.....	3rd Initial Meridian, Township 1 to 36.
Deane, M		Subdivision Township 25, Ranges 29 and 30. North boundary Township 25, Ranges 29 and 30. East do do 25 do 30.
Doupe, Jos.	Winnipeg, Man	(All west of Principal Meridian.)
		Subdıvision Township 10, Range 17.
		Subdivision do 13 do 29 and 30.
		Subdivision do 11. do 31 and 32.
		North boundary Township 13, Range 30.
		$\begin{array}{cc}\text { East do do } 13 \text { do } 30 . \\ & \text { All west of Principal Meridian.) }\end{array}$
Evans \& Bolger. . .	Belleville, Ont.	Subdivision Township 7 and 8, Kanges 23 to 26.
		North boundary Township 7 do 23 and 24.
		North do do 7 do do 26.
		$\begin{array}{llll}\text { East do do } \\ \text { East do } & \text { do } \\ \text { do }\end{array}$
		Fast do do 7 do do $\mathbf{2 6}$.
		(All west of Yrincipal Meridian.)
Forrest, A. (土..... Fawcett, Thos...	Gravenhurst, Ont.	Survey of Manitoba Highway.
		North boundary Township 5 and 6, Ranges 1 to 8 and 13 to 15.
		North do do 7 do \quad do 5 to 8 and 13 and 14.
		East do do 5 and 6 do 14 and 15.
		East do do 7 and 8 do 6 to 8 and 14 and 15.
Garden, J. F	Toronto, Ont	(All west of 2nd Initial Meridian.) East boundary Township 21 and 23, Kanges 13 to 16 and 22 and 23.
		East do do 22 do 13 to 16 and 22.
		Fast do do 24 do 13 to 16 and 22 to 24.
		North do do 21,22 and 23 do 13 to 16.
		North do do 21 do 21 and 22.
		North do do 22 do 21.
		North do do 23 do 21, 22 and 23.
Garon, L. J.		Subdivision of Townstip Initial Meridian.)
Gore, 'T. S .Hamel, A.		(All west of 2nd Initial Meridian.)
	Gore's Landing, 0.	East boundary of Township 1, Ranges 2, 3, 4 and 10, 11 and 12. East do do 2 do 2 to 4 and 10 to 12 .
		East do do 3 and 4, Ranges 1 to 4, 6 to 8.
		East do . do 3 and 4, do 10 to 12. .
		North do do 1 do 1 to 4 and 9 to 12.
		$\begin{array}{lllll}\text { North do do } & \text { do } & 3 & \text { do } \\ \text { South to } 12 .\end{array}$
		(All west of 2nd Initial Meridian.)
Hamel, A	Emerson, Man	Subdivision of Township 14, Ranges 1 to $\overline{\mathbf{5}}$. (All west of 2nd Initial Meridian.)
Hart, M	St. Mary, Ont....	East boundary Township 9 and 10, Ranges 1 to 4.
		North do do 9 and 10 do 1 to 4.
		South do do 11 do 1 tol.
		(All west of 2nd Initial Meridian.)

Schedule (No. 12) showing Surveyors employed and Work performed by each, during the year 1881-Continued.

Name.	Recidence.	Description of Work performed.
Hill, John,	Rimouski, Que.	Subdivision Township 22, Ranges 1 and 2. Subdivision do 25 , do 5 to 9 . (All west of 2nd Initial Meridian.)
Kennedy, L	Winnipeg, Man.	North boundary Township 19, 21, 22, 23, Ranges 1 and 2. South and west boundary Township 24 (All west of $\overline{\text { 万th }}$ Initial Meridian.)
Kains, Tom:	St. Thomas, Ont	
Kerr, Henry	Annapolis, N.S.	Subdivision Townships 3, 4, 5 and 6, Ranges 31 and 32. East boundary Townships 3, 4, 5 and 6, Range 32.
Klotz, O. J	Preston, Ont.....	Fast boundary Townships 7 to 10, Ranges 5, 9, 13, 17, 21 and 25. North do 8, Ranges 1 to 24. (All west of 2nd Initial Meridian.)
Miles, C. F. . . .	Toronto, Ont..	
Morris, J	Perth, Ont	
McKenna, J	Dublin, Ont . . .	Subdivision Township 27, Ranges 3 to 7. (West of 2nd Initial Meridian.)
McAree, J	Toronto, Ont	Subdivision Township 11, Ranges 1 to 5. (West of 2nd Initial Meridian.)
McMillan, J.	London, Ont... ..	Subdivision Township 9, Ranges 1, 2, 5, 6 and 7. (West of 2nd Initial Meridian.)
McPhillips, R. C.	Winnipeg, Man. . Aylmer, Que.....	Suodivision Township 19, Ranges 3, 4, 5, 6, 8, 9 and 10. (West of 2nd Initial Meridian.) Subdivision, Township 25, Range 31.
McArthur, J. J...	Aylmer, Que	
McArthur, J....	do	(All west of Principal Meridian.) Subdivision Townships 1 and 2, Ranges 33 and 34. Subdivision do 3 and 4 do 29 and 30. North boundary Township 3 do 29 and 30. East do 3 and 4, Range 30. (All west of Principal Meridian.)

Schedule (No. 12) showing Surveyors employed and Work performed by each, during the year 1881-Continued.

Schedule (No. 12) showing Surveyors employed and Work pelformed by each, during the year 1881-Continued.

Name.	Residence.	Description of Work performed.
Sing J. G.	Stratford, Ont....	East boundary of Township 9, Ranges 6 to 8.
		East do do 12 do 1 to 4 and 6 to 8 and 14 and 15.
		East do do 10 do 8.
		East do do 11 do 1 to 4 and 6 to 8 and 14 and 15.
		North do do 11 do 1 to 8 and 13 and 14.
		North do do 10 do 1, 5, 6, 7 and 8.
Snow, J. A.	Ottawa, Ont......	, (All west of 2nd Initial Meridian.)
		Sub-division of Township 21, Ranges, 24 and 25.
		Sub-division do 20 do 23. 24 and 25
		North boundary of Township 21, Ranges 24 and 25. East do do 21 do 24.
		(All west of Principal Meridian.)
		Sub-division of Townships 25 and 26, Ranges 13 to 16. Sub-division do 27 A , Ranges 13, 14 and 15.
		East boundary of Township 27A do 13.
		West do do 27 A do 15.
		West do do 26 do 15 I.R.
		(All west of 2nd Initial Meridian.)
Staunton \& Jones.	Hamilton, Ont. ..	Sub-division of Township 14, Ranges 33 and 34 . Sub-division do 17 and 18, Ranges 32 and 33.
		Sub-division do 17 and 18, Ranges 32 and 33.
		Sub-division do 25 and 26, Range 27.
		Sub-division do 26, Range 28.
		East boundary of Township 14, Range 34.
		North and east boundary of Township 17, Range 32.
		North boundary of Township 25, Range 27.
		Kast do do 26 do 28.
		East do do 18 do 32.
Stewart, J.	Banff,	Sul-division of Township 8, Ranges 1 to 10.
	Ban	(West of 2nd Initial Meridian.)
Sinclair \& Francis.	Winnipeg, Man...	Sub-division of Township 1, Ranges 1 to 9.
		Sub-division do 1 and 2, Range 10.
		Sub-division do 2, Range 9.
		North boundary of Township 1, Ranges 9 and 10.
		East do do 1 do 10 and 11.
		(All west of 2nd Initial Meridian.) Fast boundary of Townships 13 and 14, Range 12.
Thomson, A. C.. .		East do doury of do 15 and 16 do 1 to 4 and 6 to 8.
		East do do 15 and 16 do 10 to 12.
		North do do 13, Ranges 11 and 12.
		North do do 14 do 2 to 4 and 11 and 12.
		North do do 15 do 1 to 12.
		South do do 15 do 1.
		(All west of 2nd Initial Meridian.)
Thompson, W. T. .	Cannington, Unt.	North boundary of Township 20, Ranges 13 to 29.
		East do do 19 to 22, Ranges 17, 21, 25 and 29.
		North do do do 28, Ranges 17 to 29.
		, (All west of 2nd Initial Meridian.)
Traynor, I.	Dundalk, Ont. ..	Sub-division of Township 28, Ranges 3, 6 and 7.
		Part of sub-division of Township 28, Range 8. (West of 2nd Initial Meridian.)
Unwin, C.	Toronto, Ont....	Sub-division of Township 18, Range 18.
Unwin,		South loundary do 18 do 18.
Webb, A C.	Brighton, Ont. .	' North boundary of Township 12, Ranges 1 to 28.
		North do do 28.
		East do 11 to 14 do 5, 9, 13, 17, 21 \& 25.
		East do 12 and 13 do 28.
		East do 11 and 12 do 29.
		East do 14 do 29.
		South do 12 do 29.9 and 30.
		North do dil 13 do 28.

Sohedule (No. 12) showing Surveyors employed and Work performed by each. during the year 1881-Concluded.

Name.	Residence.	Description of Work performed.
Walsh, T. W.		Sub-division of Township 20, Ranges 3 to 7. (West of 2nd Initial Meridian.)
Warren, J.	Kincardine, Ont..	Sub-division of Township 5, Ranges 1 to 7.
		(West of 2nd Initial Meridian.)
Wilson, H. .		Sub-division of Township 21, Ranges 3 to 10. Sub-division do 22 do 3.
		(All West of 2nd Initial Meridian.)
Wolff, C. E.	Ottawa, Ont	North boundary of Township 5, Ranges 9, to 12 , and 17 and 18. North do do 1 to 4 , and 9 to 12.
		East do 6 do 10, 11, 12 and 19.
		Fast do ${ }^{\text {d }}$ do do 10, 11, 12 and 19.
		East do 7 and 8 do 1 to 4, and 10, $11 \& 12$.
		East do 5 to 8 do 18.
		South do 6 do 9 to 12.
		South do 77.
		North do do 17.
Wilson, R. A.		(All west of 2nd Initial Meridian.)
	Mount Forest, Ont.	Sub-division of Township 22, Ranges 4 to 10. (West of 2nd Initial Meridian.)
Wagner, Wm.	Ossowa, Man.	Sub-division of Townships 11 and 12, Range 28.
		Sub-division do 11 and 12 do 26 and 27.
		Sub-division do 11 do 25.
		North boundary do 11 do 26,27 and 28.
		East do do 11 and 12 do 26 and 28.
Wilkins, F. W.	Norwood, Ont.	(All west of Principal Meridian.) Sub-division of Townships 5, 6, 7 and 8, Ranges 29 and 30.
		North boundary do 5 do 29 and 30.
		Eastdo (All west ofdo Principal$\underset{\text { Meridian.) }}{5 \text { and } 6}$ do 30.

Schedule (No. 13) showing Surveyors employed and Work performed by each, during the year 1882.

Abrey, G. B.	Little Current, O.	Eleventh base line from the 3rd to the 4th I.M.; the 4th I.M. from the 14th to the 15th base line, and the 15th base line from the 4th I.M. westward.
Armstrong, F. W.	Orillia, Ont	Township outlines, between the 3rd and 4th base lines, from Range 9 to 12 west of the 2nd I.M., and between the 4th and 5th base lines, west of the 4th I.M.
Ashe. W.A.,D.T.S	Quebec	Tenth base line, from the 3rd to the 4th I.M.: reposting of the 4th I. M., from the 11th to the 14th base line, and the 14th base line west of the 4 th I.M.
Bazette, Ed.	Orillia, Ont	Townships 21 and 24, Range 19; Townships 22 and 23, Ranges 19 and 20 ; Township 25, Ranges 22 to 24 west of 2 nd I M.
Beatty, D	Delta,	Townships 54 to 56 , Range 22 ; Townships 56 and 57, Ranges 23 and 24, west of the 4th I.M. and Township outhines, als standard Meridians in Townships 55 to 57, between Ranges 24
Beatty, W	do	Township 52, Ranges 23 to 27 ; Tuwnship 53, Ranges 25 to 27 ; Township 54, Range 26 west of 4 th I.M. and Township outlines.
Bélanger, P. R. A.	L'Islet	Township outlines, between the 3rd and 4th base lines, Ranges 17 to 20 west of 2 nd I. M.; between the 2nd and 3rd base lines, Ranges 17 and 18 west of 2nd I.M., and between the 4th and 5 th base lines west of 4 th I.M.
Bell, Wm.	Pembro	Township outlines, between the 6th and 7th base lines, Range 25 west of 2nd I. M. to the 3rd I. M., and between the 5th and 6 th base lines west of the 4th T.M.
Bigger, C. A.	Plantagenet, Ont.	Eleventh base line, from the 3rd I.M. eastward across Ranges 29 and 28 ; the 12 th hase line from the Meridian between Ranges 3 and 4 west of 3rd I.M. across Ranges 4 and 5, and Township outlines, between the 10th and. 11th base lines west of 2nd I.M.

Schedule (No. 13) showing Surveyors employed and Work performed by each, during the jear 1882-Continued.

Name.	Residence.	Description of Work performed.
Bignell, John.	Quebec	Township outlines, between the 7th and 8th base lines, Ranges 25 to 28 west of 2 nd I. M., and between the 5 th and 6 th base lines west of 4 th I.M.
Bolton, Lewis	Listowell, Ont.	Township outlines, between the 5th and 6th base lines in Range 16 ; between the 4 th and 5th base lines, Range 21 to 24 west of 2nd I.M., and between the 5th and 6th base lines west of 3rd I.M.
Bourgeois, J	Three 1	Townships 19 and 20, Ranges 11 and 12; Township 15, Range 18, and Township 14, Range 19 west of 2nd I.M.
Brabazon, S. L.	Portage	Township 6, Ranges 25 and 28 ; Township 7, Ranges 31 and 32 west of 1st P.M.; Township 9, Range 20; Township 10, Ranges 10 to 16, and Ranges 18 to 20; Township 11, Ranges 9, 10, 19, 20 and 22 west of 2nd I.M.
Bray, Edg	Oakvill	Sixth base line and Meridians transverse thereto, west of 3rd I.M.
Bray,		Townships 33 to 36, Ranges 4 and 5 west of 3rd I.M. and Township outlines.
Brodi	Toro	Township 23, Ranges 11 and 12; Township 24, Range 12 west of 2nd I.M.
Brunelle, F. E.	Three Rivers, Que.	Townships 19 and 20, Range 10; Townships 19a and 18, Range 11 ; Township 15, Range 19; Townships 14 and 15. Range 20 west of 2 nd I.M.
Burnet, Peter	Orillia, O	Township 5, Ranges 7 to 12; Townships 10 and 11, Range 17; Township 11, Range 18; Townships 12 and 13, Range 19 west of 2nd I.M.
Burrows, J. J.	Ottawa, Ont	Townships 25 and 26, Ranges 11 and 12; Township 28, Ranges 17 and 18 west of the 2 nd I.M.
Byrne, Thos	Sarnia,	Townships 33 to 36 , Ranges 1 and 2, west of 3rd I.M. and Township outline.
Caddy, E	Cobourg	Townships 45 to 49, Range 23; Townships 46 to 49, Range 22, west of 2nd I.M. and Township outlines.
Carroll, Cyrus	Port Elgin, Ont.	Township 41, Ranges 1 to 3; Townships 42 A, Range 1, Township 40, Range 5, west of 3rd I.M. and Township ontlines.
Cavana, A.G	Brechin, Ont.	Third I.M. from North Saskatchewan to 13th base line; 13th base line, westward across seven ranges, and 12th base line from 4th I.M., eastward.
Cutton, A. F	Ottawa, O	Township outlines between the 4th and 5th base lines, Ranges 17 to 20, west of 2 nd I. M, , between the 5th and 6 th base lines, Range 29, west of 2nd I. M., to 3rd I. M. and between the 6th and 7 th base lines, west of 4 th \mathbb{I}.M.
Dalton,J.J.,D.T.S	Yorkville, On	Township 8, Range 32; Townships 10 and 11, Ranges 33 and $34 ;$ Township 12, Range 31 , west of 1st P. M., and Township 12, Ranges 9 and 10 , west of 2 nd I.M.
D'Amours, J. W .	Quebec.	Township 18, Ranges 20 and 21; Townships 19 and 20, Ranges 19 to 24, west of 2nd I. M.
Deane, M.	Lindsay, Ont.	Settlement survey at Edmonton, on the River Saskatchewan.
Denny, H. C.	Ottawa, Ont	Township outlines between the 7 th and 8th base lines, from Range 25 , west of 2nd I. M. to 3 rd I.M. and between the 5 th and 6 th bases, west of 4 th I.M.
Desjardins, C.	do	Township outlines between 4th and 5th base lines, Ranges 17 to 20 , west of 2 nd I.M. and between 6th and 7th base lines, west of 4 th I. M.
Desmeules, J. C.	Murray Bay, Que.	Ninth base line from 3rd I.M., eastward, and Township outlines between 8 th and 9 th base lines, west of 2 nd I.M.
Doupe. Jos.	Winnipeg	Townships 49 to 53, Ranges 1 and 2, west of 4th I.M. and Township outlines.
Drummond, Thos.	Montreal, Que... Murray Bay, Que.	Sixth base line and meridians transverse thereto, west of 4th I.M. Township 17, Ranges 11 to 15 ; Townships 17 to 20, Ranges 25 to
Duberger, C. C. .-	Murray Bay, Que.	27 ; Townships 18 and 19 A, Range 12; Township 24, Ranges 23 to 27 ; Township 24, Ranges 24 to 26, west of 2 nd I.M.
Dudderidge, Jas.	Lachute, Que	Township outlines between 4th and 5th base lines, from Range 29, west of 9nd I.M. to the 3rd I.M. and between the 5th and 6th base lines, west of 3rd I.M.
Dumais, H	Chicoutimi, Que. .	Reposting of the 2nd I.M., from 9th base line to the 8th correction line and 9th base line, westward across two ranges; also Town5 , west of 2 nd I. M. and Township outlines.

Schendle (No. 13) showing Surveyors employed and Work performed by each, during the year 1882-Continued.

Nạme.	Residence.	Description of Work performed.
Dumais, P. T. C.	Chicontimi, Que.	Township 11, Ranges 6 to 11; Township 12, Ranges 9 to 11 ; Township 13, Ranges 7 to 11; Township 14, Ranges 7 to 10, west of 2nd I.M.
Dupuis, Z. C.	Montmagny, Que.	Townships 18 and 19, Range 13; Townships 18 to 21, Range 14; Township 22, Range 21; Townships 21 to 23, Range 22, and Townships 22 and 23, Range 23, west of 2nd I.M.
Fllis, H. D	London, Ont	Thirteenth base line, from meridian, between Ranges 24 A and 24 west of 2nd I. M., eastward across $24 \mathrm{~A}, 23$ and 22 ; 12 th base line, eastward; also Township outlines between the 12th and 13th base lines.
Fafard, Eug.	L'Islet, 'que.	Township 5, Ranges 14 to 18; Township 6, Ranges 14 to 16; Township 11, Range 21 ; Township 12, Ranges 20 to 22 ; Township 13, Range 20, west of 2nd I.M.
Fawcett, T., D.T. Fitton, C. E	Gravenhurst, Ont Orillia, Ont.	Fifth base line and meridians transverse thereto, west of 3rd I.M. Townships 22 to 24 , Ranges 17 and 18 ; Township 26, Ranges 22 to
Francis, J	Sarnia,	Township 12, Ranges 32 to 34; Township 13, Ranges 33 and 34, west of 1st P.M.; Township 13, Range 1 and Township 16, Ranges 14 to 20 , west of 2 nd I.M.
Garden,	Toronto, Ont.	Township outlines, between 6th and 7th base lines, Ranges 21 to 24 ; between 7 th and 8th base lines, Ranges 21 to 24 , west of 2nd I.M.; and between 6th and 7th base lines, west of 3rd I.M.
Gauvreau, L. P	Quebec	Townships 1 to 3, Ranges 11 and 12; Township 9, Range 18, west of 2 nd I.M.
Gur	Regina, N.W.	Township 17, Ranges 19 and 20, west of 2nd I.M.
Hamel, Alfred	Finerson, Man.	Township, 18, Ranges 4 to 8, and Range 18; Township 20, Ranges 8 and 18; Townships 22 to 24, Ranges 13 and 14, west of 2 nd I.M.
Hart, Milner	St. Marys, Ont	xamination of contract surveys.
Henderson, E. D.	Hemison, Que.	Townships 6 to 8, Ranges 11 and 12 ; Township 13, Ranges 17 and 18 , west of 2 nd I.M.
Hermon, R. W	Rednersville,	Examination of contract surveys.
Hewson, T. R	Peterboro', Ont.	Township outlines, between the 6th and 7th base lines, Ranges 21 to 24 , west of 2nd I.M. ; between the 7 th and 8 th base lines, Ranges 21 to 24, west of 2nd I.M.; and between the 6th and 7 th base lines, west of the 3rd I.M.
Hill, John	Rimonski, Que.	Township 13, Ranges 23 to 25 ; Township 14, Ranges 24 and 26 ; Township 15, Ranges 23, 24, 26 and 27 ; Township 16, Ranges 21 to 27; Township 17, Ranges 16 to 18, and Ranges 25 to 27 ; Township 18, Range 15, and Ranges 25 to 27 ; Townships 19 and 20 , Range 17 , west of 2 nd I.M.
Jones, F., \& Co.	Kemptville, O	Townships 25 and 26, Ranges 1 to 7; Townships 27 and $2 \times$, Ranges 1 to 8, west of 3rd I.M. and Township outlines.
Kains, Tom	St. Thomas, Ont.	Seventh base line, westward from Range 4, west of 3rd I. M. and Meridians transverse thereto ; also 13 th base line, west of 4 th I.M.
Kerr, Hugh.	Annapolis, N.S.	Townships 13 and 14, Range 28; Townships 14 and 15, Range 25 ; Townships 17 and 18, Ranges 22 to 24, west of 2 nd I.M.
Kirk,	Stratford, O	Townships 41, 42 and 44, Ranges 27 and 28, west of 2nd 1.M. and Township outlines.
Klotz, O.J., D.T	Pr	Fifth base line and Meridians transverse thereto, west of 4th I.M.
Law	Brandon, Man	wnship 8, Ranges 16 and 17, west of 2nd I.M
Leber, Hector	St. Wenceslas, Que	Townships 19 to 22, Ranges 28 and 29 ; Township 23, Range 21 ; Township 24, Ranges 20 to 23 ; Township 25, Ranges 25 and 26, west of 2 nd I.M.
Lemoine, C.	Bonif	Oownship 23, Ranges 7 to 9 , west of 2nd
Lendrum, R. W		Townships 28 to 30, Ranges 1 and 2, west of 2nd I.M. and Township outlines.
Madrhick, J. A	Norwood,	Township outlines, between the 3rd and 4th base lines, Ranges 9 to 12 , and between the 4th and 5th base lines, west of 4 th I.M.
Magrath, C. A., D. T.S.	Williamstown, Man.	Fourth base line and Merifians transverse thereto, west of 4th I.M.; 15th base line, eastward from Meridian between Ranges 24 and 25, west of 4th I.M. ; also outlines of Townshıp 52, Ranges 23 to 25 , west of 3 rd I.M.
Michamd, J. Ls.	Rimouski, Que...	Township, 11. Ranges 12 to 16 ; Tuwnship 12, Range 12 and Ranges 15 to 18 ; Townships 21 and 22 . Ranges 11 and 12 , west of 2 nd I.M.

Schedule (No. 13) showing Surveyors employed and Work performed by each, during the Year 1882-Continued.

Name.	Residence.	Description of Work performed.
Milts, C. F.	Toronto, Ont.	Township outlines, between the 7 th and 8 th base lines, Ranges 17 to 20, west of 2 nd I.M., and between the 6th and 7th base lines, west of 4th I.M.
Murphy, F.	Mount Forest, Ont	Townships 45 and 46, Range 4 ; Township 45, Range 5, west of 3rd I.M. and Township outlines.
Mrathur, J	Aylmer,	Township 23, Ranges 3 to 6; Townships 19 and 20, Ranges 15 and 16, west of 2nd I.M.
McArthur,	do	Township outlines, between the 3rd and 4th base lines, Ranges 21 to 24 , and between the 4 th and 5 th base lines, west of 3 rd I.M.
McKenna,	Per	wnship 13, Ranges 2 to 6; Township 14, Ranges 6, 14 and 15 ; Township 15, Ranges 14 to 16, west of 2nd I.M.
McLean, J. K		Township outlines, between 3rd and 4th base lines, Ranges 21 to 24 west of 2 nd I.M., and between the 4 th and 5 th base lines west of 3rd I.M.
McMillan, J. At	London,	Townships 16 to 18, Ranges 28 to 30, and Township 15, Range 88 west of 2 nd I.M.
McVittie, A. W	Barrie, Ont.	Township outlines, between the 7 th and 8th base lines, Ranges 17 to 20 west of 2 nd I.M., and between the 6 th and 7 th base lines west of 4th I.M.
Ogilvie, W. OKeeffe, D. C	Ottawa, Ont Hamilton, O	Seventh base line and Meridians transverse thereto west of 4th I.M. Townships 29 to 32, Ranges 3 to 5; Townships 33 and 34, Range 3 west of 3 rd I.M. and Township outlines.
Ord, L. R	Ottawa, Ont. . . .	Township outlines, between the 6th and 7th base lines, Range 25 west of '2nd I.M. to 3rd I.M., and Hetween the 5th and 6th base lines west of 4th I.M.
Patrick,	Portage la Prairie, Man.	Township 48, Range 1; and Townships 45 to 48, Ranges 2 and 3 west of 3rd I.M., and Township outlines.
Proudfoot, H.	Ottawa,	Township outlines, between the 5th and 6th base lines, Ranges 13 to 16 ; between the 4 th and 5 th base lines, Ranges 21 to 24 west of 2 nd I.M., and between the 5 th and 6 th base lines west of 3 rd I.M.
Rainboth, E. J	Aylmer, Que.	Township outlines, between the 5th and 6th base lines, Ranges 17 to 20 ; and Ranges 25 to 28 west of 2nd I.M. ; also between the 6 th and 7 th base lines west of 3 rd I.M.
Rainboth,	do	Township outlines, between the 5th and 6th base lines, Ranges 17 to 20 ; and Ranges 25 to 28 west of 2 nd I.M. ; also between the 6th and 7th base lines west of 3rd I.M.
Sheppard,	River David, Que..	Townships 5 to 8, Range 13; Townships 7 and 8, Ranges 14 and 15 ; Township 13, Ranges 14 to 16 ; Township 14, Ranges 16 to $1 \times$ west of 2 nd I.M.
S	wa, Ont..	Township 53, Ranges 23 and 24; Townships 54 and 55, Ranges 23 to 25 ; Townships 56 and 57 , Range 25 west of 4th I.M., and Township outlines.
Sin	Stratford, Ont	Township outlines, between the 4 th and 5 th base lines, Ranges 14 to 16 ; between 3rd and 4th base lines, Ranges 13 to 16 west of 2nd I.M., and between the 4th and 5th base lines west of 3rd I.M.
S	wa,	Townships 22 to 24, Ranges 15 and 16 ; Township 25, Ranges 17 to 20 ; and Township 26, Ranges 18 and 19 west of 2nd I.M.
		Townships 37 to 40, Ranges 1 and 2 west of 3rd I.M., and 'Township, outlines.
Talbot,	Montmagny, Que.	Township outlines, ketween the 3rd and 5th base lines, Ranges 15 and 16 west of 2nd I.M. ; also between the 4 th and 5th base lines west of 3rd I.M.
Thompson, W. S., D.T.S.	Canning	Fourth base line west of 3rd 1.M., and Meridians transverse thereto.
Traynor, Isaac..	Dundalk, Ont.	Ninth base line, Ranges 9 to 14 west of 2nd I.M. ; also Townships 32 and 33, Ranges 10 to 14 west of 2nd I.M., and Township outlines.
Vincent, F	Murray Bay, Que..	Township 12, Ranges 13 and 14 ; Township 13, Ranges 12 and 13; Township 14, Ranges 11 to 13 and Ranges 21 to 23 ; Township 15, Ranges 21 and 22 west 2nd I.M.
Wagner, W.	Ossowa, Man.	Township 24, Ranges 30 and 33 ; Townships 27 and $3 \times$. Ranges 31 and 32 ; Townships 21 and 22, Range 31 ; Townships 20, 23, 24, 27 and 28 west of 1st P.M.
Warren, Jas...	Kincardine, Ont . .	Townships 9 and 10, Ranges 27 and 28 west of 1st P.M. ; Township, 8, Range 18 ; Township 9, Ranges ! to 19 west of 2nd I.M.

Schedule (No. 1;3) showing Surveyors employed and Work performed by each, during the year 1882-Concluded.

Schedule (No. 14) showing Surveyors employed and Work performed by each, during the year 1883.

Abrey, G. B	Little Current, Ont	11th Base Line, from 3rd to 4th Meridian ; part of 4th Meridian, and 15th Base from 4th Meridian to Range 17.
ong,	O_{1}	outlines between 1st and 5th Bases, west of 4th and 5th
Aylen, Chas.	d	wnships 1, 2 and 3, Ranges 13, 14, 15 and 16; Township 4, Ranges 11 to 16, west of the 2 nd Meridian.
Beatty,	Delta, Ont........	Townships 55, 56 and 57, Ranges 18, 19, 20 and 21; Townships 54 to 57 , Range 22; Townships 56 and 57, Ranges 23 and 24 ; Township 50, Range 26; Township 51, Ranges 25 and 26 , west of the 4 th Meridian.
	n	wnships 45 and 46, Ranges 18, 19, 20, 21 ; Townships 49 and 50, Ranges 24 and 25 ; lownship 51, Range 24, west of the 4th Meridian
Belange		Meridian outlines west of the 3rd Meridian, between 7 th and 8th Bases, and examination of contract surveys.
	ge	Examination of contract surveys.
		Townships 37, 38 and 39, Ranges 4 and 5; Township 33, Townships 29 to 36 , Range 6, west of the 3 rd Meridi
B		Townships 15 and 16, Ranges 4 to 9 ; Township 9, Ranges 17 to Township 10, Ranges 16 to 20, west of the 4th Meridian.
		Townships 25 to 26, Ranges 12 to 16; Townships 23 and 24, Ranges 1 and 2; west of the 3rd Meridian; Townships 23 and 24, Range 29, west of the 2nd Meridian.
	rtage du Fort, 2ue.	Townships 15 to 18, Ranges 19 to 21; part of Township 8, Range 22 ; parts of Township 9, Ranges 22, 23 and 24 ; part of Township 8, Range 25; Township 10, Ranges 29, 23 and 24 ; Township 8, Range 26, west of the 4th Meridian.
y, Edgar		9th Base line from Range 5, west of the 3rd Meridian, to Range 5, west of 5th Meridian ; also, meridian outlines near 5th Meridian.
		Townships 13 and 14, Ranges 4 to 6, west of the 4th Meridian.
Brune	Three Rivers, Que.	Townships 21 and 22, Ranges 3 to 8; Townships 25 and 26, Ranges 17 and 18 ; Township 26, Ranges 19 to 21 ; Township 25, Range 21, west of the 3rd Meridian.
Burke, Jos	initer,	Townships 23 and 24, Ranges 5 to 8 ; Township 25, Range 5 to 11 ; Township 26, Ranges 7 to 11, west of the 3rd Meridian.
		Townships 23 and 24, Ranges 21 to 26, west of the 3rd Meridian.
Burrows, J.	Ottawa, Ont	Township 22, Range 21; Townships 23 and 24, Ranges 19 to 21 : Township 25, Ranges 16 to 22 ; Township 26, Ranges 16 to 21, west of the 4 th Meridian.
y, E. C		Townships 43 and 44, Ranges 19 to 22; Townships 45 to 49, Ranges 22 and 23, west of the 2nd Meridian.
Cady,	Campbellford, Ont.	Townships 17 to 22, Ranges 1 and 2, west of the 3rd Meridian.
Casgrain, J. P. B..	Qu	Township 24, Range 25 ; part of Townships 25 and 26, Range 24 ; Township 23, Range 28; Townships 24 and 25, Ranges 27 and 28; Township 26, Ranges 25 to 29 ; Township 25, Range 29, west of the 2nd Meridian ; Townships 23 to 26, Ranges 3 and 4 , west of the 3 rd Meridian.

Scheddle (No. 14) showing Surveyors employed and Work performed by each, during the year 1883-Continued.

Name.	Residence.	Description of Work performed,
Cavana, A. (i)	Brechin, Ont	Meridian outlines, between 10th and 11th, and 11th and 12th Bases, west of 3rd Meridian.
Cotton,	Ot	Meridian outlines, between 3rd and 4th Bases, west of 3rd Meridian.
Charbonneau, M.J.	St. Boniface, Man.	Townships 27 and 28, Ranges 23 to 29, west of the 2nd Meridian : Townships 26 and 27, Ranges 5 and 6; Townships 27 and 25, Ranges 7 and 8 , west of the 3rd Meridian.
Cheesman, Thos	Mitchell,	Township 17, Ranges 13 to 15 ; Township 18, Ranges 13 and 14 ; Townships 19 and 20, Ranges 13 to 15 , west of the 4 th Meridian.
Chipman, W	Brockville, Ont	Townships 13 and 14, Ranges 6 to 11, west of the 3rd Meridian; Township 9, Ranges 23 and 24, Townships 10 to 12, Ranges 24 and 25 , west of the 3 rd Meridian.
Crawford,	Winnip	Townships 15 to 18, Ranges 22 to 24, west of the 4th Meridian.
D'Amours, J.	Quebec	Townships 13 to 16, Ranges 16 to 18 ; Townships 11 and 12, Panges 20 to 23, west of the 4th Meridian.
Dawson,	New Glasgow, N.S.	Township 20, Range 18; Township 19, Ranges 19 to 24 ; Townships 21 and 22, Ranges 19 and 20, west of the 4th Meridian.
Deane, M	Lindsay,	Survey of Settlement of St. Albert. Township outlines between the 13th and 14th Bases, west of the 4th Meridian.
Dechesne,	St.	Townships 13 to 16, Ranges 3 to 5 ; Townships 9 to 12, Ranges 18 and 19, west of the 3rd Meridian.
Desjardins, C	Ottawa, Ont.	Townships 13 and 14, Ranges 24 to 29, west of the 3rd Meridian : Township 9, Range 9; Townships 10 to 12, Ranges 9 and 10, and Township 12, Range 8, west of the 4th Meridian.
Doupe, J	Winnipeg,	Townships 37 to 40 , Ranges 6 and 7, west of the 3rd Meridian ; Townships 52 and 53, Range 3, west of the 4th Meridian.
Drummond, Thos.	Montreal,	Part of 9th, 10th and 11th Bases, between 2nd and 3rd Meridians ; and part of 13th Base, between 3rd and 4th Meridians; also, part of 3rd Initial Meridian.
DuBerger, C. C	Murray Bay, Que.	Townships 15 and 16, Ranges 24 to 29 , west of the 3 rd Meridian ; Townships 9 to 11, Ranges 5 and 6; Townships 11 and 12. Range 4, west of the 4th Meridian.
Dudderidge, Jas	Lachute, Que. .	Townships 21 and 22, Ranges 18 to 23 ; Townships:25 and 26, Range 29, west of the 3rd Meridian ; Township 25, Range 1; Township 26, Ranges 1 and 2, west of the 4th Meridian.
Dufresne, J. I	St. Thomas de Montmagny,Que.	Townships 17 and 18, Ranges 3 to 6 ; Townships 19 and 20, Ranges 5 and 6; Townships 13 and 14, Ranges 13 to 15, west of the 4th Meridian.
Dumais, H	Chicoutimi, Que	Sub-division of part of the Wa-wa-see-ca-pow Reserve; 9th Base Line from the 2nd Meridian to the western boundary of Range 8, and 2nd Meridian from the north boundary of Township 30, to the north boundary of Township 32 ; also, sub-division of Township 33, Range 3, west of the 2nd Meridian.
Dumais, P. T. C.	do	Townships 11 to 13, Ranges 23 and 24 ; Township 13, Ranges 21, 22, 25 and 26 ; Townships 14 and 15 , Range 24 , west of the 2 nd Meridian ; Townships 9 to 12, Range 16 and 17, west of the 3rd Meridian.
Eaton, W. C	Winnip	Townships 41 to 44, Ranges 4 and 5, west of the 3rd Meridian.
Ellis, H. D.	London, Ont	Meridian exteriors from the eastern boundary of Range 2, west of the 4 th Meridian, to the western boundary of Range 18 , between the 13th Base and the 13th Correction Line.
Fafard, Eug	L'Islet, Que	Townships 13, 14, 15 and 16, Ranges 15, 16 and 17 ; Townships 9, 10 and 11, Ranges 28, 29 and 30 ; Township 12, Ranges 29 and 30, west of the 3rd Meridian.
Fawcett, T., D.T.S	Gravenhurst, Ont.	8th Base Line, from Range 8, west of 3rd Meridian to Range 9 , west of 5 th Meridian; 7th Base, from Range 4 to Range 8, west of 5th Meridian ; 6 th Base, from Range 2 to 6 , west of the 5th Meridian ; also Meridian outlines west of 5 th and between . said bases.
Fitton, C. E.	Orillia, Ont.	Township 26, Ranges 17 and 20; Township 97, Ranges 17 to 22 ; Township 28, Ranges 19 to 22, west of the 2nd Meridian; Township 27, Ranges 2, 3 and 4: Township 28, Ranges 2 and 3, west of the 3rd Meridian,
Foster, F. L. Francis, John.	Windsor, Ont... Winnipeg, Man.	Survey of Rat River Settlement. Townships 9, 10, 11 and 12, Range 28; Townships 11, 12, 13, 14, 15 and 16, Range 27 ; Townships 13, 14, 15 and 16, Ranges 25 and 26 ; Township 14, Ranges 29 and 30 ; part of Townships 15 and 16 ; Range 30 , west of the 4th Meridian.
$13-5 \frac{1}{2}$		

Schedule (No. 14) showing Surveyors employed and Work performed by each, during the year 1883-Continued.

Nimile.	Residence.	Description of Work performed.
Francis, J.	Sarnia, Ont.	Townships 22, 23 and 24, Ranges 22, 23 and 24; Township 25, Ranges 23 to 25; Township 26, Kanges 22 to 25; Townships 21 and 22, Ranges 25,26 and 27 , west of the 4th Meridian.
(1)	Toronts, Ont	Meridian outlines between 10th and 11th Bases, west of 3rd Meridian, also between 11th and 12th Bases, west of 4th Meridian.
Gilliland,	Eugenie, Ont.	Townships 6 and 7, Ranges 17 and 18 ; Township 7, Range 16; Townships 9 and 10, Ranges 21, 22 and 23, west of the 2 nd Meridian; Tournship 11, Ranges 10 to 13; Township 12, Ranges 9 to 13, west of the 3rd Meridian.
Gosselin, P.	Quebec.	Townships, 17, 18, 19 and 20, Ranges 10, 11 and 12; Township 11, Range 19; Township 12, Ranges 18 and 19, west of the 4th Meridian.
Gasselin, N.....	do	Townships 17, 18, 19 and 20, Ranges 7, 8 and 9; Township 12, Range 17 ; Township 11, Ranges 17 and 18, west of the 4th Meridian.
Grondin, L. S. E.	Rimouski, 9	Townships 11 and 12, Rariges 11, 12 and 13; Townships 10 and 12, Range 14, west of the 4th Meridian.
	St. Mary's, O	Examination of contract surveys.
Henderson, E. D.	Hemmison, Q	Townships 23 and 24, Ranges 18, 19 and 20; Township 25, Ranges 19 and 20, west of the 3rd Meridian.
Hermon, R. W	Rednersville,	Examination of contract surveys.
Hewsom, T. R	Peterboro', On	Meridian outlines between 6th and 8th bases, west of the 4th and 5th Meridians.
Jephson, R.	Bracebridge, Ont. .	Townships 21, 22, 23, 24, Ranges 7, 8, 9; Townships 25 and 26, Range 8, west of the 4th Meridian.
Kains, Tom.	St. Thomas, Ont	14th Base, from 5th Meridian to Range 4; 12th Base, from 5th to 4th Mrridian; 10th Base, from 4th Meridian to Range 3, west of 5th Meridian ; also Meridian outlines near 5th Meridian.
Kerr, Hugh.	Annapolis, N.S.	Townships 13, 14, 15, 16, Ranges 12, 13, 14; Township 9, Ranges 25 and 26; Townships 10 and 11, Range 26, west of the 3rd Meridian.
Kirk, .J. A	Stratford, Ont	Townships 13 and 14, Range 28; Townships 15 and 16, Ranges 28 and 29 ; Townships 17 and 18, Ranges $28,29,30$, west of the 4th Meridian ; Townships 17 and 18, Range 1, west of the 5th Meridian; Townships 21 and 22, Range 2, west of the 5th Meridian.
Klotz, O. J.	Preston, Ont.	3rd Base from 4th Meridian to Range 20, west ; and 2nd Base, from Range 24, west of the 4th Meridian, to the 3rd Initial Meridian.
Larue, C. E	Quebec...... ...	Townships, 23, 24, 25, 26, Ranges 28 and 29, west of the 4th Meridian ; Township 23, Range 1; Township 24, Ranges $1,2,3,4$, west of the 5 th Meridian.
Laurie, R. C.	Battleford, Saskatchewan.	Battleford Town Plot survey; Townships 39 and 40, Ranges, 9,10 , 11, west of the 3rd Meridian.
Leber, Charles	St. Boniface, Man.	Townships 17 and 18, Ranges, 27, 28, 29, 30 ; Townships 19 and 20 , Ranges, $27,28,29$, west of the 3rd Meridian ; Township 9, Ranges 10 to 14; Township 10, Ranges 11 to 13, west of the 4th Meridian.
Leber, Hector	Wenceslas, Q	Townships 37 and 38, Ranges 27, 28, 29; Townships 39 and 40, Ranges 27 and 28; Township 41, Range 27; Township 43, Ranges 27 and 28; Township 44, Range 27; Township 45, Ranges 26, 27, 28; Township 46, Range 26, west of the 2nd Meridian.
Lectere, Charles.	St. Jean, Port Joli, Que.	Townships 9 and 10, Range 24; Townships 13 and 14, Ranges 29 and 30 , west of the 2 nd Meridian; Township 12, Range 1; Townships 13, 14, 15, 16, Ranges 1 and 2, west of the 3rd Meridian.
Legendre, J. B. O. Maddock, J. A. .	Somerset, Q Norwood, O	Townships 19 and 20, Range 11; Townships 21, 22, 23, 24, Ranges $9,10,11$, west of the 3rd Meridian. Meridian outlines between 7th and 9th Bases, west of the 3rd Meridian.
Magrath, C. A., D.T.S. Martin, A. F..	Aylmer, Que... Emerson, Man.	Parts of 13th and 14th Bascs, and the 12th Base, between 4th and 5th Initial Meridians. Townships 15, 16, 17, 18, Ranges 21, 22, 23, west of the 3rd Meridian : Townships, $9,10,11$, Ranges 7 and 8 : Township 12, Ranges $\mathbf{6}$ and 7, west of the 4th Meridian.

Schedule (No. 14) showing Surveyors employed and Work periormed by each, during the year 1883-Continued.

Name.	Residence.	Description of Work performed.
Michaud, J. Ls..	Rimouski, $\mathrm{Q}^{\text {a }}$	Township 14, Range 16; Township 15, Ranges 26 and 27 ; Townships, 16, 17, 18, Ranges 25, 2627 , west of the 2nd Meridian; Townships 9, 10, 11, 12, Ranges 14 and 15, west of the 3rd Meridian.
Miles, C. F	Toronto, Ont	Meridian outlines between 7 th and 8th Bases, west of the Initial Meridian.
Murphy, F	Mount Forest,	Townships 45, 46, 47, 48, Ranges 4 and 5; Townships 47 and 48, Ranges 6 and 7 , west of the 3rd Meridian.
McArthur, J.	Aylmer, Que.	Meridian outlines, between 12th and 13th Bases, west of the 4th Meridian ; also re-posting of 5th Meridian, from 11th Base to 14th Base.
McKemna, J. J...	Dublin, Ont.	'Townships 17 and 18, Ranges 9, 10, 11 ; Township 19, Ranges 9 and 10 , west of the 3 rd Meridian.
McLatchie, John. .	Winnipeg, Man	Townships $17,18,19,20$, Ranges 1 , and 2 ; Townships 19 and 20, Ranges 3 and $4 ;$ Township 11, Range 14; Townships, $9,10,11$, 12, Range 15; Township 9, Range 16 ; Townships 11 and 12, Range 16, west of the 4th Meridian.
n, J	Mount Forest, O	Meridian outlines, between 11th and 14ch Bases, west of the 3rd Meridian.
MacMartin, G. E.	St. Andrews	Townships 25 and 26, Ranges, 12, 13, 15 ; Townships 21, 22, 23, 24, Ranges $16,17,18$, west of the 4 th Meridian.
McPhillips, Geo.	Winnipeg, Man	Township 20, Range 9, west of the 2nd Meridian, and scaling River Qu'Appelle, from the point where it intersects the 5th Correction Line in Township 19, Range 5, west of the 2nd Meridian, westward.
McPhillips, R. C. .	do	Townships 23 and 24 , Range 27 ; Townships 19, $20,21,22$, Ranges 28 and 29, west of the 4th Meridian; Townships 17 and 16, Range 2; Townslips 19 and 20, Ranges 1 and 2 ; Townships 21 and 22 , Range 1, west of the 5th Meridian.
Mçittie, A.	Barrie, Ont.	Town plot, Fort MacLeod. 26 , Ranges 4, 5, 6; Townships 25 and
OLwwer, Ogilvie, J.	Granby, (Qut...... Campbellford, Ont	Townships 21, 22, 23, 24, 25, 26 , Ranges 4, 5 Townships $17,18,19,20$, Ranges $15,16,17$, west of the 3rd Meridian.
Ogilvie, W	Ottawa,	5th Meridian from Edmonton to Athabasca River ; 21st Base Line, from 6th Meridian, westward.
O'Keeffe, D. C	Hamilton	Townships, 17, 18, 19, 20, 21, 22, Ranges 24, 25, 26, west of the 3rd Meridian.
Ord, L. R	Ottawa	Meridian outlines, between 11th and 12th Bases, west of the 4th Meridian.
Patrick, L	Portage la Prairie, Man.	Townships 45, 46, 47, 48, 49, Range 24; Townships 45, 46, 47, Range 25; Township 47, Range 20; Townships 48, 4!, Ranges 20, 21, west of the 2nd Meridian.
Proudfoot, H. B.	Clinton, Ont.	Meridian outlines, between 11th and 14th Bases, west of the 3rd Meridian.
Purvis,	Eg	Townships 25 and 96, Ranges $9,10,11$; Townships 21, 22, 23, 24, Ranges, 13, 14, 15, west of the 4th Meridian.
Rainbuth, E. J.	Aylme	Townships 19 and 20 , Ranges 3, $4,5,6,7,8$; Township 20, Rang10; Township 9, Range 22; Townships 10, 11, 12, Ranges 2: and 23, west of the 3rd Meridian.
Rainboth, G. C...	do	Townships 17 and 18, Ranges 3, 4, 5, 6, 7, 8 ; Township 20, Kange 9 ; Townships $9,10,11,12$, Ranges 20 and 21 , west of the 3rd Meridian.
Reid, J. L..	Prince Albert, Sankatchewan.	
Reilly. W. R.	Wardsville,	Townships 19 and 20, Ranges 18, 19, 20, 21, 22, 23, west of the 3rd Meridian.
Robertson, H.....	Montmagny, Que.	Townships 15 and 16, Ranges $6,7,8,9,10$ and 11 ; Townships 9,10 , 11, Range 27 ; Township 12, Ranges 26 to 28, west of the 3xd Meridian.
Fioss, Geo.... . .	Beaverton, Ont...	Townships 17 and 19, Ranges 16 to 1 N : Township 18, Ranges 1.: t" 18; Township, 20, Ranges 16, and 17; Townships 11 and 12 , Ranges 24 and 25 , west of the th Meridian.
Fioy. 1. P	Qublbec	Townships 17, 18, 19, 20, Range 25, 26, 27; Townships 23 and 34 , Ranges 25 and 26 ; Townsin" 25 aml 21 , Ranges 26 and 27 , west of the 4 th Meridian.

Schedule (No. 14) showing Dominion Land Surveyors employed and Work accomplished by each, during the year 1883-Concluded.

Name.	Residence.	Descrip,tion of Work performed.
Selby, H. W..	Toronto, Ont.	Townships 35, 36, 37, 38, 39, Range 3 ; Townships 40, Ranges 3 and 4; Township 37, Range 2; Townships 42 and 43, Ranges 2 and 3 , west of the 3 rd Meridian.
Sheppard, C. G.	River David, Que.	Townships 21, 22, 23, 24, Ranges 1, 2, 3 ; Township 25, Ranges and 3 ; Township 26, Range 3, west of the 4th Meridian.
Simpson, Geo. A.	Ottawa, Ont.	Township 52, Range 18; Townships 53 and 54, Ranges 18, 19, 20, 21 ; Township 53, Range 22; Townships 55, 56, 57, Ranges 26 and 27; Townships 52, 53, 54, Range 28, west of the 4th Meridian.
Sing, J. A	Stratford, Ont	Meridian outlines, between 2nd and 4th Bases, west of the 4th Meridian.
Sirois, J. E	Kamouraska, Que.	Townships 15, 16, 1i, 18, Ranges 18, 19, 20, west of the 3rd Meri dian ; Townships 9 and 10, Ranges 1 and 2; Townships 11 and 12, Range 1 , west of the 4th Meridian.
Snow, J. A	Ottawa, Ont	Townships $21,22,23,24$, Ranges $10,11,12$, west of the 4 th Meridian.
Snow, J. F...	do	Townships 13 and 14, Ranges 19, 20, 21, 22, 23, 24 ; Townships 9 and 10, Ranges 25, 26, 27 ; Townships 11 and 12, Range 26, west of the 4th Meridian.
Starkey, S. M . . .	$\underset{\text { Queen's Co., }}{\text { S. }}$.	Townships 21, 22. 23, 24, Ranges 12, 13, 14; Townships 25 and .26; Ranges 22, 23, 24, 25, west of the 3rd Meridian.
Staunton, F. H. L.	Hamilton, Ont.	Townships 15 and 16, Ranges $10,12,13,14,15$, west of the 4 th Meridian.
Stephens, H. H	Owen Sound, Ont.	Townships 31, 32, Ranges 9, 10, 11, 12, 13 ; Township 33, Range 13, west of the 2nd Meridian.
Stewart, John	Moosomin, Assini- boia.	Townships 21, 22, 23, 24, Ranges 15, 16, 17 ; Townships 25, 26, Ranges 26, 27, 28, west of the 3rd Meridian.
albot	Montmagny, Que.	Meridian outlines, between 8th and 12th Bases, west of the 2nd Meridian.
Talbot, P. C	do	Townships 17, 18, 19, 20, Ranges 12, 13, 14, west of the 3rd Meridian.
Thompson, W. T., D. T. S.	Cannington, Ont. .	Traverse from the 5th to the 6th Meridian ; 6th Meridian, from the 20th to the 26th Base Line; 22nd Base Line, from the fith Meridian to the boundary of British Columbia.
Towle, C. E Traynor, Isa	Lennoxville, Ont.	Townships 13, 14, 15, 16, Ranges 1, 2, 3, west of the 4th Meridian.
Traynor,	Dundalk, Ont.	Meridian outlines, between 8th and 12th Bases, west of 2nd Meridian.
Vincent, F... Wagner, Wm.	Murray Bay, Que. Oswowa, Man......	Townships 13 and 14, Ranges 18, 19, 20, 21, 22, 23, west of the 3rd Meridian; Townships 9 and 10, Ranges 3 and 4; Townships 11 and 12, Ranges 2 and 3, west of the 4th Meridian.
Warren, James..	Oshowa, Man..... Kincardine, Ont.	Big Island, Lake Manitoba. Townships 21, 22, 23, 24, Range 3. east of the 1st Meridian ; Townships, 19, 20, 21, Ranges 3 and 4 , west of the 1st Meridian.
Warren, James..	Kincardine, Ont.	Townships 13 and 14, Ranges 7, 8, 9, 10, 11, 12 ; Township 4, Range 20 ; Townships 8, 9 10, Range 21, west of the 4 th Meridian.
Wheeler, A. 0	Brighton, Ont Collingwood, Ont..	Examination of contract surveys. Meridian outlines, between 1st and 3rd Bases, west of 2nd Meridian, and between 3rd and 4th Bases, west of 2nd and 3rd Meridians.
Wilkins, F. W., D.T.S. Wulff, C. E. .	Nurwood, Ont Ottawa, Ont.	Meridian outlines, between 8th Correction Line and 10th Base, west of the 3rd Meridian. Meridian outlines, between 1st and 5th Bases, west of the 4th and ith Meridians.

Schedule (No. 15) showing Dominion Land Surveyors employed and Work accomplished by each, during the year 1884.

Explorcrs.		
Ogilvie, Wm...... Klotz, O.J., D.T.S.	Ottawa, Ont..... Preston, Ont $\ldots .$.	Exploration of Peace and Athabasca Rivers. Exploration of Saskatchewan and Nelson Rivers.

Sohedule (No. 15) showing Dominion Land Surveyors employed and Work performed by each, during the year 1884-Continued.

Name.	Residence.	Description of Work performed.
Outline Surveyors.		
Bray, Edgar....	Oakville, Ont.	Meridian Township outlines between 4th Initial Meridian and Range 10, and between the 14th and 15 th Base Lines.
Belanger, P.R.A..	L'Islet, Que.	Meridian Township outlines between 4th Initial Meridian and Range 8, and between the 12th Correction Line and the 14th Base Line; also Meridian outlines between the 12th and 13th Bases, and between Ranges 10 and 15 west of 3rd Initial Meridian.
Cotton, A. F......	Ottawa, Ont.	Meridian Township outlines between 13th and 16th Base Lines, and between Ranges 9 and 14, west of 4th Initial Meridian; also the 16th Base Line, from Range 10 to Range 14, inclusive.
$\begin{gathered} \text { Dufresne, J. I., } \\ \text { D. T. S. } \end{gathered}$	St. Thomas de Montmagny,Que.	Meridian Township outlines between 12th and 14th Base Lines, and between Range 9, west of the 3rd Initial Meridian, and 29, 30, 31 and 32 in Range 2, west of the 3rd Initial Meridian.
Fawcett, Thomas, D. T. S.	Gravenhurst, Ont.	Extension of the Township system, and establishment of corner monuments along the Bow River Valley and the C. P. R. line, from the Gap to the summit of the Kicking Horse Pass; also along the upper valley of the Cascade River, Devil's Head Creek and Devil's Head Lake; also suk-division of some sections on Cascade River for coal locations; also survey of the eastern boundaries of Townships 27 and 28, Range 2; Townships 29 and 30 , Ranges 5 and 6 ; Townships 23, 24, 25 and 26 , Ranges 6 and 7 ; and Townships 23, 24, 25 and 26, Range 8, all west of the 5th Initial Meridian.
Garden, James F..	Toronto, Ont..	Township outlines between 10th and 12th Base Lines, and between 4th Initial Meridian and Range 10.
Kains, 'Tom.	St. Thomas, Ont.	Meridian Township outlines between the 13th Base and Correction Line, and between Ranges 14 and 22, west of the 4th Initial Meridian ; also a survey of the old settlement at Victoria, and connection of the settlement survey at Fort Saskatchewan with the Township system.
Miles, C. F.	Toronto, Ont.	Meridian Township outlines west of the 4th Meridian, between 10th and 12th Base Lines, from Range 20 to Range 27.
$\begin{aligned} & \text { Magrath, C. A., } \\ & \text { D.T.S. } \end{aligned}$	Aylmer, Que.	Meridian Township outlines west of 4th Initial Meridian, between the 14th and 16th Base Lines, and between Ranges 8 and 21 ; also, 16th Base Line from Range 15 to Range 20 inclusive.
McLean, J. K	Mount Forest, Ont.	Meridian Township outlines between the 8th and 10th Base Lines, from Range 7 to Range 19, west of 4th Initial Meridian.
McArthur, J. J.	Aylmer, Que.	Meridian Township outlines between the 12th and 14th Base Lines, and between Range 22 west of the 4th Initial Meridian and the 5th Initial Meridian; also, Meridian outlines Base Lines west of the 5th Initial Meridian.
Ord, L. R.......	Toronto, Ont.	Meridian Township outlines between the 8th and 10th Base Lines, from Range 19 west of the 4th Initial Meridian to Range 4 west of the 5 th Initial Meridian.
Wilkins, F. W., D.T.S.	Norwood, Ont.	Meridian Township outlines between the 8th and 10 th Bases, from Range 19 west of the 3rd Meridian to Range 5 west of the 4th Meridian.
Examiners of Survey Contruets.		
Hermon, R. W.... Webb, A.C.	Rednersville, Ont. Brightom, Ont....	
Road Surveyor. Hart, Milner.	St. Mary's Ont. .	Survey of trails in the District of Prince Albert.
Sub-dirision Surveyors.		
$\begin{aligned} & \text { Aylen,C.P.,D.T.S } \\ & \text { Beatty, W........ } \end{aligned}$	Aylmer, Que Delta, Ont. .	Townships 21 and 22 in Ranges 7,8 and 9 , west of the 4 th Meridian. Townships 47 and 48 in Ranges 24 and 25, and Township 45 in Range 24, west of the 4th Meridian.

Schedule (No. 15) showing Dominion Land Surveyors employed and Work accomplished by each, during the year 1884-Continued.

Name.	Residence.	Description of Work performed.
Bigger, C. A	Ottawa, Ont	Township 9 in Range 17 ; Townships 9, 10 and 11 in Ranges 18 and 19 ; Township 12 in Range 19 ; and Townships 7 and 10 in Range 21, west of the 4th Meridian. Re-survey of Township 19 in Ranges 20,21 and 22, west of the 4th Meridian ; also, examination of Calgary Town Plot Survey.
Boivin, E.	Chicoutimi, Que.	Township 7 in Ranges 25, 26 and 27, and Township 8 in Ranges 23, 24, 25 and 26, west of the 3rd Meridian; also re-survey of Township 20 in Range 18, and Township 19 in Range 19, west of 4 th Meridian; also survey of east boundaries of Townships
Bourgeanlt, A...	st. Jean Port Joli, gue.	5 and 6 in Ranges 25, 26, 27 and 28, west of the 3rd Meridian. Township 7 in Range 29 ; Townships 8 in Ranges 27, 28, 29 and 30, west of the 3rd Meridian ; and Township 8 in Range 1, west of the 4th Meridian.
Buargeois, John	Three Rivers, Que.	Township 25 in Ranges 19 and 20, and Townships 25 and 26 in Ranges 26, 27 and 28 , west of the 3rd Meridian.
Brabazon, S. L	Portage du	Townships 25 and 26 in Range 29, west of the 4th Meridian ; Townships 25 and 26 in Ranges 1 and 2, and Township 26 in Range 3, west of the 5 th Meridian.
Brunelle. F. E....Burke, Joseph....		Townships 27 in Ranges 26 and 27, west of the 3rd Meridian.
	W	Townships 47 and 48 in Ranges 25 and 26, and Township 48 in Ranges 27 and 28, west of the 3rd Meridian.
Burrows, J. J. ...	O	Township 27 in Range 2, and Townships 27 and 28 in Ranges 3 and 4 , west of the 3 rd Meridian.
Carre, Henry. Crawford, W.. Charbonneau, M.J.	Brockville	Township 49 in Range 28, and Township 50 in Ranges 25, 26,27 and 28 , west of the 3rd Meridian.
	Wimmipeg	Township 41 in Range 16; Townships 41 and 42 in Range 17, and Townships 43 in Ranges 17 and 18, west of the 4th Meridian.
	St. Bonif	Townships 36, 37, 38 and 39 in Ranges 26, 27 and 28, and Township 40 in Range 2 2 , west of 4 th Meridian ; and Townships 37 and 38 in Range 1, west of the $\overline{\text { th }}$ Meridian.
Deane, M......... Dechesne, L. M	Lindsay,	Townships 27 and 28 in Range 9, and Townships 29 and 30 in Ranges 8 and $!$, west of the 3rd Meridian.
	St. Roch,	Townships 39 and 12 in Range 13, and Townships 40, 41, 42 and 43 in Range 14, west of the 3rd Meridian.
Dourué, Joseph Irummond, Thos., D.'T.S. DuBerger, C. C...	Winnipeg	Townships 18 and 19 in Ranges 7 and 8 ; and Township 18 in Range 9, east of the Principal Meridian.
	Mon	Township 45 in Ranges 16 and 17; Township 46 in Ranges 18 and 19 ; and Township 49 in Ranges 26 and 27, west of 3rd Meridian.
	Murray Bay	Township 33 in Range 5; and Townships 32, 33 and 34 in Range 6, west of the 3 rd Meridian.
Dumais, P. T. C Foster, F. L ..		Townships 41, 42, 43 and 44 in Range 15; and Townships 41 and 42 in Range 16, west of the 3rd Meridian.
Foster, F. L . .	Windsor,	Township 41 in Range 7 ; and Townships 42 and 43 in Ranges 6 and 7 ; and traverses of Lakes in Townships 47 and 48 in Ranges 4 and 5 , west of 3 rd Meridian.
Freeman, N. R...	Queen	Townships 43 and 44 in Kanges 24 and 25 ; and Township 44 in Range 22, west of the 4th Meridian.
Gore, T. S. Gosselin, L	Reg	Townships 29 and 30 in Ranges 17, 18 and 19, west of the 2nd Meridian.
Gosselin, L.	Queb	Townships 27 and 28 in Ranges 27 and 28, west of the 4th Meridian; Townships 27 and 28 in Range 1, and Township 28 in Range 2, west of the 5th Meridian.
Kerr, James...	Queen's Co., N.S	Township 44 in Ranges 18 and 19 ; and Townships 43 and 44 in Range 23, west of the 4th Meridian.
Kirk, J. A.......		Township 43 in Ranges 26, 27 and 28 ; and Township 44 in Ranges 27 and 28, west of the 4th Meridian.
Leclerc, C. ${ }^{\text {F }} \ldots \ldots$	St	Township 45 in Range 20; and Townships 45 and 46 in Ranges 21 and 22, west of the 3rd Meridian.
Lucas, S. B. ...	Peace Hills, berta.	Townships 50 and 51 in Range 3; and Township 50 in Range 4, west of the 5th Meridian.
Lett, C. A........ McArthur, James. McLatchie, John.	Emerson, Man	Townships 35, 36 and 37 in Range 9; and Township 37 in Ranges 10 and 11, west of the 3rd Meridian.
	Aylme	Townships 47, 48 and 49 in Ranges 23 and 24, west of the 3rd Meridian.
	Winnipeg, Man...	Townships 24,25 and 26 in Range 17 ; Townships 24 and 25 in Range 19; and Township 25 in Range 20, west of the 1st Meridian.

Schedule (No. 15) showing Dominion Land Surveyors employed and Work accomplished by each, during the year 1884-Concluded.

Name.	Residence.	Description of Wurk performed.
MacMartin, (. H. Mc:Phillips, Geo. M.Phillips, R. C. Michand, I. L.	St. Andrews, Que.	Townships 45 , 46 and 47 , in Ranges 27 and 28, west of the 3 rd Meridian.
	Winnipeg, Man.	Townships 25 and 26, in Range 18; Townships 6, in Ranges 25 and $2 \overline{7}$, west of the 1st Meridian.
	do	Township 19 in Ranges 4, 5, 6 and 8; and Township 19a in Range 8, west of the 2nd Meridian.
	I	Township 42 in Ranges 17 and 18 ; Townships 43 and 44 in Range 18, and Towoships 44 and 45 in Range 19, west of the 3rd Meridian.
O'Dwyer, .J. S...	Granby, Que	Township 45 in Range 23, and Township 46 in Ranges 23, 24, 25 and 26, west of the 3rd Meridian.
Purvis, Frank	Eganville, Ont	Townships 34,35 and 36 in Range 7, and Townships 35, 36 and 37 in Range 8, west of the 3rd Meridian.
Reilly, W. R	Wardsville,	Townships 51 and 52 in Ranges 25, 26, 27 and 28, west of the 3rd Meridian.
Fichertson, H. H.	Montmaguy, Que	Township 39 in Range 12, and Townships 40 and 41 in Ranges 12 and 13, west of the 3rd Meridian.
Ross, ((eorge	eaverton, Ont	Townships 21, 22 and 25 in Range 3, and Townships 25 and 26 in Range 4, west of the 5th Meridian.
Hoy,	Quebec.	Townships 23 and 24 in Range 28 ; Townships 25 and 26 in Ranges 26 and 27, and Township 27 in Ranges 25 and 26, west of the 4th Meridian.
Selby, H. W Snow, .J. F..		Townships 44 and 45 in Ranges 63 and 7 , west of the 3rd Meridian.
	ttawa,	Township 7 in Ranges 1 and 2, and Townships 8 in Ranges 2, 3, 4 and 5, west of the 4th Meridian. Resurvey of Township 19 in Ranges 23 and 24, west of the 4th Meridian.
Ster hens, H. H...	Owen Sound, Ont.	Township 31 in Range 6, 7 and 8, and Township 32 in Ranges 7 and 8, west of the 3rd Meridian.
Talbot, A. C......	Montmagn	Township 48, in Ranges 20, 21 and 22, and Township 49 in Ranges 21 and 22, west of the 3rd Meridian.
Towle, C. E	Lemnoxville, Ont.	Townships 31 and 32 in Range 9, and Townships 33 and 34 in Ranges 8 and 9 , and Township 33 in Range 7, west of the 3rd Meridian.
Vincent, F..	Murny Bay, Que..	Townships 38 in Ranges 8, 9, 10 and 11, and Townships 39 in Ranges 8 and 9, and Townships 35 and 41 in Range 6 west of the 3 rd Meridian.
W"agner, Wm	Ossowa, Mim	Townships 18 in Ranges 1 and 2, and Townships 19 and 20 in Ranges 1,2 and 3 west of the 1st Meridian.
Wheeler, A. O.... Toun Plot Surreyors.	Ottawa,	Townships 31, 32 and 33 in Ranges 18 and 19, and Township 32 in Range 17; also, re-survey of east boundary of Township 32 in Range 19 west of 2 nd Meridian.
MeVittie, A. W	Calgary, Alberta.	Town plot, Calgary, Al
McPhillips, (jeo	Winnipeg, Man.	Town do Point Douglas, Man.
Vaughan, J		Town do Silver City, Alberta.

Schedule (No. 16) showing Dominion Land Surveyors employed and Work accomplished by each during the year 1885.

Bourgeois, John	Three Rivers, Que.	Traverse of part of Bow, Belly and South Saskatchewan Rivers in Ranges 11, 12 and 13 west of the 4th Initial Meridian; traverse of railway line in Ranges 19 to 24 west of the 4 th Initial Meridian ; establishing boundaries of Sections 6 and 31 adjoining 2nd Base Line in Townships + and 5, Range 4, west of the 4th Initial Meridian.
Bélanger,	L'Islet	Survey of town plots of Silverton, Morley, Golden and Donald ; also, sub-division at Banff Station.
DuBerger	Mu	Survey of trail from Moosomin to Moose Mountain; survey of Mission and Indian land at Fort Qu'Appelle.
D	M	Survey of town lots at Whitemouth, Man.; survey at Rat River, Man.; alteration of boundary of Indian Reserve at Beren's River.
Drummond, Tho	Montreal, Que	Determination of latitudes and longitudes along the line of the Canadian Pacific Railway in British Columbia.

Schedule (No. 16) showing Dominion Land Surveyors employed and Work accomplished by each, during the year 1885-Continued.

Name.	Residence.	Description of Work performed.
Doupé, Jos..	Winnipeg, Man	Sub-division of Townships 18, in Ranges 6 and 7, Townships 18 in Ranges 8 and 9 east of the Principal Meridian.
Fawcett, Thos, D.	Gravenhurst, Ont.	Exploratory survey from Rat Portage to Cat Lake.
Klotz,O. J.,D.T.S.	Preston, Ont.	Determination of latitudes and longitudes along the line of the Canadian Pacific Railway in British Columbia.
Lucas, S. B.	Hull, Que	Sub-division of Township 50, in Ranges 3 and 4, and Township 51, in Range 3, west of the 5 th Meridian.
McPhillips, Geo..	Winnipeg, Man.	Sub-division of Township 18, Range 10, east of Principal Meridian.
McPhillips, R. C.		Survey of the Canadian Panges 2, 3 and 4, west of the 2nd do
Reiffenstein, J. ${ }_{\text {H }}$	Victoria, B.C	Survey of the Canadian Pacific Railway Line in British Columbia. Sub-division of townships in New Westminster District, B.C.
Wagner, Win. . . .	Ossowa, Man.	do 21, Ranges, 5, 6, 7, west of Principal Meridian.

Schedule (No. 17) showing Dominion Land Surveyors employed and Work accomplished by each, during the year 1886.

Abrey,	Toronto, Ont.	Sult-division of Township 23, in Ranges 8 and 9; Township 24, in Range 10, and Township 27, in Range 12, west of the 2nd Initial Ieridian
Boivin, E.	Bagotville,	Sub-division of Township 51, in Range 24, and Township 53, in Ranges 26 and 27, west of the 3rd Initial Meridian.
Brabazon,	Portage du Fort, Que.	Sub-division of Townships 29, 32 and 33 , in Range 16, and Township 31, in Range 17, west of the 2nd Initial Meridian.
Brunelle,		Sub-division of Township 3, in Range 27, and Townships 4 and 5, in Range 28, west of the 2nd Initial Meridian, and outlines of Township 5, in Range 4, west of the 3rd Initial Meridian.
Bourgeois, John	Th	Sub-division of Townships 4 and 5 , in Range 26, Townships, 4, 5, and 6, in Range 27, west of the 2nd Initial Meridian, and Township 4, in Range 3, west of the 3rd Initial Merrdian.
Bray, Edgar Bélanger, P	Oakville, 0	Sub-division of Township 5, in Range 23; Township 6, in Ranges 21,22 and 23, and Township 7, In Range 20; and outlines of Township 4, in Range 23, all west of the 4th Initial
Belange	LIslet, ¢ue	Sub-division of Township 24, in Range 19; Townships 24 and 25, in Range 10: Townships 25 and 26, in Ranges 11, 12 and 13, and Townships 26 and 27, in Range 14 west of the 5th Initial Meridian.
Bigger, C. A	Ottawa, Ont	Survey of trails from Red Deer River to Calgary and Macleod and from Macleod to Blackfoot Crossing.
Cotton, A. F.	Ottawa,	Sub-division of Townships 3 and 4, in Ranges 28 and 29, west of the Coast Meridian ; and Townships 12, 15, 24 and 27, New Westminster District.
	Hu	Sub-division of Townships 52 and 53, in Ranges 16 and 17, west of the 4th Initial Meridian.
Drewry, W. S	Belleville,	Sub-division of Townships 50 and 51, in Range 23; Township 50 in Range 24, and Township 49, in Range 25, west of the 3rd Initial Meridian.
Decherne, L. N.		Sub-division of Townships 21 and 22, in Ranges 27, 28 and 29, west of the 3rd Initial Meridian.
DuBerger, C. C...	Murray Bay, Que	Sub-division of Townships 34, 35 and 36, in Range 1, west of the 5th Initial Meridian.
Dennis,		Correction and inspection of surveys.
Doupé, Jos.	Winnipeg, Ma	Correction and inspection of surveys.
Dufresne, .J. I	Montmagny, Que.	Survey of trails in the neighbourhood of Portage la Prairie, Totogon and Poplar Point.
Freeman,	Mi	Sub-division of Townships 50 and 51, in Ranges 2τ and 28, west of the 4th Initial Meridian.
Fitzgerald, J. W.	Peterboro', Ont.	Sub-division of Townships 11, 12 and 13, in Ranges 9 iand 10, and Townships 11 and 12, Range 11,
Fawcett, Thos.	Gravenhurst, Ont	Sub-divisions of parts of Township 17, in Ranges 12, 13 and 14 ; Townships 18 and 19, in Ranges 14 and 15 ; Townships 16, 17, 18 and 19, in Ranges 16, 17 and 18; Townships 19 and 20, in Range 19, and Township 20, in Ranges 20, 21 and 24, west of the Coast Meridian.

Schedule (No. 17) showing Dominion Land Surveyors employed and Work accomplished by each, during the Year 1886-Continued.

Name.	Residence.	Description of Work performed.
Gosselin, L.	Quebec, Que	Sub-division of Township 50, in Ranges 17 and 18, and Township 51, in Ranges 16 and 17, west of the 4th Initial Meridian.
Garden,	Toronto, Ont.	Sub-division of parts of Townships 20 and 21, in Range 13; Townships 19 and 20, in Range 14 ; Township 20, in Range 15; - Townships 21, 22 and 23, in Range 17; Townships 20 and 21, in Range 18: Township 21, in Range 19; Townships 21, in Ranges 20, 21 and 23, west of the Coast Meridian.
1	Ottawa, 0	Survey of trail from Fort Ellice to Moosomin, and from Fort Ellice to north-east corner of Township 20 in Range 22, west of the 2nd Initial Meridian. Also traverse of Jumping Creek.
Klotz, O	Preston, O	Survey of Canadian Pacific Railway from summit of Rocky Mountain Range to Revelstoke on the Columbia River, and astronomical work in British Columbia and North-West Territories.
Laurie,	Battleford, S	Survey of trail from Battleford to Swift Current.
Michaud, J. L...	Ste. Anne de Bellevue, Que.	Sub-division of Township 35 in Range 28, and Townships 31, 32, 33 and 34 in Ranges 28 and 29, west of the 4th Initial Meridian.
MacMartin, G. E.	St. Andrews, Que.	Sub-division of Townships 6 and 7 in Range 29, Townships 6 and 7 in Range 30, west of the 4th Initial Meridian.
McPhillips, Geo..	Winnipe	Sub-division of Townsbip 21 in Range 10, and Townships 22 and 23 in Range 11, west of the 1st Initial Meridian.
McAree, John.... McLatchie, John. .	Tor	Survey of trails in the neighbourhood of Kildonan and other points in Manitoba.
	Ottawa,	Survey of northerly trail from east boundary of Township 15 in Range 13, west of the 1st Initial Meridian to Fort Ellice.
McPhillips, R. 1.. McArthur, J. J	Winnipe	Survey of four trails in the Province of Manitoba.
	Aylmer,	Topographical survey along the line of the Canadian Pacific Railway through the Rocky, Selkirk and Gold ranges of mountains.
Macdougall, A. H.Ogilvie, Wm.	Port Arthur	Sub-divisions of Township 24 in Ranges 11 and 12, Townships 25 and 26 in Range 11, and part of Township 24 in Range 10, all west of Principal Meridian.
	O	Longitude determinations in British Columbia.
Ogilvie, Wm. Rainboth, G. C.	Aylmer, Que	Sub-division of Township 51 and 52 in Range 1, and Township 51 in Range 2, west of the 5th Initial Meridian.
Reid, J. L. ...Robertson, H. H.	Port	Survey of trail from Troy to Prince Albert. 27,28 and 29, west
	Montmagny, Que..	Sub-division of Townships 23 and 24 in Ranges 27,28 and 29 , west of the 3rd Initial Meridian.
Roy, ('eorge P.... Starkey, S. M....	Quebec, Que Starkey, N.B	Survey of trail from Calgary to Edmonton. Sub-division of Townships 50 in Ranges 1 and 2, west of the 5 th
Sproat, A	Prince Albert, Sas katchewan.	Initial Meridian. Correction survey in Townships 45, 46 and 47 in Range 4 , and Township 46 in Range 5, west of the 3rd Initial Meridian.
Stewart, G. A...	Winnipeg, Man	Survey of Hot Springs Reservation at Banff; traverses of Bow and Spray Rivers and laying out of town plots, roads, \&c.
Webb, A. C Wilkins, F. W Wolff, C. E.	Brighton, Ont	Correction and inspection of surveys. Fxploratury survey of Lake Winnipeg.
	Norwood, Ont Ottawa, Ont	Exploratory survey of Lake Winnipeg. Sub-division of Townships 7, 8 and 9 in Range 1, and Townships and 7, in Range 2, west of the 5th Initial Meridian.

Schedule (No. 18) showing Dominion Land Surveyors employed and Work accomplisbed by each, during the year 1887.

Bélanger, P. R. A.	LIslet, Que	Sub-division of Townships in the vicinity of the Columbia River,B.C.
Bray, Edgar	Oakville, Ont.	Survey of block outlines between Lakes Wimnipeg and Manitoba.
Brownlee	Brandon, Man	Survey of outlines near Lake Dauphin. 18, and part of Township 24 Sub-division of Township 24, in Range
Beatty, Walter		in Range 16, west of the Principal Meridian.
Boivin, E.	Bagotville, Que.	Sub-division of Township 51, in Range 24, Township 53, in Ranges 25,26 and 27, west of the 3rd Initial Meridian.
Bigger, C. A	Ottawa, Ont	Sub-division of Townships 29, 30 and part of 31, in Range 4, west of the 5th Initial Meridian.
Brabazon, A. J. Cotton, A. F. .	Portage du Fort, Que. Ottawa, Ont......	Sub-division of Townships 29, 30 and 31, in Range 3, west of the 5 th Initial Meridian. Sub-division of Townships in New Westminster District, B.C.

Schedule (No. 18) showing Dominion Land Surveyors employed and Work accomplished by each, during the year 1887-Concluded.

Schedule (No. 19) showing Dominion Land Surveyors employed and Work performed by each, during the Year 1888.

Klotz, Otto J.| Preston, Ont. Longitudes and latitudes of Edmonton and Fort Pitt.
Fawcett, Thos Gravenhurst, Ont.. Survey of part of Churchill River.
Ogilvie, Wm..... Ottawa, Unt.... Survey of Porcupine and Mackenzie Rivers. Approximate deter-
mination of Alaska boundary.
Cotton, A. F. New Westminster. Sub-division and other surveys in New Westminster District Posting sections along Canadian Pacific Railway, from New West-
Garden, Jas. F. Vancouver, B.C. minster to Lytton.
Posting sections along Canadian Pacific Railway, from Lytton to Shuswap Lake.

Schedule (No. 19) showing Dominion Land Surveyors employed and Work accomplished by each, during the year 1888-Concluded.

Name.	Residence.	Description of Work performed.
Dufresne, J. I	Montmagny, Que	Posting sections along Canadian Pacific Railway, from Shuswaj, to Leanchoil.
McLatchie, J	Ottawa,	Sub-division surveys in Spellamcheen Valley.
McArthur, J.	Aylmer, Que	Topographical survey in Bow River Valley, including the National Park.
Drewry, W. S	Bellevi	Topographical survey in Crow's Nest Pass and vicinity.
Bourgeois, Joh	Three Rivers, Que.	Survey of trail, Carlton to Green Lake.
Brown, C. P	Winnipeg, Man	Survey of Westbourne Highway.
Reid, J. L	Port Hope, Ont.	Survey of trail through Township 48, Range 24, and Township 49, Range 23, west of the 2nd Initial Meridian. Corrections to old surveys in Prince Albert District.
Green, T. D	Ottawa, On	Survey of trails between Calgary and Morleyville, north and south of the Bow River, respectively. Part of trail from Blackfoot Crossing to Calgary. Re-sub-division of Townships 3 and 4, in Ranges 31 and 32 , west of Principal Meridian.
St. Cyr, A	Quebec, Que	Survey of part of outlines of Rocky Mountains Park of Canada; part of 7 th Correction Line, west of the 5th Initial Meridian. Traverse of parts of Bow and Columbia Rivers, and part of sub-division of Township 24 in Range 9 , Township 24 in Range 10, and Township 25 in Range 11, all west of the 5th Initial Meridian.
Brownlee, J. H. .	Brandon, Man	Sub-division of Township 22 in Range 6, and fractional Township 22 in Ranges 9 and 10, west of Principal Meridian.
Brabazon, A. J	Portage du Fort, Que.	Sub-division of Township 27 in Range 5; parts of Township 26 in Kange 5; Township 26 in Range 6, and Township 28 in Range 5 , all west of the 5 th Initial Meridian.
Bigger, C. A.	Ottawa, Ont	Sub-division of Township 2 in Ranges 24 and 25 ; Township 4 in Range 23; part of fractional Township 5 in Range 23; and part of Township 3, Range 24, all west of the 4th Initial Meridian.
Drummond, Thos.	Kamloops, B. C	Sub-division of Townships 30 and 31 in Ranges 25 and 26, and Township 30 in Range 27, all west of the 4 th Initial Meridian.
Deane, M	Lindsay, Ont.	Sub-division of Township 22 in Ranges 4 and 5, and Township 23 in Range 5, all west of Principal Meridian.
Freeman, N. R...	Milton, N.S	Sub-division of Township 22 in Ranges 7 and 8, and fractional Township 21 in Ranges 7 and 8, all west of Principal Meridian.
Fitzgerald, J. W..	Peterboro', Ont.	Sub-division of Township 15 in Range 11, east of Principal Meridian.
Magrath, C. A. . .	Lethbridge, Alta.	Sub-division of Township 8 in Ranges 19 and 20; Township 6 in Range 20 ; west half of Township 6 in Range 21 ; Townships 5 and 7 in Range 22; and Township 6 in Range 19, all west of the 4th Initial Meridian.
McPhillips, R. C. .	Winnipeg, Man	Sub-division of fractional Township 2^{5} in Ranges 5 and 6, and fractional Township 16 in Range 6, all east of Principal Meridian.
MacMartin, G. E..	St. Andrews, Que.	Sub-division of Township 2 in Range 26, Township 12 in Range 29, and fractional Townships 12 and 13 in Range 30, all west of the 4th Initial Meridian.
Talbot, A.	Montmagny, Que..	Sub-division of Townships 27 and 28 in Ranges 21 and 22, west of the 4th Initial Meridian.
Traynor,	Dundalk, Ont.	Sub-division of Township 21 in Ranges 3 and 4, west of Principal Meridian.
Vincent, \mathbf{F}.	Fraserville, Que. .	Sub-division of Township 27 in Ranges 23 and 24, Township 28 in Ranges 23, 24, 25 and 26, and Township 29 in Ranges 25 and 26 , all west of the 4th Initial Meridian.
Wolff, C. E.	Ottawa, Ont Ottawa, Ont	Sub-division of Townships 29 in Ranges 23, 24 and 27, and Township 30 in Ranges 23 and 24, west of the 4th Initial Meridian. Inspection and correction Surveys.
Dennis, J. S. ${ }_{\text {Belanger, P. }}^{\text {R. }}$	Ottawa, Ont	Inspection and correction Surveys. Re-survey of 4th and 5th Initial Meridians.
Driscoll, A	Aylmer, Que.	Correction of Surveys.
Vicars, John.	Cannington, Ont.	do do
Leclerc, Chas. . ()'Keeffe, D. C.	St. Jean Port Joli, Que. Fort Ellice, Man	do do do do

Schedule (No. 20)-Trails surveyed up to 9th of January, 1889, giving names of Trails, names of Surveyors and Date of Survey.

Year.	Name of Trail.	Surveyed by.	Mileage.
1869	Prairie Section showing li	J. A. Snow.......	(30.48
1869	Red River Road from the edge of the prairie to Whitemouth River and its projection to Birch River.	do	$43 \cdot 30$
1876-7	Colonization Road from White Mud River to the village of Gimli, Keewatin	Walter Beatty ...	29.22
1877	Map showing the location of the Great Highway between Winnipeg and Portage la Prairie, Man.	Edgar Bray	$57 \cdot 1 \mathrm{k}$
1876	Colonization Road from the village of Gimil to the North boundary of Section 36, Township 14, Range 4, E	Walter Beatty....	$31.2 \times$
1877	Great Highway between Portage la Prairie and the western boundary of Manitoba.	Edgar Bray.	$41 \cdot 22$
1877	Highway between Baie Saint Paul and Oak Point, Manitoba....		36.84
1877	Highway between Winnipeg and Oak Point, Manitoba............		53.66
1877	Great Highway between Winnipeg and the Northern boundary of the Parish of Saint Peters, Manitoba		$28 \cdot 99$
1878	Road No. 8, Headingly to western boundary, Province of Manitoba	C. J. Chapman...	107.07
1878	Road No. 1, Winnipeg to West Lynne, Province of Manitoba....	do	$67 \cdot 34$
1878	Road No. 7, Dawson Road, Province of Manitoba.	do	$22 \cdot 28$
1881		C. C . Fesiardins. . .	
1883		A. H. McDougall.	
1883		J. A. Carbert.	
1881	Road west and north of Gladstone	J. D. VanBuskirk.	27 (6i)
1881	Government Road at Westbourne		$8 \cdot 70$
1884	Road along south branch of the Saskatchewan River to the northerly limit of Muskoday's Reserve.	M. Hart	20.00
1884	Road from South Branch Road to Prince Albert via Island Lake.		13.00
1884	Road from South Branch Road to Tait and Island Lake Road.	do	
1884	Road from, Prince Albert to Halcro Settlement.		13.00
1884	Part of Saskatchewan Forks and Carlton Trail from rear line of lots settlement of Prince Albert.		$22 \cdot 00$
1884	Road from Section 6, on South Branch Road through Indian Reserve to Prince Albert.		$12 \cdot 09$
1884	Saskatchewan Forks and Carlton Road through Prince Albert Settlement.	do	70.00
1884	Road from Carlton Forks southerly to Batoche's crossing and from Duck Lake to Gabriel's crossing.		
1885	Road from Moosomin to a point 5 miles south-west of Moose Mountain P. O....	C. C. Duberger...	$43 \cdot 00$
1886	Road from Edmonton to Calgary (part of).............	C. A. Pigger.	${ }_{85}{ }^{4} 00$
1886	Main Trail from Calgary to McLeod (part of)	C. A. Rigger	85.00
1886	Old Trail from Portage la Prairie and along west side of Assiniboine River.		$30 \cdot 00$
1886	Trail from Poplar Point to the shores of Lak	J. I. Dufresne .	16.00
1886.	Old Trail through Totogan and along west side of Lake Manitoba...	J. I. ${ }_{\text {do }}$	${ }_{26} \cdot 00$
1886.	Trail from Calf Mountain to east boundary of Section 20, Township 3, Range 8, west of 1 st. Old trail from Section 1, Township 12, Range 9 to Section 25, Town- ship 11, Range 10, west of 1st	do	6.00 $6 \cdot 00$ $7 \cdot 00$
1886.	Southern Qu'Appelle trail. ...	T. D. Go Green	165.00
1886.	Moosomin trail, Fort Ellice to Moosomin	T. D. do	24.00
18886.	Battleford to Swift Current	R. C. Laurie.	175.00
1886.	Northerly trail from Portage	John McLatchie. .	$93 \cdot 00$
1886.	St. Boniface to Emerson.	R. C. McPhillips.	$27 \cdot 00$
1886.	St. Norbert to Pomeroy.		69.00
1886	St. Boniface to Ste. Amne		15.00
1886.	Highway St. Clements to Broke	John McAree.	$25 \cdot 00$ $15 \cdot 00$
1886.	Highway across Parish of St. Charles and part of Headingly, south of the Assiniboine River.	John Mcaree. do	15.00 8.00
1885.	Highway from Red River to Cook's Settlement	do	$10 \cdot 00$
1886.	Highway Kildonan to Stony Mountain.	do	$11 \cdot 00$
1886.	Highway St Boniface to East Selkirk	do	$24 \cdot 00$
1886.	Deviation of M. Hart's trail through Fractional Section 24, Township 48, Range 26, west of 2nd I. M Part of trail fron Calgary to Edmonton.	A. Sproat G. P. Roy	$\begin{array}{r} 0.50 \\ 910 \cdot(0) \end{array}$

Schedule (No. 20) Trails surveyed up to 9th of January, 1889, giving Names of Trails, Names of Survegors and Date of Survey-Concluded.

Year.	Name of Trail.	Surveyed by	Mileage.
1886.	Part of Troy and Prince	J. L. Reid.	$157 \cdot 00$
1887.	Main Street in City of Winnipeg, as defined by City By-laws, No. 35 of 1875 , and No. 57 of 1876.	J. Doupe	2'00
1887	Fort Macleod to Blackfoot Crossing.	T. D. Green	$78 \cdot 00$
1887	Blackfoot Crossing to west, boundary of I. R	do	$21 \cdot 00$
1887.	Parts of Bow River Bottom trail	do	$33 \cdot 00$
1887.	Parts of Macleod and Calgary, Calgary and Morleyville, and Calgary and Blackfoot Crossing trails in Township 24, Range 1, west 5.		${ }^{6} \cdot 00$
1887	Trail between Medicine Hat and Dunmure...........................	J. A. Kirk.	$7 \cdot 00$
1887	Carlton sowards Prince Albert.	J. L. Reid	
1887	Carlton to Duck Lake.	do	
1887.	From west limit of Lot 31, Prince Albert Settlement, to 3rd I. M.	do	$6 \cdot 00$
1887.	Qu'Appelle and Wood Mountain	do	1500
1887.	Troy and Prince Albert trail.	do	
1887.	From Forks of Naskatchewan, westerly	do	
1888.	Part of trail from Forks to Prince Albert	do	$4 \cdot 00$
1888..	Trail from Carrot River to Prince Albert	do	26.00
1888..	Road from Carlton to Green Lake	J. Bourgeois	120.00
1888.	North trail from Calgary to Morleyville.	T. D. Green.	$29 \cdot 06$
1888.	Blackfoot Crossing and Calgary trail from west boundary of Blackfoot Reserve.	do	$26 \cdot 31$
1888.	Part of Fort Macleod and Calgary trail.	do	$0 \cdot 50$
1888.	South trail from Morleyville to Calgary.	do	$40 \cdot 40$
1888.	(Deviation of) Highway through the Municipality of Westbourne to correspond with location of Manitoba and North Western Ry...	C. P. Brown	$26 \cdot 50$

Schedule (No. 21) of Reserves Surveyed at different points in Maritoba, Keewatin and the North-West Territories, for the Hudson's Bay Company.

Name of Reserve.	Location.	By Whom Surveyed.	Year.	Remarks.
Fort Edinonton.	Saskatclewan.	W. S. (xore	1873	Inside settlement survey.
Rocky Mountain House.	de	do	1873	
Fort Victoria......	do	do	1873	
St. Paul.	do	do	1873	Surrendered.
Fort Pitt...	do	do	1873	Shown un Township Plan.
Battle River.	do	do	1873	Tp. 44, Ranges 16 and 17, 3rd Mer.
Fort Carlton.	do	do	1874	Tp. 44 and 45, Range 4, 3rd Mer.
Fort Albert.	do	do	1873	Tp. 48, Range 26, 2nd Meridian.
Lac la Biche.	d)	do	1873	
Fort Assiniboine.	do	do	1873	
Lake Ste. Anne	d/)	do	1873	
Lac la Nonne	ds)	do	1873	
St. Albert.	du	do	1873	Tp. 54, Kange 25, 4th Meridian.
Pigeon Lake	do	do	1873	
Old White Mud Fort.	Cumberland	do	1873	Tp. 51 do 3, sth do
Cumberland House.	do	do	1873 183	
Fort a la Corne Moose Woods..	do	do	1873 1873	Tp. 48 do 19 and 20, 3rd Mer. Surrendered.
Moose Lake	do	do	1873	Tp. 54, Range 21, 1 st Meridian.
Grand Rapids.	do	do	1873	Tp. 48 do 15 do
Fort Pelly	Swan River	do	1873	Tp. 32 do 32 do
Fort Ellice	${ }^{\text {du }}$	do	1873	Tp. 16 do 28 do
Fort Qu'Appelle	ro	do	1873	Tp. 20 and 21, R. 13 and 14. 2nd M.
Shoal River.	do	do	1873 1873	Touchwood Hills, surrendered.
Fairford Mission	do	do	1873	Tp. 30, Range 9, 1st Meridian.
Lower Fort Garry	Red River. .	A. H. Vaughan	1874	Stone Fort, St. Andrew's north.
Fort Alexander..	Rainy River	C. F. Miles...	1875	In Indian Reserve.
Fort Frances Reserves	do	do	$\begin{aligned} & 1874 \\ & 1875 \end{aligned}$	$\int_{\text {Rainy River. }}$
Rat Portage.	do	do	1875	
Lake of the Woods.	do	do	1875	At north-west angle.
.Tackfish Creek.........	do	do	1875	Lake Winnipeg.
Hayfield Indian Portage	do	do	1875	do

Schedule (No. 22) showing all Indian Reserves surveyed under instructions from the Surveyor General in Manitoba, Keewatin and the North-West Territories.

me and Location of Reserve.		By whom Surveyed.	Year.
Ft. Alexander Reserve, Winnipeg River. Crane River Reserve, Lake Manitoba do Ebb and Flow Lake			1873
		W. Wagner, D.L.S	1874
			18
		(A. H. Vaughan, I.J. W. Harris, D	1873
Fairford River Reserve, Man Lac Plat Reserve and North-West Angle River, Lake of the Woods.. Paskonkin and the Bishop's wild lands reserve, Rainy River,			1874
		G. A. Bayn	18
		C. C. Forneri, D.L.S	187
Chief Manitobinas and Me-sho-tah Reserve, Rainy River.			187
			187
		Reid, D	18
Big Island and Sabaskon Bay, Lake of the Woods Brokenhead Reserve (enlargement).		C. F. Miles, D	1876
		D. Sinclair, D.	1876
Brokenhead Reserve (enlargement). Town Plot, Thessalon River Reserve		G. B. Abrey, D.	1876
Reserve for George Gordon's band at íttle Touchwood Hills........		W. Wagner,	1875
			1875
Day Star's Reserve at Big Touchwood Hills, N.W.T St. Martin's Lake Reserve, Man.		F. A. Martin, D.	1877
			1877
		Wm. Wagne	187
		A. F. Martin	1877
Ready Bow's Reserve, Big Touchwood Hills, N.W.T.............		W. Wagner, D.	187
			1877
Way-way-see-cappo Reserve on the Birdtail Creek, Man. ${ }_{\text {a }}$.		do	187
Norway House Reserve, Keewatin.. Moose Lake Reserve, Keewatin.		D. Sinclair, D.L	1878
		do	187
Cross Lake Reserve, Keewatin.		do	1878
		do	1878
Rossville Indian Village, Norway House Reserve, Keewatin.		do	187
		R. J. Ross,	1877
Sturgeon Falls Reserve on the River "la Seine"....			1877
Reserve for Kebaguin's Band on the Kawawiagamok River, Treaty 3. do for Chief Blackstone on Nequaquon Lake, and Nameukan River, Treaty 3.		do	187
		do	1877
		W. Wagner, D.L	
do for Pasquak's Band, Upper F'ishing Lake and (iniAppelle,		do	1876
do for Okemis or Little Rosebud on Qu'Appelle River, N.W.T. do for Sakimay or Mosquito's Band on Qu'Appelle River and Crooked Lake, N.W.T		o.	1876
			1876
Reserve at Duck Bay, Lake Winnipegoosis, Man...........do for the Keys Band at Swan River, Man........		Wm. Wagner, D.L.	1878
			187
do for White Bear's Band at Moose Muuntain, Man.		do	18
do for Chief Loud Voice, at Qu'Appelle River and Round Lake, N.W.T.		do	1876
		do	1876
		$\stackrel{\text { do }}{\text { do }}$	185
do for Chief Sou-sunse at Do		A. F. Martin, D.L.S	1878
do at Black River, Lake W		O'Hanly,	1888
do at Dog's Head,			1578
			1878
			1878
South Saskatchewan Reserve, with sketch of Bow and Belly Rivers, N.W.T		A. P. Patrick, D.T.S	1879
Reserve for Chief Oos-con-na-geist, or "Redgut," Little Otter Tail, Treaty 3.		A. J. Crickmore, D.L.	1878
Reserve Nu. 17, Chief Wah-shis-kince, at Clearwater Lake		do	1878
do No. 17, Chief Wah-shis-kince, Portion A., Rainy River		do	1878
do No. 27, Partion B. at Little Walig		do	1878
do No. 27, do A. do		do	1878 1878
do	No. 26, do C., Chief Oos-con-na-geist, Rainy	do	1878 1878
	No. 26, do B.		1878
Sioux Res			1877
		M. Hart, D.L.S	1878
do		E. Bray, D.L.S.	187
			1878

Schedule (No. 22) showing all Indian Reserves surveyed, \&c.-Concluded.

Name and Location of Reserve.	By whom Surveyed.	Yea
Reserve at Sturgeon Lake, N.W.T., Chief Wın. T	E. Stewart, D.L.S	1878
do for band of Chief John Smith, "Muskoday," N.W.T.	do	1878
do do Chacastapasin, on South Saskatchewan, N.W.T.	do	1878
do do Chief Red Pheasant, Eagle Hills, N.W.T	Geo. Simpson, D.L	1880
do at l3rokenhead River, Manitoba	J. W. Harris, D.L	1873
do for Enoch's Band at mouth of Bird Tail Creek, Man	Wm. Wagner, D.L.S	1875
do for White Eagle's Band at Oak River, Man.	do	1875
do for Metis Band at Riding Mountain House, Man.	do	1875
do for Chief Oa-za-we-kwun, on the Assiniboine Rive	do	1873
do A, B, C, D and No. 1, at Rainy Lake, Treaty Reserves Nos. A1 and A2 at Lac des Milles Lacs and	E. C. Caddy,	1875
Blackfoot Reserves, Chief Crowfoot, Bow River	Win. Ugilvi	18
Reserve for Yellow Quill's Band in Township 5, Range 11, west Prin cipal Meridian, Man.		1876
Reserves for bands of See-kas-kootch and Makaoo, near Fort Pitt N. W. T.		
Reserve for band of Chief Mosquito, Eagle Hills, N. W.T		1858
do for bands of Pus-kee-eh-kee-hee-win and Oo-noo-pow-o-hay-oos at Frog Lake, N.W.T do for Chief Chipwayan's son, near Fort Curlton, N. $\dot{W} \cdot \mathbf{T}$	do	1579 1879
do at Crane River, Man		
do 35H and 32C at Sabbaskang District,	Miles,	1879
do 35C, Lake of the Woods..		1879
do 35B, Ohbahbikon Lake, Lake of the Woods.	do	1879
do 35F at Sabbaskang proper do	do	1879
do 35D, Salbaskang District do	do	187
do 31 and 35A, Nayangoshing do	do	1879
do No. 30 or Agency Reserve do	do	1879
do No. 31E, Big Island do	do	1879
do No. 35G, Big Grassy River do	do	1879
do No. 35E at Iittle Grassy River do	do	1879
do No. 38A at Washagaines Bay do	A. H. Vaughan, D.L.S.	1880
do No. 38C at Winnipeg River do	do	1880
do Nos. 32, 33 and 34A at Lobstick and Whitefish Bays, Lake of the Woods.		
do 38B, Pine Portage, Lake of the Woods.	$\begin{aligned} & \text { do } \\ & \text { do } \end{aligned}$	1880
do for band of Chief Beardy at Duck Lake, N.W.T	J. L. Reid, D.I.S	1880
do do Chief Alexis, Lake St. Anne, N.W.T.	G. A. Simpson, D.L.S	1880
do do Chief Alexander, River L'Barre, N.W.T	c. A. do Dim	1880
do do Chief Michel Calahoo, Sturgeon River, N.W.T.	do	1880
Reserve No. 2 on Roseau River,		
do for Peigan Indians on Old Man's River, Nivin	Plan compiled in D.L.O.	1882
do for Stony Indians at Morleyville, Bow River, N. ${ }_{\text {W }}$	A. P. Patrick, D.T.S	1879 1879
do for band of Poundnaker on Battle River, N. W.T.	G. A. Simpson, D.L.S	1879 1881
do do White Cap, South Saskatchewan River, N. W.T	do A. Simpor	1881
do do One Arrow, Prince Albert District, N.W.T.	do	1881
do do Petty-quaw-ky, Battleford District, N.W	do	1881
do do Flying Dust, Meadow Lake, N.W.T \quad do \quad Thunderchild \quad.....	do	1881
wan River, N.W.T.	do	1881

Scheddle (No. 23) of Micrometer and Exploratory Surveys performed under instructions from the Surveyor General.

Schedule (No. 24) of Correction Surveys performed up to the 31st of December, 1888.

$\begin{aligned} & \dot{\overrightarrow{\vec{F}}} \\ & \stackrel{\rightharpoonup}{\vec{j}} \\ & \stackrel{5}{5} \end{aligned}$			By whom Performed.	Year.	Description of Work.
18	28	1	John McLatchie.	1886	Traverse of lake and outlines of Section 24.
3	32	1	do	1886	Kemeasurement of lines, \&c.
21	9	2	G. B. Abrey	1886	Traverse of lake, \&c.
22	9	2	do	1886	do
21	10	2	do	1886	do
22	10	2	A. C. ${ }^{\text {do }} \mathrm{Webb}$	1886	do Remeasurement of lines.
$\stackrel{4}{4}$	$\stackrel{27}{29}$	$\stackrel{2}{2}$	A. C. Webb	1886 1886	Remeasurement of lines. Posts $r \in$ moved, \&c.
20	29 29	2	do	1886	$\underset{\text { do }}{\text { Posts }}$ removed,
27	29	2	do	1886	do
46	19	3	Joseph Doupe.	1886	North boundary re-surveyed.
18 +19	${ }_{28}^{28}$	$\stackrel{2}{2}$	do	1886	Resurvey of north-east portion of township.
49 45	$\stackrel{28}{28}$	${ }_{2}^{2}$	do	1886 1880	do portion of township. Traverse in south-west corner of townsh
45	92	2	do	1886	do south-east do
47 A	25	2	do	1886	Traverse of South Saskatchewan River.
44	4	3	do	1886	Survey of Hudson Bay Company's Reserve.
45	4	3	do	1886	
30	25	3	do	1886	Resurvey of portion of east outline.
49	25	3	do	1886	do Section 24.
39	$\stackrel{27}{7}$	\pm	do	1886	Examination survey of part of township.
54	46	$\stackrel{+}{3}$	do	1886	Traverse in Section 31.
42	13	3	do	1886	Resurvey of north boundary.
42	14	3 3	do	1886	do do and some section lines.
4	13	3	do	1886	do north and south boundaries. do outline.
4	14	3	do	1886	do do
21	22	2	J. S. Dennis..........	1886	Traverse of Long Lake.
21	23	2	do	1886	
8	1	3	do	1886	Posts moved.
16	13	3	do	1886	Position of Canadian Pacific Railway determined.
10	25	23	do	1886	Iron bar at north-west corner moved.
18	29	3	do	1886	Mound built.
19	27	3	do	1886	do moved.
18	3	4	do	1886	Position of South Saskatchewan River determined.
13	5	4	do	1886	do do
12	7	4	do	1886	do do
13	12	4	do	1886	do do
10	12	4	do	1886	Iron bar at north-east corner corrected for error.
15	5	4	do	1886	Position of river deter-nined.
17	5	4	do	1886	do do and river lot posts and mounds removed.
19	2	4	do	1886	Position of river determined and river lot posts and mounds removed.
19	3	\pm	do	1886	Resurvey of west outline.
19 20	4	4	do do	1886	do east do
22	1	4	do	1886	do rer do
22	2	4	do	1886	do do
22	4	4	do	1886	do do
23		4	do	1886	do do
4	30	4	do	1886	Part of second base line re-chained.
16		t	do	1886	River lot posts and mounds removed.
17 23	4	4	do	1886 1886	do do do
+ 42	13	3	J. McAree	${ }^{1886}$	Survey of part of south boundary. Resurvey of certain section lines.
43	14	3	do	1887	do part of east and north outlines.
44	14	3	do	1887	do east and north outlines.
46	18	3	do	1887	do north outline.
43	19	3	do	1887	do part of east outline.
44	19	3	do	1887	do east outline.
48	25	3	do	1887	Substituting iron for wooden posts.
51	$\stackrel{26}{26}$	3	do	1887	Resurvey of correction line.
54	27 14	3 4 4	do	1887	do do
51	17	4	do	1887 1887	do part of north outline. do Sections 5 and 8 .

Schedule (No. 24) of Correction Surveys performed, \&c.-Continued.

			By whom Performed.	Year.	Description of Work.
53	18	4	J. McAree..	1887	Resurvey of east outline.
55	19	${ }^{4}$	do	1887	do south outline.
55	18	4	do	1887	do do
46	21	4	do	1887	do east outline.
56	20	4	do	1887	do north outline.
45	24	4	do	1887	Substituting iron for wooden posts.
47	24	4	do	1887	do do
48	24	4	do	1887	do do
47	25	4	do	1887	do do
48	25	4	do	1887	do do
51	25	4	do	1887	Resurvey of north outline.
55	25	4	do	1887	do east do
56	25	4	do	1887 1887	do part of east outline. do
55 56	26 26	4 4 4	do	1887	do east outhine. do do
39	27	4	do	1887	do Interior Meridian line.
31	28	4	do	1887	Measurement of closings.
36	28	4	do	1887	Position of Red Deer River determined.
50	28	4	do	1887	Resurvey of east boundary of Sections 3, 10, 15, 22, 27 and 34.
52	28	\pm	do	1887	do north outline. Checked closing on correction line.
34	1	,	do	1887	Checked closing on correction line.
35	1	5	do	1887	
52	1	5	J. S. Dennis.	1887	Resurvey of certain section lines. Interior lines re-chained.
$\stackrel{21}{22}$	7	4	J. S. Dennis.	1887	do re-measured.
21	8	4	do	1887	do re-chained.
22	8	4	do	1887	do re-measured.
21	9	$+$	do	1887	do re-chained.
21	12	4	do	1887	Position of river determined.
10	16	4	do	1887	Kesurvey of north boundary.
11	16	4	do	1887	do south do
10	17	4	do	1887	do north do
11	17	4	do	${ }_{1887}^{1887}$	Position of river determined.
26	17 21		do	1887	Position of river determined. Resurvey of north boundary.
$\stackrel{26}{8}$	$\stackrel{21}{26}$	4	do	1887	do west outline.
22	26	4	do	1887	do north boundary.
23	26	4	do	1887	do south do
21	27	4	do	1887	East outline re-traced and re-measured.
22	${ }_{2}^{27}$	4	do	1887	Resurvey of north boundary.
23	27 28	4 4 4	do	1887	Wooden posts replaced by iron on north boundary.
30	28	4	do	1887	Iron bar and mound at north-east corner on correction line moved to correct position.
31	28	4	do	1887	Resurvey of south boundary.
20	29	4	do	1887	Wooden posts replaced by iron on north boundary.
22	29.	\pm	do	1887	Resurvey of west boundary of Sections 20, 29 and 32 .
23	29	4	do	1887	Position of Bow River determined. Resurvey of north boundary and part of west boundary.
5	30 30	4	do	1887	do west boundary, (5th Initial Meridian.)
6	30	4	do	1887	do do do and part
7	30	4	do	1887	Resurvey of west boundary, (5th Initial Meridian,) and part of south boundary.
8	30	4	do	1887	Resurvey of west boundary, (5th Initial Merician.)
7	1	5	do	1887	do south boundary.
22	23	2	do	1887	Traverse of shore to Long Lake. River lot-posts and mounds removed.
19	12	3	do	1887	River lot-posts and mounds removed. do do
19	15	3	do	1887	do do
19	16 17	3 3 3	do	1887	do do
20	8	3	do	1887	do do
20	9	3	do	1887	do do
20	10	3	do	1887	do do
20	12	3	do	1887	do do
20	13	3	do	1887	do do
20	14	3	do	1887	do do

Schedule (No. 24) of Correction Surveys performed, \&c.-Continued.

Schedule (No. 24) of Correction Surveys performed, \&c.-Continued.

Schedule (No. 24) of Correction Surveys performed, \&c.-Continued.

			By whom Performed.	Year.	Description of Work.
24	14	4	J. S. Dennis.	1887	Removal of river lot, posts and mound.
22	13	4	do	1887	do do
21	10	4	do	1887	do do
21	12	4	do	1887	do do
21	11	4	do	1887	do do
17	20	1	J. Vicars	1888	Lost corners re-established.
16	22	1	do signed by J.S.D.	1888	Verification of water area.
26	1	,	do	1888	do
27	1	$\stackrel{2}{2}$	de dos	$\begin{aligned} & 1888 \\ & 1888 \end{aligned}$	do
29	1	$\stackrel{2}{2}$	do do	1888	do
$\stackrel{26}{23}$	$\stackrel{1}{2}$	$\stackrel{2}{2}$	do	$\begin{aligned} & 1888 \\ & 1888 \end{aligned}$	do
18	3 8	$\stackrel{2}{2}$	do	$\begin{aligned} & 1888 \\ & 1888 \end{aligned}$	Resurvey of Meridian.
18	9	2	do	1888	Boundaries'of certain sections remeasured.
$19 a$	9	2	du	1888	Resurvey of east boundary.
$19 a$	11	2	do	1888	Boundaries of certain sections remeasured.
21	13	2	do	1888	do do
3	27	2	do	1888	Resurvey of south boundary.
4	3	3	do	1888	Resurvey of east and west lines through township.
25	3	3	do	1888	Resurvey of east boundary.
c	17	1	A. Driscoll, Jun	1888	Verification of water areas.
11	17	1	d,	1888	Resurvey in sections 2 and 3.
1	25	4	do	1888	Resurvey of east boundary.
2	25	4	do	1888	
37	${ }_{27}^{27}$	1	do	1888	Veritications of water areas.
38	${ }^{27}$	4	do	1888	do
39	27	4	do	1888	Survey of tie do metween International boundary and 5th
1	28 28	4	do	1888	Survey of tie lines between International boundary and 5th Initial Meridian.
2	28	4	do	1888	Resurvey for tie line between International boundary and 5th Initial Meridian.
3	28	4	do	1888	do do
4	28	4	do	1888	
36	28	4	do	1888	Verification of water areas surveys.
37	$\stackrel{28}{28}$	4	do	1888	do do
38	28 29	4	do	1888	$\underset{\text { Certain boundaries resurveyed }}{\text { do }}$ re tie between International
4	29 30	4	do	1888 1888	Certain boundaries resurveyed re tie between International boundary and 5th Initial Meridian. do do
30	3	5		1888	Resurvey of north boundary.
31	3	5	do	1888	do south do
30	4	5	do	1888	do north do do south and east boundaries
31	4	5	do	1888	do south and east boundaries.
21	6 1	4	C.F.Leclerc,sig.by.J.S. ${ }^{\text {D }}$	1888	North boundary of section 31 remeasured.
18	4	4		1888	River lot posts and mounds removed. Resurvey of east and north boundaries.
18	5	4	do	1888	do east boundary.
19	4	4	do	1888	do south do
19	5	4	do	1888	do past do
21	7	4	do	1888	Lakes and river traversed.
22	7	4	do	1888	do
21	8	4	do	1888	do
22	8 9	4	do	1888	do
21	10	4	do	1888	River lot posts and mounds removed.
22	10	4	do	1888	do do
21	11	4	do	1888	do do
21	12	4	do	1888	do do
22	12	4	do	1888	do do
22	13	4	do	1888	do do
23	14	4	do	1888	do do
24	14	4	do \quad..	1888	$\begin{array}{ll}\text { do } & \text { do } \\ \text { do }\end{array}$
24	15	4	do ..	1888	do do
25	15	4	do ..	1888	do do
25	16	4	do . \quad d	1888	do do
26	16	4	do .-	1888	do do

Schedule (No. 24) of Correction Surveys performed, \&c.-Continued.

		䔍	By whom Performed.	Year.	Description of Work.
26	17	4	C. F. Leclerc signed by J.		
			S. Dennis...... ...	1888	River lot posts and mounds removed.
19	19	4	do ...	1888	Resurvey of east boundary.
20	1	4	D. C. O'Keeffe signed by J. S. Dennis	1888	River lot posts and mounds on east side of river removed.
19	2	4	do ...	1888	River lot posts and mounds removed.
20	2	4	do	1888	do do
18	3	4	do	1888	do do
19	3	4	do	1888	River lot posts and mounds on east side of river removed.
-18	4	4	do	1888	River lot posts and mounds removed.
*12	5	4	do	1888	Placing pits on Medicine Hat and Dunmore trail.
12	8	4	do	1888	River lot posts and mounds removed.
13	9	4	do	1888	do do
12	10	4	do	1888	do do
13	10	4	do	1888	do do
11	11	4	do	1888	do do
12	11	4	do	1888	do do
11	12	4	do	1888	do do
11	13	4	do	1888	do do
11	14	4	do	1888	do do
11	15	4	do	1888	do do
11	16	4	do	1888	do do
12	16	4	do	1888	do do
9	22	4	J. L. Reid ${ }^{\text {do }}$	1888	North boundaries sections ${ }_{\text {do }} \mathrm{do}$ 32,33, 34 and 35, and east
48	24	2	J. L. Reid .	1888	North boundaries sections 32, 33, 34 and 35, and east boundaries of 35 and 36 resurveyed.
450	26	2	do	1888	Posts and mounds of old system removed.
44	27	$\stackrel{2}{2}$	do	1888	Posts and mounds of erronecus survey removed.
$45 \times$	27	2	do	1888	Posts and mounds of old system removed.
45	27	2	do	1888	North boundary of section 6 resurveyed and posts on south boundary corrected.
450	28	2	do	1888	Posts and mounds of old system removed.
45	28	2	do	1888	Posts on south boundary of Township corrected.
49	1	4	P. R. A. Belanger	1888	Resurvey of east boundary.
50	1	4	do do	1888	$\begin{aligned} & \text { do } \\ & \text { do } \end{aligned}$
51 52	1	4	do	1888 1888	$\begin{aligned} & \text { do } \\ & \text { do } \end{aligned}$
53	1	4	do	1888	do
54	1	4	do	1888	do
55	1	4	d	1888	do
55	18	4	do	1888	Resurvey of north boundary.
55	20		do	1888	do
55	23	4	do	1888	Resurvey of 13th correction line.
55	24	4	do	1888	do
55	25	5	do	1888 1888	Resurvey of east boundary.
25 26	1	5 5	do	1888	Resurvey of east boundary. do
27	1	5	do	1888	do
28	1	5	do	1888	do
29	1	5	do $\quad . . .$.	1888	do
30	1	5	do . $\mathrm{do}^{\text {a }}$.	1888	do
31	1	5	do	1888	do
32	1	5	do	1888	do
33	1	5	do	1888	do
34	1	5	do	1888	do
35	1	5	do	1888	do
36	1	5	do	1888	do
37	1	5	do do	1888 1888	do
38 39	1	5	do do	1888 1888	do
40	1	5	do	1888	do
41	1	5	do	1888	do
42	1	5	do \quad.....	1888	do
43	1	5	do $\quad . .$.	1888	do

[^4]Schedule（No．24）of Correction Surveys performed，\＆c．－Concluded．

言	$\begin{aligned} & \text { 证 } \\ & \text { 菏 } \end{aligned}$	号	By whom Performed．	Year．	Description of Work．
44	1	5	P．R．A．Belanger ．	1888	Resurvey of east boundary．
45	1	5	do	1888	do
46	1	5	do	1888	do
47	1	5	do	1888	do
48	1	5 5	do	1888 1888	do
50	1	5	do	1888	do
51	1	5	do	1888	do
52	1	5	do	1888	do
10	2	5	－do	1888	do do
45	27	$\stackrel{2}{2}$	C．F．Leclerc．	1888	Establishing river lots．
45	28	$\stackrel{2}{3}$	do do	1888	do do
43	1	3	do	1888	do
4	1	3	do．	1888	do
46	26	2	J．L．Reid．．．．．．．．．．．．．．．	1888	Posts and mounds of old system removed．
24		5	J．S．Dennis．．．．．．．．．．．．	1888	Road survey in north $\frac{1}{2}$ section 22.
${ }_{+28}^{+681}$	12	5	J．L．Reid．．．．．．．．．．．．．．．	1888	Resurvey of east boundaries of sections 1 and 12. Part of correction line．
42	27	2	do	1888	Correction line．
24	10	5	A．Saint Cyr．．．．．．．．．．．．	1888	Showing removal of posts．
27	19	5	J．I．Dufresne ．．．．．．．．	1888	Correction on suuth boundary sections 3 and 4.

Schedule（No．25）showing the acreage of Dominion Lands surreyed during each year from 1869 to 1888 inclusive．

Year．	Acres．	Number of Farms of 160 Acres．
1569.	58，080	Area posted on block lines under 1st system ；posts and mounds subse－ quently removed．
$\begin{aligned} & 1870 \\ & 1871 \end{aligned}$	$\xrightarrow{\text { None．}}$ ，	
1872.	1，552，771	22.240
1873－74．．	4，237，864	26，487
1875.	665，000	4，156
1876	420，507	2，628
1877	231，691	1，448
1878.	306，936	1，918
1879.	1，130，482	7，066
1880.	4，472，000	27，950
1881.	9，147，000	50，919
1882．．．	9，460，000	55，125
1883.	27，000，000	168，750
1884	6，400，000	40，000
1885	1，379，010	8，620
1887.	643，710	4，023
1888.	1，131，840	7，074

Schedule (No. 26) of Settlement, Town Plot and miscellaneous surveys performed in Manitoba, Keewatin, North-West Territories and British Columbia.

Description of Survey.	By whom Surveyed.	Year.
Parish of St. Peter's, Red River, Manitoba.	A. H. Vaughan.	1873
do St. Clement's do		1872-3
do St. Andrew's do		1872-3
do St. Paul's do	Duncan Sinclair.	1871-2
$\begin{array}{ll}\text { do } \\ \text { do } & \text { Kildonan } \\ \text { St. John, } \\ \text { dod and Assiniboine } \\ \text { Rivers, }\end{array}$	$\left\{\begin{array}{l}\text { Duncan Sinclair and }\end{array}\right.$	
do St. James, Assiniboine River, Manitoba	J Geo. McPhillips.....	1872-3
do St. Charles do	Duncan Sinclair and G.	
do Headingly. do	¢ McPhillips	1872 -3
do St. François Xavier do \quad..................	Geo. McPhillips	1871
do Baie St. Paul do \quad do..........i....	Wmi. Wagner	1874
do Poplar Point do		1874
do High Bluff do	Geo. McPhillips	1874-5
Oak Point Settlement, Manitoba.	Wm. Wapner	1872-4
Parish of Portage la Prairie, Assiniboine River, Manit	Geo. McPhillips	1874-5
. do St. Boniface, Red River, Manitoba..	Duncan Sinclair and G. McPhillips..	1872-3
do St. Vital do	Geo. McPhillips	1874
do St. Norbert do		1875
do Ste Agathe do	fF. A. Martin..	$\begin{array}{r} 1873-4 \\ 1874-5 \end{array}$
do Lorette, River Seine, Manitoba.	do	1877
Settlement of Ste Anne do	do	1873
do St. Laurent, Lake Manitoba,	W. Wagner.	1872-4
Selkirk town plot, Red River, Manitoba.	J. W. Harris	1875
Gimli do Lake Winnipeg, Manitob	Geo. McPhillips	1875
$\underset{\text { Prince Albert settlement, North Saskatchewan River, N.-W.T }{ }_{\text {do }}^{\text {do }} \text { do }}{\text { South }}$	\} Mont. Aldous.	1878
St. Laurent do South Battleford town plot, Battle River, N.-W.T........	A. Gr. Cavana	1882
Fort Saskatchewan settlement, Noith Saskatehewan River, N.-W.T	M. Deane ...	1883
Edmonton settlement, North Saskatchewan River, N.-W.T.		1882
St. Albert settlement, Big Lake and Sturgeon River, N.-W.T	do	1883
Fort Macleod town plot, Old Man's River, North-West Territories	A. W. McVittie	1883
Silver City town plot, Canadian Pacific Ry., Bow Pass, N. W. Territories.		
Rat River settlement, Manitoba	L. Fust	1883
Oak Island do		1883
Silverton, Canadian Pacific Railway, Bow Pass. N.-W. Territories.	P. R. A. Belanger	1885
Donald town plot do Columbia River, British Columbia		1885
Golden town plot do do do	do	1885
Morleyville settlement, Bow River, North-West Territories.. Calgary villa lots and boulevard, Calgary North-West Territo		1885
Grand Pointe settlement, Manitoba..........	M. J. Charbonneau.	1884
St. Malo settlement, Manitoba		1884
Whitemouth town plot, Canadian Pacific Ry., Manitoba	J. I. Dufresne	1885
Rat River settlement, Manitoba.		1885
Donald town plot, Canadian Pacific Railway, British Columbia	W. A. Duck	1887
Fort Saskatchewan settlement, North-West Territor	Tom Kai	1884 1884
Victoria settlement...	J. J. McArthur	1884
Calgary town plot	A. W. McVittie	1884
Manitoba House settle	A. H. McDougall	1885
Banff town plot.	(i. A. Stewart.	1886
Illicillewaet town plot.	P. R. A. Belanger	1887
Mounted Police reserves, North-West Territories	C. F. Miles	1887
	F. W. Wilkins	1887 1887
Canadian Pacific Ry. station grounds at Griffin Lake, British Columbia	- Poudrier.	1887
do Palliser do N do	Jos. Doupe.	1888
Hudson Bay Company's lind at Athahasca Landing, N. W. 1erritories.		1887
School section, south half of 29, township 13, range $19-1 \mathrm{st}$.... ${ }^{\text {Industrial school and R. C. mission grants, in township }} 1$		1885
Industrial school and R. C. mission grants, in township -1, raige is -	Tno. De Cew.	1884
Part of section 1, township 12, range --1........	S. Gore	1885
Hudson Bay Company's Islands, Moose Ri	M. Aldous.	1883
Boundaries of the Rocky Mountains Park	A. St. Cyr	1887
Survey of timber limits on Rainy Lake.	Sincl	1874

Schedule (No. 26) of Settlement, Town Plot and miscellanenus Survejs-Con.

Description of Survey.	By whom Surveyed.	Year.
Survey of part of iwest coast of Lake Winnipeg	A. H. Vaughan.	18
Survey of outer two miles in St. Andrew's and		1875
Charles.	F. A. Martin	18.4
Parishes of St. François дavier and Headingly	Wm. Pearce	1874
Survey of portion of Lake Manitolia	Wm. Wagn	1873
Traverse of part of shore line and islands, Lake of the Woods	A. L. Russell	1874
Survey of part of Red River and portion of cuast line, Lake Winnipeg.	A. H. Vaughan	187
	Wm. Wagner	1871
.Survey of settlement along Red River, Dease's Farm to Pem	L. T. D'Auteuil	1872
Survey of Red River from John Taits to Indian Rese	D. S. Doucett	1 N
Survey of Red River	D. S. Baudry	18
Survey of shore line of Lake Manitoba and adjacent marshes, from provincial boundary to Manitoba House.	Wm. Wagner	1873
Survey of timber limits on Lake of the Woods	L. Kennedy	1875
Traverse of part of Lake of the Woods, Sabbaskon district	C. F. Miles	187
Survey of villages of Riverton and Sandy Bar, Manitoba...	G. McPhillips...	1876
Survey of outer two miles in Parishes of St. Andrew's, St. Clement's, St. Buniface, Kildonan and St. Paul	Vm. Pearce	18
Survey of Qu'Appelle River to Upper Fishing Lake.	Wm. Wagner.	18
Outer two niles in Parishes of Headingly, St. François Xavier and Baie St. Panl	G. McPhillips	1875
Traverse of Big Island, Lake Winnipeg	L. Kennedy	1875
Traverse of Steep, Ruck Island, Lake of the Woods		18
Town plot of Gimli and parts adjacent to Icelandic settlement	G. McPhillips	1875
Survey of part of shore line, Lake of the Woods from Dog Point westward.	Geo. A. Bay	18.5
Traverse of White Fish Bay, Lake of the Woo	C. F. Miles	1875
"Survey of outer two miles in Parishes of St. John, St. Janies, St. Charles (north) and St. Paul (west).	J. W. Harris	1876
Survey of Penitentiary Reserve in Township 13, Range 3, east of Principal Meridian.	Wm. Pea	1877
Traverse of portion of Lake Winnipeg		1877
Survey of north side of Assiniboine River from Mission Farm, west	M. McFadden	1871
Resurvey of part of Parish of Ste. Agathe	Jos. Doupe	1873
Survey of timber limits north of Prince Albert. do connecting astronomical station with Government House, Bat-	T. L. Reid	18.9
tleford	Wm. Ogilvie	1878
Traverse of part of Assiniboine and Souris Rivers	Caddy and Hewson	1880
Survey of claims and holdings at Battleford	J. L. Reid.......	1879
do of lakes in Township 1, Range 22, west of Principal Meridian	Jno. MeAre	1879
Traverse of lakes in Townships 18 and 19, Ranges 19 and 20, west of Principal Meridian.	G. A. Stewart	1879
Traverse of part of South Saskatchewan River	Hugh Wilson	1882
Survey of Old Man's River froin Fort McLeod, east	J. C. Nelson.	1878
do portion of North and South Saskatchewan R	J. I. Reid	1878
Timber limit on Lake Winnipegosis and Water Hen Riv	G. C. Rainboth	1878
Survey do Winnipeg River.	A. G. Forrest	1880
Survey of claims near 3rd crossing of Souris River.	I. W. Vaughan	1879
Resurvey of part of International boundary at crossing of Kennebec Road.	W. A. Ashe....	1881
Resurvey, Battleford town plot	R. C. Laurie	1883
Traverst of part of Lake of the Woods	John McLatchie	1881
Survey of part of lot 35, Parish of St. Jo do Goose Island, Lake Wimipe	G. McPhillips	1884
do Goose Island, Lake Winnipeg Traverse of part North Saskatchewan R	do	1887
Traverse of part North Saskatchewan River. do St. Mary's. Belly and Little Bow River	F. Vincent	1884
Survey of C. P. R. line in Bow Pass of Rocky Mountains	Thos. Fawcett	1886 1884

SCHEDULE No. 27.

LIST OF DOMINION' LAND AND TOPOGRAPHICAL SURVEYORS.

These are corrected up to date of the last mecting of the Board of Examiners in August, 1891. Where the date of commission is given as 14 th April, 1872, it indicates that such surveyor was a surveyor of Provincial Lands in one of the provinces of Canada before that date and became a Dominion Land Surveyor by operation of the Dominion Lands Act of 1872. In the other cases the date of commission issued by the Dominion Board of Examiners is given.

The lists have been prepared by Mr. P. B. Symes, Secretary of the Board of Examiners for Dominion Land and Topographical Surveyors from the lists of Provincial Surveyors furnished by the proper officers of the provinces, and from the records of the Dominion Board.

List of Dominion Topographical Surveyors.

Name.	Date of Commission.	Name.	Date of Commission.
Aldous, Montague	May 15, 1878	King, Wm. Fred	Nov. 21, 1876
Ashe, Wm. A	Nov. 19, 1877	Klutz, Otto Julius.	do 19, 1877
Aylen, Chas. P	May 20, 1878	Magrath, Chas. Alex	Mar. 31, 1882
Dalton, John Joseph.	Nov. 17, 1881	Mcaree, John	May 15, 1884
Dennis, John Stoughton	do 19, 1877	Patrick, Allen P	Nov. 19, 1877
Deville, Edouard	do 19, 1877	Stewart, Louis B	F-b. 23, 1887
Drummond, Thos.	April 2, 1883	Thompson, Wm.	
Dufresne, Joseph I	do 2, 1883	White, Gco. M	Feb. 21, 1889
Fawcett, Thos. Galbraith, John	$\begin{aligned} & \text { Nov. } 19,187 \\ & \text { do } 19,1 \times 7 \end{aligned}$	Wilkins, Fred. W.	May 18, 1881

List of Dominion Land Surveyors.

| Name. |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

List of Dominion Land Surveyors-Continued.

Name.	Date of Commission.	Name.	Date of Commission.
Bolton, Jesse Numne.	April 14, 1872	Chipman, Willis	May 21, 1881
Bolton, Lewis...	do 14, 1872	Cleaver, Jas	April 14, 1872
Booth, Chas. Ed	Mar. 30, 1883	Cleeve, Fred. Chas	do 14, 1872
Bonchette, Chas	April 14, 1872	Clements, Edgar	do 14, 1872
Boultbee, Wm	do 14, 1882	Cleveland, Henry	do 14, 1872
Boultbee, Arthu	do 14, 1872	Cleveland, F. A.	do 14, 1872
Boulton, Hen. Ca	do 14, 1872	Conger, John O	do 14, 1872
Bourgault, C. E	Feb. 21, 1888	Cooke, Richard	$\text { do } 14,1872$
Bourgeault, Arman	Mar. 29, 1883	Corey, Lindel.	$\text { do 14, } 1872$
Bourgeois, John	do 30, 1882	Corey, Lindel	do 14, 1872
Bourgeois, Ben	May 13, 1886	Càté, Jos. Adelar	May 14, 1884
Bourget, Chas.	do 14, 1884	Côté, J. L	Mar. 21, 1890
Bourne, Robt	June 17, 1875	Cotton, Arthur F	May 11, 1880
Bowman, A. M	Feb. 16, 1888	Cozens, Jos	do 9, 1881
Boyce, Geo.	April 14, 1872	Crawford, Wm	June 17, 1875
Brabazon, S. L	$\text { do 14, } 1872$	Crawford, Wm	April 12, 1883
Brabazon, Alfre	May 12, 1882	Creswick, Henry	do 14, 1872
Brady, Jas	April 14, 1872	Crickmore, Arthur	do 14, 1872
Bray, Edgar	do 14, 1872	Cromwell, Jus. M.	do 14, 1872
Bray, Harry Freeman.	Nov. 15, 1880	Growe, Walter	do 14, 1872
Bray, Samuel.	do 14, 1883	Daintry, John	do 14, 1872
Breen, Thos.	April 14, 1872	Dalton, John J	do 17, 1879
Bristow, Arth	do 14, 1872	Daly, Patrick	do 14, 1872
Brodie, Samuel.	do 14, 1872	D'Amours, Jos. Wilfrid	May 10, 1882
Brown, David R	$\text { do } 14,1872$	Daniell, John D	April 14, 1872
Brown, John Smith	Nov. 12, 1878	Davidson, Alex	do 14, 1872
Brown, David Benjamin	Feb. 13, 1890	Davidson, John	do $14,18 \% 2$
Browne, John O.	April 14, 1872	Davies, Chas. L	do 14, 1872
Brownlee, .J. H	do 15, 1887	Deane, Micha	do 14, 1872
Bruce, Greo	do 14, 1872	Deans, W. J	May 13, 1886
Bruce, John S.	do 14, 1872	DeCew, Edmun	April 14, 1872
Brunetle, Finlay E.	Mar. 30, 1882	DeCew, John	do 14, 1872
Burchill, John.	do 30, 1882	Dechesne, Ludger M	Mar. 28, 1883
Burke, Joseph	April 14, 1872	DeCourval, Louis P.	May 15, 1883
Burke, Wen	do 14, 1872	Demers, Jean M. A.	$\text { do } 10,1882$
Burke, Jos.......	Nov. 21, 1882	Denison, John	$\text { April 14, } 1872$
Burke, Wm. Ro	May 13, 1886	Dennehy, Thos. ${ }^{\text {J }}$	do 14, 1872
Burnet, Peter	April 14, 1872	Dennis, John Stough	Nov. 19, 1877
Burnet, Hugh..	June 22, 1885	Denny, Herbert C.	$\text { April } 1,1882$
Burns, Robt. Tay Burns, Thos	April 14, 1872	Dery, Ignace Pierr Dejudins Cléop	$\begin{array}{lll} \text { Aprit } & 14,1872 \\ \text { do } \end{array}$
Burns, Thos.... Burton, Richard	$\begin{aligned} & \text { do } \\ & \text { do } \\ & \text { do } \\ & 14,1872 \\ & \hline 1872 \end{aligned}$	Desjardins, Cléoph Desmeules Jean.	$\text { May 18, } 1881$
Burwell, H. M.		Desmileules, Je	April 14, 1872 Nov. 19, 1877
Butler, Matt. Jo	May 15, 1880	Dickson, Jas.	
Byrne, Thos.	April 14, 1872	Dickson, H. ©	Mar. 19, 1889
Caddy, Edward C	do 14, 1872	Dion, C. A. .	April 14, 1872
Caddy, Cyprian F	do 14, 1872	Dobbie, Thos. Wm	do 14, 1872
Caddy, Juhn St. V	$\text { do } 14,1872$	Donnelly, Richard Holm	$\begin{array}{ll} 14,1872 \\ \text { do } & 14,1872 \end{array}$
Cadenhead, J. A	$\text { May e, } 187$	Dorval, Urgel.	$\text { do } 14,1872$
Caldwell, Tios. Cambie, Henry J	$\text { April 14, } 1872$	Doucet, Alfred	$\begin{array}{ll} 14, \\ \text { do } & 14,1872 \end{array}$
Cambie, Henry Joh Campbell, David S	$\begin{aligned} & \text { do } 14,1872 \\ & \text { do } 14,1872 \end{aligned}$	Doupe, Jos Doupe J	do 14, 1872
Carbert, Jos. Alfred	do 14, 1872	Doupe, J. L	Oct. 6, April 14,1888
Carre, Henry	A pril 14, 1872	Drewnan, Wm. ${ }^{\text {D }}$. ${ }^{\text {dewart }}$	April 14, 1872 Nov. 14, 1883
Carroll, Peter.	$\text { do } 14,1872$	Driscoll, Alfred......	April 14, 1872
Carroll, Cyrus...		Driscoll, Alfred, jun	Feb. 23, 1887
Casgrain, P. A. Casgrain, J. P. B	$\text { do } 14,1822$	Drummond, 'Thos	June 24, 1878
Casgrain, J. P. B	May 18, 1881	Dubé, Octave A.	April 14, 1872
Castle, Henry J. Cattanack, Angus	April 14, 1872	DuBerger, Cyprien Chas	Nov. 17, 1881
Cattanack, Angus Causley, Johu	$\text { do } 14,1822$	Duchesnay, Edmond Tach	do 15, 1880
Causley, Johu Cavana, Allan Ge	$\text { May 20, } 1884$	Ducker, Wm. A.	Mar. 30, 1883
Chadwick, Fred. J	Nov. 17, 1876	Dudderidge, Ja	do 31, 1882
Chalmers, T. W	$\begin{aligned} & \text { April 14, } 1872 \\ & \text { Nov. 7, } 1888 \end{aligned}$	Dufresne, Jos. lbra	May 10, 1882
Chandler, Libert.	April 14, 1872	Dumais, P. Ho	Aug. 21, 1888
Chapman, Chas. F	do 14, 1872	Dumais, Paul T.	April 14, 188 Mar. 29, 1882
Cheesman, Thos.	do 14, 1872	Dupuis, Zephirin C.	do 29, 1882
Cherrotiere, A. H. T. C. de la.	do) 14, 1872	Du Tremblay, Geo. B	Nov. 13, 1883

List of Dominion Land Surveyors-Continued.

Name.	Date of Commission.	Name.	Date of Commission.
Du Tremblay, P. P. V.	April 14, 1872	Gore, Wm. Sinclair	April 14, 1872
Duval, Jos. Narcisse.	do 14, 1872	Gore, Thos. Sinclair	do 19,1879
Dyas, Thos. Waining	do 14, 1872	Gossage, Brooks Wright	do 14, 1872
Eaton, W. Case.	do 14, 1872	Gosselin, Pierre.	May 15, 1880
Edwards, Geo.	do 14, 1872	Gosselin, Louis	do 15, 1880
Edwards, Wm	do 14, 1872	Graddon, W. Urba	April 14, 1872
Edwards, John.	do 14, 1872	Grain, Wm. . . ${ }^{\text {a }}$.	do 14, 1872
Egan, Michael \mathbf{R}	do 14, 1872	Greene, Thos. Daniel	May 19, 1884
Ellis, Wm. Henry	do 14, 1872	Greene, N. H	April 14, 1872
Ellis, Henry Disney	Mar. 30, 1882	Griffin, Patrick	do 14, 1872
Esten, Jas. Hutchinson	April 14, 1872	Grondin, Etien	do 14, 1872
Evans, John Dunlop. .	Ao 14, 1872	Guerin, Thos.	do 14, 1872
Fafard, F. X .	May 17, 1886	Guy, Louis..	do 14, 1872
Falls, Hugh.	April 14, 1872	Hall, Hammond	do 14, 1872
Farnan, Felix	do 14, 1872	Hall, Jas	do 14, 1872
Fawcett, Thos	Nov. 18, 1876	Hallen, Skeeker Wm	do 14, 1872
Featherston, 1	April 14, 1872	Hamel, A. Alfred.	do 14, 1872
Fell, Zenas.	do 14, 1872	Hamilton, Jas	do 14, 1872
Fessenden, Cortes.	do 14,1872	Hamilton, Robt	do 14, 1872
Fitch, John Chas..	do 14, 1872	Hamilton, Lauchlan A	do 17, 1879
Fitton, Chas. Edward.	May 12, 1880	Hamlin, Latham Blacker	do 14,1872
Fitzgerald, Jas. Wm	April 14, 1872	Hanning, Clement Geo	do 14, 1872
Fitzpatrick, J.D.A	Feb. 23, 1887	Harkin, Ed. Jos	do 14, 1872
Fleming, Sandford	April 14, 1872	Harley, Wm	do 14, 1872
Fletcher, Edward T	do 14, 1872	Harris, John	do 14, 1872
Fletcher, Ornond.	Nov. 12, 1884	Hart, Milner	do 14, 1872
Forbes, Chas. F. H	April 14, 1872	Harwond, Hen. F	do 14, 1872
Forgues, Chas. E	Nov. 12, 1884	Haskins, Williams	do 14,1872
Forlong, W. G	May 17, 1886	Hawkins, Wm	do 14, 1872
Forrest, A. H. D	April 14, 1872	Hayden, R. S. I	do 14, 1872
Foster, Fred. Lucas.	do 14, 1872	Hemming, Christopher D	May 15, 1880
Fournier, O. B	do 14, 1872	Henderson, E. D	April 14, 1872
Fournier, Fric Servule	do 14, 1872	Henderson, Walt	Nov. 17, 1883
Fournier, J. B. P.	do 14, 1872	Henry, William.	do 14, 1872
Fowlie, Albert.	do 14,1872	Hermon, Royal Wilkerson	do 14, 1872
Fox, Edward.	do 14, 1872	Hermon, Emest Bolton	June 22, 1885
Francis, John	June 17, 1875	Hewson, Thomas Ringwood	Nov. 13, 1878
Francis, John	April 14, 1872	Hill, John	May 18, 1881
Franks, Cecil Bushe	Nov. 15, 1880	Hobson, Jos.	April 14, 1882
Fraser, Chas.	April 14, 1872	Holwell, W. .J.	April 14, 1872
Frost, G. A	do 14, 1872	Hood, Andrew.	do 14, 1872
Gagnon, Antoine	do 14, 1872	Horsey, Henry Hodge.	do 14, 1872
Gagnon, F Tédenn	do 14, 1872	Howard, John (i)	do 14, 1872
Gaitskell, W. Ewbank	do 14, 1872	Howitt, Alfred	do 14, 1872
Gaitskell Ed. Forb	do 14, 1872	Hubbell, Ernest Wilson.	May 19, 1884
Galbraith, Wm.	do 14, 1872	Hudson, Thomas B	April 14, 1872
Galbraith, John	Nov. 19, 1877	Hughes, John...	do 14, 1872
Galbraith, Wm.	May 16, 1883	Hughes, Thomas	do 14, 1872
G:allagher, Jeremi		Hyndman, Patric	do 14, 1872
Gamache, Jos.	April 14, 1872	Irwin, Henry	Feb. 17, 1887
Gamble, K.	May 13, 1886	Irwin, James N	April 14, 1872
Garden, Jas. Ford	May 13, 1880	- James, Silas.	do 14, 1872
Gardner, Peter	April 14, 1872	Jephson, Richard Jermy.	May 12, 1880
Gardiner, Ed	do $14,1 \times 72$	Johnson, Hiram.	April 14, 1872
Garon, Geo.	d. 14,1872	Johnsom, B. G	do 14, 1872
Garon, Louis Jos	May 21, 18si	Johnston, Tohn	dor 14, 1872
Gaurreau, Louis Pierre	$\text { Apil 14, } 1872$	Johnson, George Bell	
Gaviller, Maurice . . .	$\begin{aligned} & \text { do } 14,1872 \\ & \text { Nov. } 16,1883 \end{aligned}$	Johnston, William	Mar. 29, 1883 April 14, 1872
Genest, Arthur Turcotte.	Nov. 16, 1883	Johnson, Quint	April 14, 1892
Geoffries, D. H	April 14, 1872	Jones, Robert.	do 14,1872
Gibbions, Jas.	Feb. 12, 1891	Jones, ${ }^{\text {Jones, }}$ E. R	
Gibbs, Thos. ${ }^{\text {F }}$	$\text { April 14, } 1872$	Jones, E. R.	$\begin{array}{ll} \text { do } & 14,182 \\ \text { do } & 14,18,2 \end{array}$
(Iibson, Peter Sila Gibson, Geo.	$\begin{array}{ll} \text { dis } & 14,1872 \\ \text { do } & 14,1872 \end{array}$	Jones, John Henry...	$\begin{aligned} & \text { do } 14,182-2 \\ & \text { ov. } 12,150 \end{aligned}$
Gibson, Jas. A.	do 14, 1872	Jones, Charles Albert	Mar. 31, 1852
Gill, Valentine	do 14,1872	Kains, 'Tom	May 10, 1880
grilliland, Thos.	do 14,1872	Keefer, Thomas C	Alril 14, 1872
fiilmour, Robt.	do 14, 1872	Kennedy, Lachlan.	do 14, 1872

List of Dominion Land Surveyors-Continued.

Name.	Date of Commission.	Name.	Date of Commission.
Kerr, Francis.	April 14, 1872	Miles, Chas. Falconer	April 14, 1872
Kertland, Edward Henry..	do 14, 182	Miller, Robert B.	May 11, 1880
King, Wm. Fred...... .	Nov. 21, 1876	Miller, Fred. Fraser	do 12, 1885
Kingsford, Willia	April 14, 1592	Misner, Jaco	April 14, 1872
Kingston, G	June 17, 1875	Mitchell, Michael	$\begin{array}{ll} \text { do } & 14,1872 \\ \text { do } & 14.1872 \end{array}$
Kirk, Joseph	April 14, 18,	Moffat, James	
Kirk, John Albert.	May 11, 1480	Molleg, John	do 14, 1872
Kirkpatrick, George	April 14, 1872	Montromery	do 14, 1872
Klotz, Otto J Knight, W. H		Moore, Robe Monre, J. H	do 14, 1872 Feb. 13, 1890
Laberge, Elzea	Mar. 28, 1883	Morrncy, David Chas	April 19, 1879
Laird, James Ste	April 14, 187	Morin. Pierre Louis	do 14, 1872
Lalanne, Leon (${ }^{\text {a }}$	do 14, 1872	Morris, John	do 14, 1872
Lapenotjere, Wm. H. L	do 14, 1879	Morris, Alfred Edmund	Mar. 28, 1882
Laporte, Jeremie.	do 14, 1872	Mruntain, Geo. A	May 13, 1882
Larue, E. F. X	do 14, 1872	Mullarkey, John Patrick	do 14, 1884
LaRue, Charles, Eug	Nov. 21, 1882	Murdock, Wm	A pril 14, 1872
Latimer, F. H	do 13, 1885	Murphy, Franci	do 14, 1872
Laurie, Richard	April 27, 1883	McAree, John	do 14, 1872
Laurier, Carolus	, do 14, 1872	McArthur, James	do 14, 1872
Lavergne, E. Elze	do 14, 1872	McArthur, James Jos	do 17, 1879
Laviolette, Godfroi	do 14, 1872	McCallum, Duncan	do 14,1872
Lawe, Henry.	do 14,1872	McCallum, Jas	do 14, 1872
Le Ber, Charle	do 14, 1872	McCallum, F. C	do 14, 1872
Leclair, J. H	do 14, 1872	McClary, Wm	do 14, 1872
Leclerc, Char	May 10, 1882	McConnell, Wm	do 14, 1872
Leduc, Edward	April 14, 1872	McComnell, Edward	de 14, 1872
Lefrancois, N.	do 14, 1872	McCommell, B. D	do 14, 1872
Lefrancois, P. O.	do 14, 1872	McConville, P. E	do 14, 1872
Legendre, Jean Bapt	do 14,1852	Mc.Dermott, Mich	do 14, 1872
Legendre, J. B. O.	do 14, 1872	Mc.Donald, Wm	do 14,1972
Legendre, Hilarion	do 14,1872	McUonald, John	do 14,1872
Legendre, Felix	do 14,1872	Mc.Jonald, Alexander	do 14, 1872
Legendre, Edward Hospice	do 14,187	McDonald, Wm. Joh	do 14, 1872
Lemoine, Louis D.	do $14,1 \times 72$	McDonell, John R	do 14, 1872
Lemoine, Chas. Errol	Mar.31, 18\%2	McDonnell, Robt	April 14, 1872
Lendrum Robert Watt	May 15, 1880	McDonnell, Augustine	do 14, 1872
Leslie, Hamilton	Ayril 14, 18:2	McEvoy, Hen. Robertson	May 15, 1884
Lett, Charles Arthur	May 13, 1480	McFadden, Moses	April 14, 1872
Levesque, Pierre	April 14, 1872	McFarlane, John	do 14, 1872
Lewis, John B	Nov. 14, 1883	McFee, Angus	do 19, 1879
Lillie, Henry	April 14, 1872	Mctiee, Juhn Jos	do 14, 1872
Lindsay, John	do 14,1872	Mcrieorge, Wm. G	do 14,1872
Lippe, André Guid	do 14,1852	Mecirandle, Hugh	May 30, 1883
Lluyd, Geo. Andre	do 14,1872	Mcciuin, Sam. 0	April 14, $18 \mathrm{~T}^{2}$
Lough, Matthew	do $14,1 \times 72$	McIntosh, Jas	do 14, 1872
Lowe, N. E	do 14,1872	McKay, Owen	Feb. 13, 1890
Lucas, Samuel B	do 14, 1×72	McKınna, John	April 14, 1872
Lumsden, Hugh D	do 14,1872	McKenzie, Jolin	Nov. 18, 1888
Lynn, Robert.	do 14,1852	McLaren, Peter.	April 14, 1872
Lynn, John Goodeno	do 14, 1×72	McLatchie, John	do 14, 1872
Macdougal, Allan H	do 14, 1872	McLean, Jas. K.	do 1, 1882
MacLennan, Finlay Mal	do 12,1883	McLennan, Christoph	do 14,1872
Macmartin, Geo. Erastus	Nov. 15, 1880	McLennan, Roderick.	do 14, 1872
Macmillan, Jas. A	May 19, 1881	McLeod, H. Augustus F	do 14, 1872
MacPherson, Duncan	do 14, 1884	McPhillips, Geo..	June 17, 1875
Maddock, Junius Arthu	Mar. 31, 1882	McPhillips, Robt. Chas	May 17, 1880
Magrath, Bolton.	April 14, 1872	McVittie, Archibald H	Mar. 30, 1882
Magrath, Chas. Ale	Nov. 16, 1881	Napier, Wm. Hen. E.	April 14, 1872
Malcolm Sherman	April 14, 1872	Nash, Ephraim.	do 14, 1872
Maltais, Jean	May 15, 1883	Nash, Thomas Webb	do 14, 1872
Marshall, James	April 14, 1872	Neilson, John. ...	do 14, 1872
Martin, James W	do 14, 1872	Nelson, John Chas	May 21, 1881
Martin, F'A	do 14, 1872	Newman, John.	April 14, 1872
Mercer, Willian	do 14, 1872	Newman, R. Morris	do 14,1872
Michaud, C. E.	do 14, 1872	Niven, Alex.	do 14, 1872
Michaud, Alexis Thos	May 11, 1880	Northcote, Henr	do 14, 1872
Michaud, Jos. Louis	Mar. 29, 1s*2	Norton,	

List of Dominion Land Surveyors-Continued.

Name.	Date of Commission.	Name.	Date of Commission.
O'Beirne, Patrick	April 14, 1872	Ross, J. E	Feb. 12, 1891
O'Brien, Sam	do 14, 1872	Ross,	Nov. 21, 1882
O'Donnell, Hugh	Mar. 29, 1883	Roy, Geo. Pe	do 17, 1881
O'Dwyer, W. W	April 14, 1872	Rubidge, Fred.	April 14, 1872
O'Dwyer, John Seabury	Nov. 16, 1882	Rubidge, T. S	do 14, 1872
O'Flynn, Edward.	April 14, 1872	Russell, Lindsay A	do 14, 1872
Ogilvie, Wm	do 14, 1872	Russell, Alex. Lord	do 14, 1872
Ogilvie, John He	May 11, 1880	Ryley, Geo. Urquhart	May 15, 1880
$\mathrm{O}^{\prime} \mathrm{Hanley}$, John L. P	April 14, 1872	Saint Cyr, A. .	Feb. 17, 1887
O'Hanley, John Mit	Nov. 15, 1878	Saint Cyr, J.	do 17, 1887
O'Keefe, David	April 14, 1872	Sankey, Villiers	May 15, 1880
O'Mara, John	do 14, 1872	Saunders, Bryc	Nov. 16, 1884
O'Neil, John F	do 14, 1872	Savage, Jos.	April 14, 1872
Ord, Lewis Redm	do 1, 1882	Scane, Thos	do 14, 1872
Ostell, John.	do 14, 1872	Seager, Fdmund	do 14, 1872
Painchaud, Etien	do 14, 1872	Selby, Hen. Walt	Nov. 15, 1882
Parent, Henri	do 14,1872	Sewell, Alex	April 14, 1872
Pariseau, Louis Stanislas	May 20, 1881	Sewell, Hen. De Quincy	May 16, 1885
Paterson, Jas. A	April 1, 1882	Shaw, Claudius	April 14, 1872
Patrick, Allan Po	Nov. 19, 1877	Shaw, Chas. A.	May 10, 1880
Patrick, Lorrai	May 18, 1881	Sheppard, H. C	April 14, 1872
Patten, Thaddeus Jas	Mar. 29, 1883	Sheppard, Chas.	May 11, 1880
Pearce, Wm	May 10, 1880	Shortt, Laurence H	April 14, 1872
Pelletier, Sam	April 1.4, 1872	Shurtliff, Lemuel	do 14, 1872
Pelletier, Chas.	June 22, 1885	Simpson, Geo. Albert	do 14, 1872
Perceval, Wm	April 14, 1872	Sing, Josiah Gershom	do 19, 1879
Perrault, H. Ma	do 14, 1872	Sirois, Jos. E	May 11, 1882
Perry, Aylsworth B.	do 14, 1872	Slattery, Jas.	April 14, 1872
Perry, Nathan Fellows	do 14, 1872	Small, Wolstan N.	May 11, 1880
Peters, Sam	do 14, 1872	Smiley, Wm	April 14, 1872
Peterson, Pe	April 14, 1872	Smith, Wm.	do 14, 1872
Peterson, Jos	do 14, 1872	Smith, Henry	do 14, 1872
Pinhey, C. H	Feb. 20, 1889	Smith, Christopher	do 14, 1872
Ponton, Archibald	May 18, 1881	Smith, Wm.	do 14, 1872
Poudrier, Alcide Lemay	do 21, 1881	Smith, John	do 14, 1872
Preston, Reuben	April 14, 1872	Speight, Thos	Nov. 16, 1882
Prosser, Thos.	do 14, 1872	Sproatt, Chas	April 14, 1872
Proudfoot, Hum	Mar. 28, 1882	Sproule, Wr	Nov. 15, 1882
Proulx, Jean Pierre	April 14, 1872	Spry, Wim	April 14, 1872
Proulx, P. A	do 14, 1872	Staunton, F. H. Lynch	do 14, 1872
Purvis, Frank	Nov. 16, 1882	Steward, John	May 11, 1880
Quinn, Th	April 14, 1872	Stewart, Geo. Alex	Anril 14, 1872
Rainboth, Geo.	do 14, 1872	Stewart, Elihu	do 14, 1872
Rainboth, Edwd	May 19, 1881	Stewart, Louis Beaufort	Nov. 22, 1882
Rankin, Chas	April 14, 1872	Stewart, John D	do 22, 1882
Rauscher, Rudolf	do 14, 1872	St. Pierre, J. E	April 14, 1872
Reid, John	do 14, 1872	Strange, Henry	do 14, 1872
Reid, Jos. Hales	do 14, 1872	Strathern, Jo	do 20, 1887
Reid, John Lestock.	do 14, 1872	Sullivan, Joh	do 14, 1872
Reiffenstein, Jas. H.	May 11, 1880	Sullivan, Hen	do 14, 1872
Reilly, Wm. Robinson	Nov. 17, 1881	Swan, John	May 19, 1884
Richard, Jean Baptiste	April 14, 1872	Symmes, H. ${ }^{\text {C }}$	April 14, 1872
Richard, Jos. François	May 13, 1882	Symmes, C.	Aug. 16, 1887
Richey, Josias	April 14, 1872	Taché, Eugène E.	April 14, 1872
Rielle, Jos	do 14, 1872	Talbot, Albert Chas	May 13, 1880
Ritchie, J. F	Jan. 7, 1889	Talbot, Pierre Cléophas	do 13, 1880
Rixtort, G. P	$\text { April 14, } 18 \pi^{2}$	Temple, Edinund Bonner	April 14, 1872
Roberts, Vaughan Mauri	May 17, 1886	Têtu, Francis A	do 14, 1872
Robertson, Richd. G. M.	April 14, 1872	Têtu, Romuald	do 14, 1872
Robertson, Henry..	do 14,1872	Thompson, Edward Wm.	do 14, 1872
Robinson, Wm	do 14, 1872	Thompson, Wm. T	Nov. 19, 1877
Robinson, Orpheus	do 14, 1872	'Thomson, Augustus C	April 14, 1872
Robinson, Greo	do 14, 1872	Tinling, -	do 14, 1872
Rogers, Richd. Birdsall	May 13, 1880	Tomkins, Wm. Graeme	do 14, 1872
Rombough, W. R.	April 14, 1872	Towle, C. E	do 14, 1872
Rombough, Marshall	do 14,1872	Tracey, Wm.	do 14, 1872
Roney, Jas.	do 14,1872	Tracey, Thomas Henry	do 14, 1872
Ross, R. J...	do 14, 1872	Traynor, Isa	Nov. 15, 1880

List of Dominion Land Surveyors-Concluded.

Name.	Date of Commission.	Name.	Date of Commission.
Tremblay, Thomas	Aug. 19, 1890	Warren, James	April 14, 1872
Tremblay, Jules	April 14, 1872	Weatherald, Thomas	do 14,1872
Tremblay, Ovide	do 14, 1872	Webb, Edward.	do 14, 1872
Tremblay, A. J	Feb. 18, 1890	Webster, Daniel.	do 14, 1872
Trewe, Charles Newland	April 14, 1872	Weekes, George	do 14, 1872
Tuffe,	do 14, 1872	Wells, Oliver.	do 14, 1872
Tuily, John	do 14, 1872	Wells, Alphonso	do 14, 1872
Turnbull, Thos	Mar. 29, 1882	Wells, Alex.	do 14, 1872
Tyrrell, J. W	Feb. 16, 1887	Wells, Daniel W	do 14, 1872
Unwwin, Chas.	April 14, 1872	West, James	do 14, 1872
Ussher, Edgeworth R	do 14, 1872	Wheeler, A rthur Oliver	Nov. 21, 1882
VanNostrand, Arthur Jabez	Nov. 16, 1882	Wheelock, C. J.	April 14, 1872
Vansittart, John	April 14, 1872	Whitcher, A. H	do 14, 1872
Varnier, J. C.	do 14, 1872	White, George M	Feb. 21, 1888
Vaughan, A. H. .	do 14, 1872	White, Joseph	April 14, 1872
Vaughan, Josephus W	June 11, 1878	Wilkie, E. T.	Aug. 19, 1890
Verrault, Philippe	April 14, 1872	Wilkins, Fred.	May 18, 1881
Verrault, Chas. A	do 14, 1872	Wilkinson, Alex	April 14, 1872
Vicars, John R. O	May 17, 1886	Williams, David	do 14, 1872
Vidal, Alex.	April 14, 1872	Wilson, Robert Alex	June 11, 1878
Vincent, Ferdinand	Nov. 17, 1881	Wilson, Alfred.	April 14, 1872
Vondenvelden, Wm	April 14, 1872	Wilson, Hugh.	do 14, 1872
Wadsworth, Vernon B	do 14, 1872	Winter, Henry.	do 14, 1872
Wagner, Wm.	do 14, 1872	Wood, Henry O.	do. 14, 1872
Walker, Alfred Paverley	Mar. 28, 1882	Woods, J. E...	Nov. 14, 1885
Wallace, Charles Hugh	Feb. 13, 1890	Wurtele, Arthur S. E	April 14, 1872
Walsh, Thos. W	April 14, 1872	Yarnold, William Edwar	do 14, 1872
Ware, William	do 14, 1872	Young, Robert Evans.. .	Nov. 22, 1882

SECTION II.

THEORY OF THE SYSTEM OF SURVEY
 of
 DOMINION LANDS
 WITH
 GEODETIC TABLES AND NOTES ON THEIR USE
 BY

W. F. KING, B.A., D.T.S.,

Chief Astronomer of the Department of the Interior.

SECTION II.

THEORY OF THE SYSTEM OF SURVEY OF DOMINION LANDS.

Chapter I.-General Description of the System.
 Size of the Township.

In the Dominion Lands surveys, the township contains thirty-six sections, each approximately one mile square, together with certain allowances for roads, and measures on each side six miles plus the road allowances.

Governing Lines-Initial Meridians and Base Lines.

The lines upon which the surveys are based are certain Principal or Initial Meridians which run from the International Boundary, or 49th parallel of latitude northward indefinitely.

Along these meridians are placed the monuments marking the section and township corners in regular order northward from the boundary, from which also the townships are numbered.

There are also certain lines, called base lines, which run westward or eastward from the Initial Meridians, starting from them at distances apart of four townships; so that, the International Boundary Line being the first base line, the second base line lies between townships 4 and 5, the third between townships 8 and 9 , and so on.

These base lines are surveyed as chords of the latitude circles which pass through their intersections with the Initial Meridian. The chords are one township (six miles together with the roads) in length, and hence an angle occurs on the base line at each township corner. Along the base lines, as on the Initial Meridians, the sectiou and township corner monuments are placed at their regular distances.

Meridian Boundaries.

The eastern and western boundaries of townships are true meridians which start from the base line and are continued on each side thereof for two townships, when they encounter the meridians drawn in the same way from the next base line, but do not meet them exactly, since, on account of the convergence and divergence of meridians, the extremity of the line drawn south from the northerly base line passes to the west of that drawn north from the southerly base line.

Correction Lines.

Hence a "jog" occurs on that township line which lies midway between the base lines. This township line is called a correction line, for on it not only the jogs due to the syatem itself, but also all errors in survey, whether in the chainage or in the azimuth of the lines, are allowed to fall and are so prevented from accumulating to such an extent as to deform other townships except those on whose outlines they occur.

Northern and Southern Boundaries of Townships.

The northern and southern boundaries of townships are straight lines (or great circles of the sphere) joining the corresponding points on the east and west meridian boundaries.

Form and Dimensions of Townships.

Townships are therefore quadrilaterals, having their east and west sides true meridians, and in length equal to six "sections" (that is six miles together with the roads), and having their north and south sides inclined at equal angles to these meri-
dians, while the northern boundary it somewhat shorter than the southern boundary, these lengths varying from 480 chains plus the roads on the base line to about 180 links more on the next correction line south, and about 180 links less on the next one to the north. The angles of the township differ from 90° by about 4^{\prime} only.

These are the theoretical dimensions and form of the township. Of course, the lengths of the lines and the magnitude of the angles may differ from theory from the effect of errors in surveying, but the closings on correction lines cut out these errors and prevent them from so accumulating as to materially deform the townships.

Townships are designated by their numbers counting north from the 49th parallel with the number of the "Range" in which they lie, these ranges being counted east or west from the Initial Meridian.

Different Systems of Survey.

Since the surveys in Manitoba and the Western Territories of Canada were initiated in 1870, changes have been made from time to time in the system, as regards the number and width of the road allowances, as well as in the manuer of surveying townships and sections. There have thus been three systems of survey, generally called the first, second and third systems from their order in time.

Distinctions betueen the Systems.

In the first and second systems the roads are one and a half chains wide, and are placed between all sections on both north and south, and east and west lines.

In the third system, which covers the entire area of Manitoba and the Western Territories, except the comparatively small area previously surveyed under the first and second systems, the roads are only one chain wide, and are placed along each alternate east and west section line, and along each north and south line.

So the townships of the first and second systems are 489 chains each way, while those of the third system are 483 chains from north to south, and 486 from east to west (these widths being, as above explained, subject to increase or decrease from divergence or convergence of meridians).

The second system differs from the first in the manner of subdividing the township into sections. In the first system, the interior lines forming the eastern boundaries of sections are drawn parallel to the eastern boundary of the township, so that all the deficiency or surplus caused by convergence of meridians, is left in the tier of quarter sections adjoining the western boundary of the township.

In the second system the eastern boundaries of sections are true meridians.
In the third system also the interior lines are true meridians.
In all three systems the northern and southern boundaries of sections are straight lines connecting points on the eastern or western boundaries, which have been established by chainage.

In all the systems the sections in a township are designated by numbers from 1 to 36 , beginning with 1 at the south-east corner of the township and counting west and east alternately across the township to 36 in the north-east corner.

Position of Posts with regard to the Road Allowances.

The posts for section corners are piaced on the south and west sides of the road allowance, each section post governing the corner of four sections, except on correction lines, where posts stand on the north side of the road to mark the boundaries of sections on the north side of the road. Also on the lines between different systems of survey, posts are placed on both sides of the road allowance.

But, in general, the post marks the south or west side of a road allowance, or in other words, stands at the north-east corner of a section. The quantities given in the appended tables always refer, unless otherwisestated, to the northern and eastern boundaries of sections or townships.

Fourth System of Survey.

There is a fourth system of survey, which is in force in the Canadian Pacific Railway belt in British Columbia. This system is exactly similar to the third system, as to the manner of surveying townships, and the townships are of the same dimensions; but the roads are thrown into the sections, so that every section measures 80.50 chains from north to south, and 81 from east to west, subject to deficiency or surplus from converging or diverging meridians.

Thus in the fourth system the quarter section and section posts on a base line, beginning at the easterly corner of a township and going west, stand at distances $40.50,40 \cdot 50,40 \cdot 50,40 \cdot 50$, \&c., while in the third system they stand at $40,41,40,41$, dc., the only difference being in the position of the quarter section posts. On the meridian outline of a township, in the fourth system, beginning at the southerly corner and going north, the posts stand at $40.25,40.25,40 \cdot 25,40 \cdot 25$, \&c., while in the third system they stand at $41,40,40,40$, \&c. Here there is a difference in the position of the quarter section corners, and each alternate section corner. The greatest difference in the position of any post is 75 links. 'The tables made for the third system, therefore, answer for the fourth also, except the tables of latitudes and longitudes, which will require correction in cases where the highest degree of accuracy is desired.

Fifth System of Survey.

This system is applied to the survey of certain townships in the lower valley of the Fraser River in British Columbia. There are no roads. Each section is 80 chains square, and the townships, of 36 sections each, are based upon the 49 th parallel and an Initial Meridian called the Coast Meridian.

Advantages of the Dominion Lands System of Survey.

Some of the advantages of the Dominion Lands system of curvey (especially the third system) are these:-

The boundaries of townships are straight lines (that is, great circles or surveyors' transit lines), and the interior lines also are straight for the greatest possible distance. The straightness of lines greatly facilitates the picking up of a line and its re-establishment when some of the posts have been removed or destroyed.

Directions of analogous lines in two townships or two sections are the same, or nearly so. This simplifies the original survey and facilitates resurvey. Lines are also referred to the astronomic meridian, thereby avoiding the confusions and errors arising in many of the older settled parts of the Dominion from the use of the variable magnetic meridian.

The parcels of land are, as nearly as possible, equal in area and similar in form, and permit of a simple system of numbering, by which descriptions are facilitated. The parcels of land are also square, or nearly so-the shape most suitable, on the whole, for farms.

The surveys of different townships and different parts of the country are independent, or nearly so. Errors are cut out, and not carried forward throughout the system, and the survey of an isolated tract may be made without waiting for the complete survey of all the country intervening between it and the initial point of the system, and without fear of a gore or overlap, when the intermediate district is surveyed.

Tables.

Another result from the similarity of townships to each other is the simplicity of the tables giving the azimuths and lengths of lines. Such tables are indispensable in surveys to be made on a very large scale and by a great number of surveyors.

Tabies of azimuths and lengths of lines were calculated by the writer, and published as an appendix in the Annual Report of the Minister of Interior for 1879. These tables were calculated for the first and second systems of survey.

In 1881 the change in the system of survey necessitated a recalculation, so that the tables might serve for the third system of survey. The new tables were printed in the Manual of Surveys issued by direction of the Minister of Interior in 1881 (a second edition in 1883).

Since the tracts of country set aside for the first and second systems have not yet been completely surveyed, it has been deemed advisable to reprint here the tables for the first and second systems along with those of the third system for the sake of ready reference. The tables in the appended collection have been carefully checked. Table I, the general geodetic table, not referring to any particular system of survey, has been carefully recomputed, and has been extended so as to cover the whole of Canada from its most southerly point, Point Pelee, in Lake Erie, in latitude 42°, to latitude 70°.

Limits of the Different Systems of Survey.

The operation of the first system of survey is restricted to the area bounded as follows, viz.:-

To the south by the International Boundary Line; to the west by the Second Meridian as far as the eighth correction line; by said correction line as far as the meridian between Ranges 28 and 29 west of the Principal Meridian; by said meridian, between Ranges 28 and 29, as far as the seventh correction line; by said correction line as far as the meridian between Ranges 7 and 8 , east of Principal Meridian; by said meridian, between Ranges 7 and 8, as far as the north boundary of Township 19; by the north boundary of Township 19, in Ranges 8, 9 and 10, east of the Principal Meridian as far as the meridian between Ranges 10 and 11, east of the Principal Meridian; by said meridian, between Ranges 10 and 11, as far as the third correction line; by said correction line as far as the eastern boundary of the Province of Manitoba; by said eastern boundary as far as the International Boundary Line.

Also Townships 44, R. 21; Tp. 45, R. 21, 22, 27, 28; Tps. 46 and 47, R. 25, 26, 27 and 28; Tp. 47, R. 24, and Tp.48, R. 24, 25, 26 and 27, west of the Second Meridian.

Townships 42 to 47 inclusive, R. 1; and Tps. 43 and 44, R. 2 and 3, west of the Third Meridian.

The second system of survey is similar in all respects to the first system, except in regard to the deficiency or surplus from converging or diverging meridians which is distributed equally between all quarter sections as in the actual system.

The operation of the second system of survey is restricted to Tps. 1 and 2, R. 1 to 8 inclusive; Tps. 19 to 30, R. 1 to 12 inclusive; and Tps. 27 to 30, R. 13 to 16 inclusive; the above ranges being all west of the Second Meridian.

The fourth system includes the belt twenty miles on each side of the Canadian Pacific Railway, west of the summit of the Rocky Mountains.

The fifth system, as already stated, applies to a few townships only in southwestern British Columbia.

The third system is applied to all Dominion lands not included in the first, second, fourth and fifth systems.

CHAPTER II.

CONSTRUCTION AND USE OF THE TABLES.

Table I.
Length of Arcs of Meridians, Parallel, \&cc., in Different Latitudes.
According to Col. A. R. Clarke, R.E., in his "Comparison of Standards of Length" (1866), the spheroid of revolution most nearly approaching the form of the earth has for its major or equatorial semi-axis 20926062 feet, and for its minor or polar semi-axis 20855121 feet.

Representing the major and minor axis by a and b respectively, we have for the compression, $C=\frac{a-b}{a}=\frac{1}{294 \cdot 98}$, and the eccentricity e is given by the formula

$$
e^{2}=\frac{a^{2}-b^{2}}{a^{2}}=\frac{1}{148} \text { nearly }
$$

The unit of measure in the Dominion Lands surveys is the Gunter's, or sixtysix feet chain. The equatorial semi-axis in chains is $317061 \cdot 545+$

Representing by ψ the geographical latitude of a place, or the angle which its vertical line makes with the plane of the equator, we have for the radius of curvature of the meridian

$$
R=\frac{a\left(1-e^{2}\right)}{\left(1-e^{2} \sin ^{2} \phi\right)^{\frac{3}{2}}},
$$

for the length of the normal to the meridian terminated by the minor axis

$$
N=\frac{a}{\left(1-e^{2} \sin ^{2} \phi\right)^{\frac{1}{2}}}
$$

and for the radius of the parallel of latitude Φ

$$
P=N \cos \varphi
$$

The length in chains of one second of latitude is equal to $R \sin 1^{\prime \prime} ;$ one second of the great circle perpendicular to the meridian is equal to $N \sin 1^{\prime \prime}$; and one second of longitude is equal to $P \sin 1^{\prime \prime}$. The logarithms of these quantities are placed in the second, third and fourth columns of Table I. They have been calculated by means of the logarithmic expansions of R and N.

Thus putting n for $\frac{a-b}{a+b}$ we have

$$
\begin{aligned}
\log \left(R \sin 1^{\prime \prime}\right) & =\log a+\log \sin 1^{\prime \prime}-M\left(n+\frac{3 n^{2}}{2}\right) \\
& -3 M\left(n \cos 2 \oplus-\frac{n^{2}}{2} \cos 4 \varphi\right)+\mathbb{d c} .
\end{aligned}
$$

where M is the modulus of the common system of logarithms, and powers of n higher than the second are neglected as being insensible in the eighth decimal place.

Substituting the value of a in chains, as given above, and taking

$$
n=\frac{a-b}{a-b}=\frac{1}{588 \cdot 96}, \text { we get }
$$

$\log \left(R \sin 1^{\prime \prime}\right)=0 \cdot 18597916-0 \cdot 00221218 \cos 2 \Phi+0 \cdot 00000188 \cos 4 \Phi$.
In calculating the two last terms by logarithms five places are sufficient.
For $N \sin 1^{\prime \prime}$ we have

$$
\log \left(N \sin 1^{\prime \prime}\right)=\frac{1}{3} \log \left(R \sin 1^{\prime \prime}\right)+\frac{2}{3}\left\{\log a+\log \sin 1^{\prime \prime}+2 M n^{\prime} ;\right.
$$

For P $\sin 1^{\prime \prime} ; \quad \log P \sin 1^{\prime \prime}=\log \left(N \sin 1^{\prime \prime}\right)+\log \cos \phi$.
The calculation has been made to eight places of decimals to ensure accuracy in the seventh plade. In tabulating, the eighth figure has been dropped.

The calculation of the logarithms of R sin $1^{\prime \prime}$ and N sin $1^{\prime \prime}$ has also been made directly from the formulx for R and N, by the use of a subsidiary angle.

Thus, finding an angle Ψ such that $\sin \psi=e \sin \psi w e$ have

$$
R \sin 1^{\prime \prime}=a\left(1-e^{2}\right) \sec ^{3} \psi \sin 1^{\prime \prime}
$$

$$
N \sin 1^{\prime \prime}=a \sec \psi \sin 1^{\prime \prime}
$$

Seven figure logarithms were used, and consequently the results could not be depended upon to the seventh figure, but they have been serviceable as a check upon the series computation.
$\log N \sin 1^{\prime \prime}, \log P \sin 1^{\prime \prime}$ and $\log R \sin 1^{\prime \prime}$ are given in the table for every 10^{\prime} of latitude from 42° to 70°. Their values for intermediate latitudes can be obtained by simple interpolation. Where, however, $\log P \sin 1^{\prime \prime}$ is required with accuracy for an intermediate latitude, it is better first to obtain $\log N \sin 1^{\prime \prime}$ for that latitude by interpolation from the table and then to add $\log \cos \boldsymbol{\phi}$.

Under the heading "Cbains in 1 "" are given the natural numbers corresponding to the logarithms of $R \sin 1^{\prime \prime}$ and $P \sin 1^{\prime \prime}$. These natural numbers are uscful in reducing small differences of latitude and longitude to chains by simple multiplication, being preferable in many cases to the logarithms.

The converse operation of reducing short distances north and south or east and west to seconds of latitude or longitude may be performed by multiplying by the quantities in the two columns headed "seconds in one chain." These columns contain the reciprocals of the quantities in the columns "chains in one second."

In the last two columns of the table are given the lengths of one degree of latitude and longitude in English miles.

Radius of Curvature of a Section of the Spheroid inclined at any angle to a Meridian.

In some operations it is necessary to find the radius of curvature of the trace on the earth's surface of a "straight" or "transit" line making a given angle with the meridian.

Representing this radius of curvature by S, and θ being the angle with the meridian, we have the formula

$$
\frac{1}{S}=\frac{\cos ^{2} \theta}{R}+\frac{\sin ^{2} \theta}{\bar{N}}
$$

and introducing an auxiliary angle X determined by the formula

$$
\begin{aligned}
& \tan X=\sqrt{\frac{R \sin 1^{\prime \prime}}{N \sin 1^{\prime \prime}}} \tan \theta, \text { we have } \\
& S \sin 1^{\prime \prime}=N \sin 1^{\prime \prime} \frac{\sin ^{2} X}{\sin ^{2} \theta}
\end{aligned}
$$

a formula adapted for ready calculation by means of logarithms.

Radius of Spherical Curvature.

The mean of the values of S when θ is given all possible values is $1 \overline{N R}$. This is the radius of curvature of the surface or the radius of the sphere to the surface at a given point. Its logarithm is readily found from Table I, being the arithmetical mean of the logarithms of N and R.

Table II.

Corrections to Table I for Change in Elements of Figure of Earth.

In Table I the data used are Clarke's 1866 values, viz. :-

$$
\begin{aligned}
& a=20926062 \text { feet } \\
& n=\frac{1}{588 \cdot 96}
\end{aligned}
$$

and all the following tables are based on Table I, and therefore on these values. Clarke's later values (Geodesy, 1888) are,

$$
\begin{aligned}
& a=20926202 \text { feet. } \\
& n=\frac{1}{585 \cdot 93}
\end{aligned}
$$

If, for any purpose, it is desired to use these values, Table I can be corrected by means* of Table II, which has been computed thus:

Differentiating the formulæ,
$\log R \sin 1^{\prime \prime}=\log a+\log \sin 1^{\prime \prime}--M\left(n+\frac{3}{2} n^{2}\right)-3 M n \cos 2 \phi+\frac{3}{2} M n^{2} \cos 4 \Phi$
$\log N \sin 1^{\prime \prime}=\log a_{0}+\log \sin 1^{\prime \prime}+M\left(n-\frac{n^{2}}{2}\right)-M n \cos 2 \Phi+\frac{1}{2} M n^{2} \cos 4 \Phi$
and putting $\frac{1}{n}=p$, we have.

$$
\begin{aligned}
& d\left(\log R \sin 1^{\prime \prime}\right)=M \frac{d a}{a}+M n^{2} d p+3 M n^{2} \cos 2 \Phi d p \\
& d\left(\log N \sin 1^{\prime \prime}\right)=M \frac{d a}{a}-M n^{2} d p+M n^{2} \cos 2 \Phi d p
\end{aligned}
$$

M being the modulus of the common system of logarithms. Terms involving the cubes and higher powers of n are insensible and may be neglected.

To change Clarke's earlier to his later values, we have

$$
\begin{aligned}
d a & =+140 \text { (feet) } \\
d p & =-3 \cdot 03 \\
a & =209.6606 \text { (feet) } \\
n & =\frac{1}{588 \cdot 96} \\
\text { and } M & =0.43429448
\end{aligned}
$$

whence $d \log \left(R \sin 1^{\prime \prime}\right)=-\cdot 00000089-\cdot 00001138 \cos 2 \Phi$
$d \log \left(N \sin 1^{\prime \prime}\right)=+\cdot 00000670-\cdot 00000379 \cos 2 \Phi$
These quantities are tabulated in Table II, with the proper signs of application to $\log R \sin 1^{\prime \prime}$ and $\log N \sin 1^{\prime \prime}$ in Table I.

Table III.

Latitudes of Base and Correction Lines and Lengths of Arcs of Meridian, Parallel, \&c. for First and Second Systems of Survey.

This table is constructed for the first and second systems of survey only. It accordingly stops at the 13th Base, Township 48, north of which there are no surveys under these systems.

Each township measuring 489 chains cach way, the 1st correction line is 978 chains north of the 49th parallel.

The latitude of the 1 st correction line is therefore $49^{\circ}+\frac{978}{R \sin 1^{\prime \prime}}$.
Here $R \sin 1^{\prime \prime}$ must be taken from Table I for the middle latitude between the 1st base and the 1st correction line. For accuracy it is therefore necessary to compute an approximate difference of latitude, using an approximate value of $R \sin 1^{\prime \prime}$. For instance R sin $1^{\prime \prime}$ may be taken from the table for latitude 49°.

The approximate difference of latitude being thus determined, the middle latitude is found from it (this being a sufficiently close approximation), and the final $R \sin 1^{\prime \prime}$ is taken from Table I for that latitude. Then dividing 978 by this we have a very close approximation to the difference of latitude between the base and the correction line.

From the latitude thus obtained of the 1st correction line, that of the 2nd base line is found by a similar process, and so on in succession as far as the table extends.

The table is checked by applying the same process to a longer distance than 978 chains. For example the latitude of the 6 th base can be directly determined from that of the first by using 9,780 chains instead of 978 . When long distances are thus taken, a second approximation to the middle latitude may become necessary.

The columns $\log N \sin 1^{\prime \prime}$ and $\log R$ sin $1^{\prime \prime}$ are taken from Table I by interpolation, and $\log P \sin 1^{\prime \prime}$ is found by adding $\log \cos \Phi$ to $\log N \sin 1^{\prime \prime}$.

The width of a township along a base line is 489 chains. The longitude corresponding to this length measured along the parallel of latitude is given in the column headed "Longitude covered by 489 chains westing," not only for the base lines but also for the correction lines.

The longitude for 489 chains, along a base line, is the longitude covered by one range of townships. Along a correction line it does not correspond to the longitude covered by a range, since the width of a township along a correction line is greater or less than 489 chains according as the township north or south of the correction line is considered. The tabulated quantity however for correction lines can be used to calculate the narrowing or widening of sections at the correction lines.

The townsbip width 489 chains is measured along the base line which has such azimuth that its terminal point falls in the same latitude as its initial point.

Thus every township corner along a base line has the same latitude, and the base line is a succession of chords of the latitude circle.

The difference of longitude between one township corner and the next is given by the formula

$$
d \lambda=\frac{486}{P \sin 1^{\prime \prime}}
$$

It is assumed here that the chord of the arc of the latitude circle is equal to the arc. That the difference between the chord and the arc is inappreciable may be shown thus:

By spherical trigonometry

$$
\sin \frac{\text { chord }}{2 N}=\sin \frac{d \lambda}{2} \cos \Phi
$$

Whence chord $\cong \cos \Phi d \lambda-N \cos \Phi \sin ^{2} \Phi \frac{d \lambda^{3}}{24}$

$$
=\operatorname{arc}-\operatorname{arc} \times \frac{d \lambda^{2}}{24} \sin ^{2} \Phi
$$

So that the difference between the chord and the arc is equal to

$$
\operatorname{arc} \times \frac{d \dot{\lambda}^{2}}{2 t}-\sin ^{2} \Phi
$$

d being in a circular measure.
For a chord of 489 chains this a mounts to less than one-hundredth of a link.
The chord always lies north of the arc. The distance between them is greatest at their middle points, amounting there to about 10 links. Hence, at the International boundary line, which is the first base line, since the actual territorial boundary is the curve, and the base line a series of chords, the road allowance which lies along the north side of this base is increased in width by 10 links at the middle of the chords.

The non-coincidence of the chord and arc also bas the effect of increasing and decreasing the widths of roads on correction lines. This will be referred to again.

In the first column of Table III are given, for convenience, the numbers of the townships corresponding to the several base and correction lines. Thus the sixth base is the northern boundary of Township 20, and so on.

Table IV.

Latitudes of Base and Correction Lines, \&c., for 3 rd and 4 th Systems of Survey.

This is exactly similar to Table III, except that it is made for the third system of survey, where the widths of townships are 486 instead of 489 chains, and their depths, in a north and south direction, 483 instead of 489 chains.

This table also applies, without change, to the fourth system (British Columbia).
In this table, as well as in Table III, the latitudes giveu are those of the line of posts on the south side of the road allowance. To get the latitude of the posts north
of the road on correction lines, the latitude of the correction line, as given in the table, must be corrected by adding the equivalent in latitude of the width of the road, i.e., one chain and a-half for the first and second systems (Table III), and one chain for the third system (Table IV).

Table V.
Chord Azimuths, \&ec., for Base Lines, First and Second Systems of Survey.
The extremities of the township chord, as above stated, are in the same latitude. Hence the chord is equally inclined to the meridians passing through its terminal points, and its azimuth, east or west of north, is equal to the complement of half the change in azimuth, that is, of half the "convergence of meridians."

Let $d A$ represent the change in azimuth or convergence of meridians, $d \lambda$ the difference of longitude, and Φ the latitude.

Then, by spherical trigonometry,

$$
\tan \frac{1}{2} d A=\tan \frac{1}{2} d \lambda \sin \phi
$$

whence, by expansion of the tangents in terms of the arcs,

$$
d A=d \lambda \sin \Phi+\frac{d \lambda^{3}}{12} \sin \Phi \cos ^{2} \Phi
$$

or, if $d A$ and $d \lambda$ be expressed in seconds,

$$
d A=d \lambda \sin \Phi+\frac{d \lambda^{3}}{12}-\sin \Phi \cos ^{2} \Phi \sin ^{2} 1^{\prime \prime}
$$

The second term is inappreciable, amounting in latitude 51° to less than one ten-thousandth of a second.

$$
\therefore d A=d \lambda \sin \Phi .
$$

The convergence or "deflection" ($d A$), given in Table V, is thus calculated from the difference of longitude ($d \lambda$) in Table III.

The "chord azimuth" is the complement of half the deflection.
The chord azimuth and the deflection are given in the table in degrees, minutes and seconds, as well as in decimals of a degree, for sexagesimally and decimally divided instruments respectively.

In the survey of a base line, the surveyor, when he arrives at a township corner, deffects his line to the north through an angle equal to the "deflection," and thus establishes in azimuth the chord across the next range of townships.

This deflection angle may be turned with the instrument, but more readily by the use of the "deflection offsets" in the table. The tabulated offset is the linear distance in inches between one of the chords and the prolongation of the other, at one chain from the township corner.

Their distance apart at any point is found by multiplying the tabulated offset by the distance, expressed in chains, of the point from the township corner.

For example, if the instrument is standing on the prolongation of the first chord at 5 chains past the corner, and the back picket be 15 chains on the other side of, that is, behind the corner, then the instrument must be moved north five times, and the back picket south fifteen times, the "deflection offset for one chain." The line of the instrument and picket is now in the correct bearing for the prolongation of the base line.

The angle is thus turned as accurately as a straight line can be produced with the instrument, and much more accurately than the angle can be measured with the graduated arc, while the setting of the instrument at the corner (which may be in low ground, unsuitable for accurate line production) is rendered unnecessary.
"Longitude covered by one range" in the seventh column is merely the longitude in the seventh column of Table III, reduced to time by dividing by 15. This gires the number of seconds which a watch will gain or lose on local time in being carried across a range. The gain or loss in travelling over any other distance along is proportional to the distance. The column is added for astronomical purposes, especially the determination of azimuth by observation of Polaris at any hour angle.

This Table V applies to the first and second systems of survey.

Table VI.
Chord Azimuths, \&ec., for Base Lines, 3 rd and 4th Systems of Survey.
This table is exactly similar to Table V, but is made for the third system of survey.

The calculation is made by the same formulx, changing only the width of the range, which is 486 , instead of 489 chains, and using the latitudes of the base lines from Table IV, instead of those from Table III.

$$
d \lambda=\frac{486}{P \sin 1^{\prime \prime}} \quad d A=d \lambda \sin \Phi
$$

This table also applies to the fourth system.

Table VII.

Chord Azimuths, Jogs, \&c., for Correction Lines, 1 st and 2nd Systems of Survey.
This table gives quantities for correction lines similar to those given' in Table III for base lines. This table applies to the first and second systems of survey.

The correction lines are posted on both sides of the road. The chord azimuths and deflections are given for the south side of the road, which is that side for which the latitudes of correction lines are given in Table III.

The calculation of the chord azimuth for correction lines is somewhat different from that for base lines.

For the base lines we have

$$
\begin{gathered}
d \lambda=\frac{489}{P \sin 1^{\prime \prime}} \\
\text { deflection }=d \lambda \sin \Phi .
\end{gathered}
$$

For the correction lines, one range is not 489 chains, but the distance between meridians which include 489 chains on the nearest base line.

Hence in the formulæ-

$$
d \lambda=\frac{489}{P \sin 1^{\prime \prime}}
$$

and deflection $=d \lambda \sin \Phi=\frac{489}{P \sin 1^{\prime \prime}} \sin \Phi$, we must take $P \sin 1^{\prime \prime}$ for the next base line south of the correction line, if the difference of longitude and the deflection for the south side of the correction line road are required; while for the north side of that road we must take P sin $1^{\prime \prime}$ for the next base line north. Φ, of course, is the latitude of the correction line itself.

The length of one range on the correction line is $d \lambda \times P \sin 1^{\prime \prime}$
If, then, P_{1} and P_{2} represent the radius of parallel for the base lines next north and south, respectively, P that for the correction line itself

$$
\begin{aligned}
& d \lambda_{1}=\frac{489}{R_{1} \sin 1^{\prime \prime}} \\
& d \lambda_{2}=\frac{489}{P_{2} \sin 1^{\prime \prime}}
\end{aligned}
$$

and we have for the length of one range on the correction line

$$
\begin{aligned}
& \text { North side }=\frac{489}{P_{1} \sin 1^{\prime \prime}} \times P \sin 1^{\prime \prime} \\
& \text { South side }=\frac{489}{P_{2} \sin 1^{\prime \prime}} \times P \sin 1^{\prime \prime}
\end{aligned}
$$

The values of these quantities are tabulated in the seventh and eighth columns of Table VII.

For extreme accuracy $P \sin 1^{\prime \prime}$ for the north side of the road should be taken out for a latitude greater by 1.50 chains, or $0^{\prime \prime} .98$ greater than that tabulated in Table III; but the difference in the result would be almost inappreciable.

The difforence of length of the township lines north and south of the correction line road gives the overlap or jog.

The jog for one range is given in the ninth column of the table. As this jog occurs in each range of townships, its value at any range is the product of the jog for one range by the number of ranges.

The excess of the length of the north side over, or the defect of the south side from 489 chains, is the linear divergence or convergence of the township lines. Since there are twelve half sections in a township side, the convergence or divergence for one-half section is one-twelfth of the convergence or divergence for the township, or one-twenty-fourth of the jog, the excess of the north side and the defect of the south side being very nearly, though not quite, equal.

This convergence or divergence for one half section is entered in the tenth column of the table. It is used in the second system, where the surplus or deficiency caused by the convergence of meridians is divided equally among all the quarter-sections. Hence, in surveying a correction line under the second system, the width of each quarter section (exclusive of the roads) is forty chains plus or minus this tabulated quantity. The surplus or deficiency on the township line midway between the base and the correction line is half of that on the co"rection line.

In the first system the whole of the surplus or deficiency is thrown into the western tier of quarter sections. This surplus or deficiency is the difference between 489 chains and the quantities in the seventh and eighth columns of Table VII. For example, on the north side of the road ou the 1st correction line the surplus is 1.75 chains, and the westerly quarter section of the township is therefore $41^{\circ} 75$, all the others being 40 chains.

It is to be observed that in all cases the whole divergence or convergence is applied to the section itself, and that the road allowance retains its width of 1 chain or $1 \frac{1}{2}$ chains, with the exception of the roads on correction lines, which are subject to a widening or narrowing as hereinafter explained.

Table VIII.

Chord Azimuths, Jogs, \&c., for Correction Lines, Third and Fourth Systems of Survey.

This table gives for the third and fourth systems the same quantities as are given in Table VII for the first and second systems.

The surplus or deficiency is in all cases divided equally among all the quarter sections.

Table IX.
Latitudes, and Widths in Chains, of Northern Boundaries of Sections in First and Second Systems of Survey.
This table gives the latitudes in degrees and decimals of a degree for the northern boundaries of all sections in the tirst and second systems.

The sections numbered in the second column are those adjacent to the eastern boundary of the township. The latitudes of interior sections lying west of these are the same. Thus the northern boundaries of sections 14, 15, 16, 17 and 18 have the same latitude as the north boundary of 13, and so for the other east and west tiers of sections.

These latitudes are computed by converting the latitudes given in Table III into degrees and decimals, and interpolating for the intermediate lines.

The logarithmic seçant and tangent of the latitude are given in the table for use in calculation of azimuth observations.

In the last column of the table are given the widths of the north boundaries of the quarter sections (in the second system of survey). These are calculated for the correction lines in the manner explained under Table VII, and for the intermediate lines by iuterpolation.

Table X.
Latitudes and Widths in Chains of Northern Boundaries of Sections in Third and Fourth Systems of Survey.

This table gives for the third system the same quantities as are given in Table IX for the first and second.

The table may also be applicd to the fourth system by correcting the latitudes of the alternate section lines, viz., the north boundaries of sections 1,13 and 25 in each township, by subtracting therefrom $0^{\circ} \cdot 0001$, the equivalent in arc of 50 links. The change in the logarithmic secant and tangent is inappreciable, as these logarithms are given to only five places of decimals. The widths of quarter sections in the last column must be increased by 50 links.

Table XI.

To Reduce Chains to Decimals of a Township Side.

This is a short table giving the equivalents of chained distances in terms of a township side, for township sides of the first and second systems (489 chains), for east and west lines of tho third and fourth systems (486 chains) and tor north and south lines of these last systems (483 chains). The table is useful in calculating the difference in azimuth of an east or west line between a township corver and any other point upon it, and for similar purposes.

Table XII.

Correction to Widths of Roads on Correction Lines on Account of Curvature.

The township corners on the north and south sides respectively of the road on correction lines lie on two circles of latitude, which are one and a-half chains apart in the first and second systems, and one chain apart in the third system. The township sides are chords of these circles, and therefore lie north of them.

Hence, since on account of the jog the township corners north and south of the road are not opposite to one another, the township side south of the road will pass the township corner north of the road at a distance less than the theoretical one chain; while the township side north of the road will pass the corner south of the road at a distance greater than one chain.

The correction to the width of the road on this account for various lengths of the jog, is given in the table. The width of the road at points other than the township corners, varies in proportion to the distance.

This table may be used where it is required to establish the posts on one side of a correction line, by offsets from the other side.

The calculation of the differences of width is made as described below for Table XIII, the difference being merely the offset from the township chord to the parallel.

In T'able XII are also given corrections to the chord azimuths and deflection offsets on correction lines (yiven in Table VII), when the north side of the road allowance is surveyed instead of the south. The correction is small and of little importance in surveying, except in the case of the second system of surver, where the correction lines were surveyed instead of the base lines, as the basis of the townships, across four ranges before closing, and the azimuth was consequently of importañce.

In the first system the correction line is surveyed across two ranges as a trial line, and afterwards corrected to the true line; and in the third system the correction line is only surveyed across one range at a time, and as a trial line. In these systems, therefore, the azimuth used in the survey is of little importance.

Table XIII.

Difference of Latitude between Township Corners and Section and Quarter Section Corners.

This table is used when it is required to find accurately the latitude of any point within a township, as when it is desired by connecting with an astronomically determined latitude point to find the error of the survey lines.

If A be the initial azimuth of the township chord, A^{1} its azimuth at a distance x from the corner of the township, Φ the latitude of the township corner, Φ^{1} the latitude of a point on the chord distant x from the corner.

Then by spherical trigonometry

$$
\frac{\cos \Phi^{1}}{\cos \varphi}=\frac{\sin A}{\sin A^{1}}
$$

whence

$$
\tan \frac{\phi^{1}-\Phi}{2} \tan \frac{\Phi^{1}+\Phi}{2}=\tan \frac{A^{1}-A}{2} \cot \frac{A^{1}+A}{2}
$$

putting

$$
\begin{aligned}
& A=\frac{1}{2}(\pi-\theta) \\
& A^{1}=\frac{1}{2}\left(\pi-\theta^{1}\right)
\end{aligned}
$$

where θ and θ^{1} are expressed in circular measure, and are very smal!, so that their cubes may be neglected. Also $\Phi^{1}-\Phi$ is very small, and $\Phi^{1}{ }_{+}+\Phi$ is very nearly equal to 24 .

$$
\text { Then } \phi^{1}-\Phi=\frac{\theta-\theta^{1}}{2} \frac{\theta+\theta^{1}}{t} \cot \Phi=\frac{\theta^{2}-\theta_{1}^{2}}{8} \cot \Phi
$$

and $\theta=$ convergence of meridians for one township chord;

$$
\therefore \theta=\frac{c}{N} \tan \Phi, c \text { being the length of the chord, }
$$

and $\frac{\theta_{1}}{\theta}=\frac{c-2 x}{c}, \quad$ whence $\theta^{2}-\theta_{1}^{2}=\frac{4(c-x) x}{c^{2}} \theta^{2}$
Therefore

$$
\psi^{1}-\Phi=\frac{(c-x) x}{2 N^{2}} \tan \Phi
$$

or difference of latitude in chains $=$

$$
R\left(\phi^{1}-\Phi\right)=\frac{R}{2 N^{2}} x(c-x) \tan \Phi
$$

The computation has been made for the first system of survey, but may be used for any system without sensible error.

CHAPTER III.

Problems Connected with the System of Survey.
 Correction for Height above Sea Level.

The tables have been calculated from the dimensions of the earth surface at sea level.

The township sides are actually measured on surfaces elevated above sea level, and therefore the differences of latitude and longitude calculated from the tables are greater than those actually covered by the township sides.

13-8

Any measured distance may be reduced to sea level by subtracting the correction $\frac{h}{r} x, x$ being the distance, h the elevation above sea level, and r the radius of curvature of the line under consideration.

In general N (see Table I) can be used instead of r.
Base lines when the system of survey is exactly followed are established by direct measurement from the 49 th parallel, northward along an initial meridian.

Hence the latitude of a base line should be less than that given in table by ($\psi-49^{\circ}$) $\frac{h}{R}$ where h is the mean elevation of the initial meridian between the 49th parallel and the base under consideration.

Many base lines, however, have been established, not by this direct measurement, but by the survey of township meridians exterior from other bases. If the actual latitudes of these base lines are required, account must be taken of the eletations of all the north and south lines through which the connection with the 49th parallel has been made. It is obvious, however, that the average elevation of the country above the sea will give a sufficiently accurate result, since the small errors due to difference of elevation are masked by errors of survey.

On the base lines the effect of elevation above sea level is to decrease the difference of longitude covered by one range, and this must be allowed for in establishing an initial meridian by means of chainage along a base line, or in estimating the accuracy of measurement of a base line by its closing on an initial meridian, since the initial meridians, except the first, have been placed on even degrees of longitude (every fourth degree).

The correction for elevation above sea level is, in latitude $51^{\circ}, 0.00382$ chains for one mile distance at an elevation of 1,000 feet, and varies directly as the elevation and distance. It changes somewhat with the latitude, but slightly, and the correction in any particular case may be taken as the same as that for latitude 51°. If extreme accuracy be required, the formula given above, $\frac{h}{r} x$ may be used.

The error in the length of township chords of course involves an error in deflection angles and azimuths, but this is too small to be appreciable.

Latitudes and Longitudes of Points in the System.

By "points in the system" I mean the corners of specified sections, or points referred to them by connecting lines. In the later case the lines, if short, may be reduced to latitude and longitude by means of "latitude and departure" from a traver'se table, and by using Table XVIII.

Thus, the problem is reduced to the determination of the latitude and longitude of any section corner.

Latitude.

The latitude of the section corner can be at once found by interpolation from Table III or Table IV, according as the section is in the first, second or third system.

It must be remembered that in the first and second systems, the section posts on a meridian are $81 \cdot 50$ chains apart, and that in the third system they are alternately 81 and 80 chains.

The latitude can also be taken directly from Table IX or X to the fourth decimal place of degrees.

Since the section corners are presumed to be at distances of even sections from the north and south boundaries of the township, being established by survey from those boundaries, the latitude found as above must, when the section corner is not on the meridian outline of the township, be increased by the correction given by Table XIII.

In the first system the sections are not measured on meridians from the north or south boundary of the township, but on lines parallel to the eastern boundary of
the township. Hence theoretically the difference of latitude between the given corner and the township outline should be decreased in the ratio of cosine azimuth of the section line to unity; but this correction is practically insignificant. The correction for sea level may also be applied.

Longitude, Third System,

In the second and third systems the section lines are true meridians from the base line north and south two townships. Hence the longitude of a section corner is the same as that of the corresponding corner on the base line from which the township has been surveyed.

Then it $d \lambda$ be the longitude covered by one range on that base line, and if n be the number of the range in which the section lies, m the number of sections lying between the given section and the eastern boundary of the township, the number of ranges which intervene between the initial meridian and the eastern boundary of the given section is $n-1+\frac{m}{6}$, and the difference in longitude between it and the initial meridian is $\left(n-1+\frac{m}{6}\right) d \lambda$. This added to the longitude of the initial meridian gives the longitude of the eastern boundary of the section.

The longitude of the Principal or First Meridian is $97^{\circ} 27^{\prime} 08^{\prime \prime} \cdot \mathbf{4}$,
The longitudes of the Second, Third, Fourth, \&c., Meridians are $102^{\circ}, 106^{\circ}$, $110^{\circ}, 114^{\circ}$, \&c., subject to certain errors of survey, which cannot be discussed at present.

The difference of longitude should be corrected for height above sea if precision is required. This can be done by multiplying it by $\left(1-\frac{h}{N}\right)$

For example:
The N.E. corner of Sec. 16, Tp. 23, R. 17, W. of the Fourth Meridian (third system of survey). Here $n=17, m=3$, and the township is surveyed from the 7 th base, for which we find trom Table IV $d \lambda=8^{\prime} 22^{\prime \prime} \cdot 411=502^{\prime \prime} \cdot 411$. Therefore longitude of the section line

$$
=110^{\circ}+\left(503^{\prime \prime} \cdot 411 \times 16_{6}^{3}\right)=112^{\circ} 18^{\prime} 09^{\prime \prime} \cdot 78
$$

The corner is three sections, i.e., 242 chains north of the 5th correction line, and its latitude is therefore (from Table IV)

$$
50^{\circ} 34^{\prime} 20^{\prime \prime} \cdot 77+10^{\prime} 28^{\prime \prime} \cdot 88 \times \frac{242}{966}=50^{\circ} 34^{\prime} 20^{\prime \prime} \cdot 77+157^{\prime \prime} \cdot 55=50^{\circ} 36^{\prime} 58 \cdot 32^{\prime \prime}
$$

Longitude, First System.

In the first system the procedure for the longitude is a little different. The section lines are drawn parallel to the east side of the township, so that the difference of longitude between the section line and the east boundary of the township is not the same as on the base line, but is equal to the actual distance from the boundary of the township divided by $P \sin 1^{\prime \prime}, P \sin ^{\prime \prime}$ being taken from Table I for the actual latitude of the section post. Thus using the same notation as before

Diff. of longitude from initial meridian $=(n-1) d \lambda+\frac{81 \cdot 50 \times m}{P \sin 1^{\prime \prime}}, d \lambda$ being taken from Table III (1st system) for the governing base line, or it may be calculated by the equivalent formula
diff. of longitude $=\left(n-1+\frac{m}{6}\right) d \lambda+\frac{Q}{P \sin 1^{\prime \prime}}$
where $Q=2 m(40-w), w$ being the width of quarter sections as taken from the last column of Table IX.

Longitude, Second and Fourth Systems.

Longitudes in the 2nd system are calculated in the same way as those in the 3rd, taking $d \lambda$ from Table III instead of Table IV. In the 4 th system the process is the same, as for the 3rd system, and the same table is used-Table IY.

Effect of Errors of Survey.

An error in the latitude of the base line; or an error in the longitude of the initial meridian, of course increases or decreases by the amount of the error the latitude or longitude of the section corner. Similarly a chainage error on the base line affects the longitude directly. In the computation all known errors of this kind must be allowed for.

An error in the latitude of the base line also affects the longitude covered by 486 chains (or 489) chains measured along the base line, since 486 chains covers less longitude if the base line be moved north. Tho manner in which the effect of an error of this kind may be estimated will be best shown by an example.

Suppose the 6th base line (3rd system) to be placed 10 chains too far north, we find from Table IV

$$
\begin{aligned}
& d \lambda, \text { for } 6 \text { th base line }=498 \cdot 662 \\
& d \lambda \text { for } 6 \text { th correction line }=500.527
\end{aligned}
$$

The 6th correction line is two townships, i.e., 966 chains north of the 6 th base line, and the difference in $d \lambda$ for these lines is $1^{\prime \prime} \cdot 865$. Therefore, $d \lambda$ for the actual position of the 6 th base line, 10 chains north of its theoretical position, is

$$
498^{\prime \prime} \cdot 662+1^{\prime \prime} \cdot 865 \times \frac{10}{966}=498^{\prime \prime} \cdot 681
$$

The colrection, in the case supposed, to $d \lambda$ for one range is $0^{\prime \prime} .019$, and in 29 ranges, (about the distance apart of two initial meridians) it amounts to $0^{\prime \prime}: 019 \times 29=0^{\prime \prime} \cdot 55$, or 54 links.

Given the Latitude and Longitude of a point, to find its position with regard to the Survey System, i.e, to find in what section it is, and the township and range. and its distance from the N. E. corner of the section.

Second, Third and Fourth Systems.

This is the converse of the preceding problem. The first step is to find, in the manner explained above, the latitude of the section line next north of the given latitude. The difference between these two latitudes is reduced to chains by Table I. This gives the distance (x) in chains to be measured from the point to find the north boundary of the section.

The number of sections by which the section line is north of the southern boundary of the township in which it lies is to be noted. Call this number a, and the number of the township t.

We also know the number of the nearest base line, i.e. the base line on which depends the survey of township t. From table IV we take out $d \lambda$ for this base line.

From the given longitude of the point subtract the longitude of the initial meridian. Divide the difference by $d \lambda$, with quotient n and remainder r. Divide r by $\frac{d \lambda}{6}$ with quotient b and remainder $s . \quad S$ reduced from seconds of longitude to chains by Table I, with argument, latitude of the given point, gives the distance (y) to be measured east from the point to find the eastern line of the section.

We now know that the given point is x chains south and y chains west of the north-east angle of somesection in township No. t and range No. $(n+1)$ west of the initial meridian; and also that the northern boundary of the section is a sections north of the southern boundary of the township, and that the eastern boundary is b sections west of the eastern boundary of the township.

It is now easy by means of a skeleton township diagram to determine the numbers of the section; e.g. if $a=5, b=3$, the section is 28 .

Without a township diagram, the section number can be found from the formula

$$
\text { No. of section }=\frac{1}{2}\{12 a-5 \pm(2 b-5)\}
$$

The upper sign being taken when a is odd, and the lower when a is even. These two rules are comprised in the general formula

$$
\text { No. of section }=\frac{1}{2}\left\{(12 a-5)-(-1)^{a}(2 b-5)\right\}
$$

The calculation for the second system is the same as above, using the proper tables for that system. It is also the same for the fourth system.

In this manner have been computed the positions of a great many section corners in British Columbia (fourth system of survey) with reference to points along the line of the Canadian Pacific Railway, the latitudes and longitudes of these points having been first determined by a traverse survey.

First System of Survey.

The procedure in this system is the same as above, except that the total difference of longitude from the eastern boundary of the township (instead of the nearest section line) must be reduced to chains, and from the chain distance must be subtracted the nearest multiple of $81 \cdot 50$.

Fractional Township or Range between parts of the Country Surveyedo under dffferent Systems of Survey.

Townships of the first and second systems adjoin each other without overlap or deficiency, since the townships in these two systems are of the same dimensions. Similarly of the third and fourth systems.

But where townships surveyed under the latter systems abut on townships of the first or second system, a fractional township or range occurs. It is only necessary to consider the case of the tbird system abutting on the first or second, since the fourth does not occur in juxtaposition with these latter systems.

Fractional Township.

Townships of the third system are 6 chains shorter, measured north and south than the others. The townships in both cases are measured north from the 49th parallel, and hence the third system falls short of the other by 6 chains for each township, and the northern boundary of a township of the third system is therefore south of the northern boundary of the same township of the first or second system by 6 chains multiplied by the number of the township.

Thus the 5th correction line (Tp. 18), as surveyed under the third system, is $6 \times 18=108$ chains south of its position under the second system. For twelve ranges west of the Second Meridian, the territory from the 5th correction line northward to the 8th correction line was surveyed under the second system, while the country south of the former line has been surveyed under the third system. There is therefore an additional township (measuring 108 chains from north to south) lying between Township 18 of the third system and Township 19 of the second system. (This fractional township is called Township 19A, and is subdivided according to the third system. See Manual of Surveys.)

Fractional Range.

Townships of the third system are 3 chains narrower (measured east and west, along the base line) than those of the first and second systems. The overlap of the latter systems over the third, however, is not equal to 3 chains multiplied by the number of ranges, but exceeds this, since the widths are laid off along base lines which lie in different latitudes, and hence the convergence of meridians comes into play.

The readiest method of calculating this overlap is as follows:-
Let $d \lambda_{1}$ be the longitude covered by one range of the baso line in the first or second system as found from Table III.

Let $d \lambda$ be the same quantity for the base line of the third system (from Table IV).

Then $d \lambda_{1}-d \lambda$ is the difference of the longitude between the exterior meridians of range one, as surveyed under the two systems.

The difference of longitude at the eastern boundary of the nth range will be

$$
(n-1)\left(d \lambda_{1}-d \lambda\right)
$$

This reduced to chains is

$$
(n-1)\left(d \lambda_{1}-d \lambda\right) P \sin 1^{\prime \prime}
$$

$P \sin 1^{\prime \prime}$ being taken from the proper table for the latitude of the base or section line on which the overlap is required.

Example.

The meridian outline between Ranges 12 and 13, west of the 2nd Meridian, from Township 19 to Township 22, inclusive, is the western boundary of a tract of country surveyed under the second system of survey. Required the width of Range 13, as surveyed under the third system, on the northern boundaries of Townships 19, 20, 21 and 22.

The base line on which this meridian outline is based, is the 6th base line, or northern boundary of Township 20.

$$
\begin{aligned}
\text { From Table III, } d \lambda_{1} & =8^{\prime} 21^{\prime \prime \prime} \cdot 972 \\
\text { do }, d \lambda & =8^{\prime} 18^{\prime \prime} \cdot 662 \\
\text { whence } d \lambda_{1}-d \lambda & =\frac{3^{\prime \prime} \cdot 310}{}
\end{aligned}
$$

and at the eastern boundary of the thirteenth range, the difference of longitude is $3 \cdot 310 \times 12=39^{\prime \prime} \cdot 72$.

We have then for the northern boundary of Township 19 (third system) :
Log. $39 \cdot 72=1.5990092$
Table IV, Log. P sin $1^{\prime \prime}=9.9896352$
1.5886444

Nat. number $=\quad 38.783$
For the northern boundary of Township 20 :
Log. $39 \cdot 72=1 \cdot 5990092$
Log. $P \sin 1^{\prime \prime}=9 \cdot 9888297$
Nat, number $\begin{array}{r}1.5878389 \\ 38.711\end{array}$
For the northern boundary of Townehip 21 :
Log. $39 \cdot 72=1: 5990092$
Log. $P \sin 1^{\prime \prime}=9.9880192$
Nat. number $=\begin{array}{r}1.5870284 \\ 38.639\end{array}$
For the northern boundary of Township 22 :
Log. $39 \cdot 72=1 \cdot 5990092$
$\log . P_{\sin } 1^{\prime \prime}=9.9872086$
1.5862178

Nat. number $\begin{array}{r}158.567 \\ \hline\end{array}$
Hence the north boundaries of Townships 19,20,21 and 22, surveyed under the third system in Range 13, have their eastern tiers of section narrowed by 38.783 , $38 \cdot 711,38 \cdot 639$ and 38,567 , respectively.

Now, the full widths of these sections when regular is got from Table X, by multiplying the " width of quarter section" by 2 .

Thus, the width of the eastern tier of sections in Range 13 are:
For Township 19, $80 \cdot 15-38 \cdot 78=41 \cdot 37$ chains.

do	$20,80 \cdot$	$-3 \times \cdot 71=41 \cdot 29$
do	$21,79 \cdot 85-38 \cdot 64=41 \cdot 21$	do
do	$22,79 \cdot 70-38 \cdot 57=41 \cdot 13$	do

These widths must be increased by one chain for road, if the widths from post to post are required.

For the township lines to the north of the correction line, viz.: $23,24,25$ and 26, the width of Range 13 may be found in the same way, using the $d \lambda$ from Tables III and IV for the seventh base instead of the sixth.

If the width of the section on the north side of the 6th correction line is required, that is, the south boundary of Township 23, it must be remembered that here, on account of the correction line being thrown south, from the less depth of the townehips of the new system, the southern boundary of Township 23 of the third system, which is brought from the 7th base, intersects the second system south of the correction line, i. e. on a line brought from the 6 th base.

Therefore we have
For the second system, Table III, $d \lambda_{1} \cdot 6$ th base $=8^{\prime} 21^{\prime \prime} \cdot 972$ third do do IV, $d \lambda 7$ th do $=8^{\prime} 22^{\prime \prime} \cdot 411$
$\therefore \quad d \lambda_{1}-d \lambda=-\quad .439$
and for twelve ranges $12\left(d \lambda_{1}-d \lambda\right)=-5^{\prime \prime} \cdot 268$
With the difference of longitude $5^{\prime \prime} \cdot 268$ und the P sin $1^{\prime \prime}$ for the 6 th correction line, third system, we get the required jog.

It will be noticed that the overplus is negative, i. e. there is a surplus.

The heavy lines represent the second system, the dotted ones the third. The line $A^{1} B^{1}$ is the one which we have just considered; it falls to the east of $A B$, but to the west of CD.

The lines in the figure are all township lines. Thus it will be seen that there is a small piece of land, $\mathrm{B}^{1} \mathrm{C}$, which is in fact a township of itself. Its designation would be Township 23 A, Range 12.

Second Example.

Required the depth, north and south, of Township 27, Range 19, west of the Principal Meridian.

The north boundary of Township 26 is the northern boundary of a tract of country surveyed under the first system.

Since each township of the third system is 6 chains shorter north and south than one of the first system, the northern boundary of Township 26 in the third system is $6 \times 26=156$ chains south of the same boundary under the first system.

Therefore the distance from the north boundary of Township 26, first system, to the north-east angle of Soction 12, Township 27, third system, is $161-156=5$ chains.

Since 1.50 chains must be allowed for road 3.50 chains is the available width of the strip of land.

Fractional Sections adjoining an Initial Meridian.*			
The longitude of the Principal Meridian is $977^{\circ} 27^{\prime} 08^{\prime \prime} 4$.That of the 2nd Initial Meridian $102^{\circ} 00^{\prime} 00^{\prime \prime}$			
"	3 rd	"	$106^{\circ} 00^{\prime} 00^{\prime \prime}$
،	4th	"	$110^{\circ} 00^{\prime} 00^{\prime \prime}$
"	5th	"	$114^{\circ} 00^{\prime} 00^{\prime \prime}$
"	6th	،	$118^{\circ} 00^{\prime} 00^{\prime \prime}$
"	7th	"	$122^{\circ} 00^{\prime} 00^{\prime \prime}$

These longitudes are subject to correction for errors of survey, of which it is intended to treat in a future paper.

For the present purpose we shall use the above longitudes.
The difference of longitude between the first meridian and the second is $4^{\circ} 32^{\prime} 51^{\prime \prime} \cdot 6=16: 371^{\prime \prime} \cdot 6$, and between the others successively $4^{\circ}=14400^{\prime \prime}$.

The width of the last range in seconds on a given base line is got by subtracting from $16371^{\prime \prime} \cdot 6$ or 14400 the nearest integral multiple of $d \lambda$ as given by Table III or IV (according to which system of survey is used). Thus for the width of the last range on the 5th base line between the 2 nd and 3rd Initial Mcridians (third system of survey) we have from Table IV $d \lambda=494^{\prime \prime} .988$ and we find, by dividing 14400 by $494 \cdot 988$, a quotient 29 with remainder $45 \cdot 348$. That is, the width of Range 30 on the 5th base, or the difference of longitude between the 3rd Initial Meridian and the meridian forming the eastern boundary of Townships 15, 16, 17 and 18, Range 30, west of the second Initial Meridian is $45^{\prime \prime} \cdot 348$. This can be converted into chains by multiplying by $\log P \sin 1^{\prime \prime}$, taken from Table IV for the section line whose length is required-whether the southern boundary of Township 15, or the northern boundary of Townships 15, 16, 17 or 18, or any of the intermediate section lines.

If the width of the last broken section be required, and if the remainder, after tracting the integral multiple of $d \lambda$ is greater than one sixth of $d \lambda$, integral multiples of $\frac{1}{6} d$. (difference of longitude covered by one section on the base line) must be subtracted until the remainder is less than $\frac{1}{6} d \lambda$. This remainder may then be converted to chains by multiplying by $P \sin 1^{\prime \prime}$ taken out of the Table for the latitude of the line under consideration. The reason for this is that the widths in seconds of longitude are the same for all sections from the base to the correction line (in the third system).

The result thus found should be corrected for the mean height of the base line above sea level, and also for any error in the positions of the 2nd and 3rd Meridians, relative to each other.

CHAPTER IV.

SOLUTIONS OF SOME PROBLEMS IN PRACTICAL GEODESY.

Given the latitude and longitude of a point on the earth's surface, and the distance and azimuth therefrom of a second point, required the latitude and longitude of the second point and the azimuth of the first point as seen from the second.

The earth being considered a sphere, with radius equal to the normal at the place (N), the distance (K) may be reduced to arc by the formula

$$
u^{\prime \prime}=\frac{K}{N \sin 1^{\prime \prime}}
$$

Then we have a spherical triangle formed by the two points and the north (or south) pole of the earth, the sides being the colatitudes of the points ($90^{\circ}-\Phi$ and $90^{\circ}-\Phi^{\prime}$) and $u^{\prime \prime}$; and the angles being the azimuths counted from the north of the points from one another, and the difference of longitude. Any three of these parts being given, the triangle may be solved by the usual formule of spheric trigonometry.

Since, however, the side $u^{\prime \prime}$ is very small compared with the radius of the sphere, and therefore the triangle cannot be accurately solved without logarithms of many
decimal places, a more practical solution can be obtained by expanding the difference of latitude, \&c., in series:-

We then have for distances not much exceeding 20 miles

$$
\begin{aligned}
& \phi=\phi+u^{\prime} \cos A-\left(u^{\prime \prime} \sin A\right)^{2} \sin 1^{\prime \prime} \tan \Phi \\
& \lambda^{\prime}=\lambda-\left(u^{\prime \prime} \sin A\right) \sec \Phi^{\prime} \\
& A^{\prime}=180^{\circ}+A+\left(u^{\prime \prime} \sin A\right) \sec \Phi^{\prime} \sin \frac{1}{2}\left(\Phi+\Phi^{\prime}\right)
\end{aligned}
$$

Where Φ and λ are the latitude and longitude respectively of the first point
ϕ^{\prime} and λ^{\prime} those of the second point
A the azimuth of the second as seen from the first
A^{\prime} do first do second
Longitudes being counted towards the west, and azimuths from the north through east from 0° to 360°.

Correction for Spheroidal Figure.

The above formulæ are derived on the assumption that the earth is a sphere. The solution for the spheroid can be obtained by applying a correction to the differonce of latitude. There is no correction necessary, to the order of approximation of the formulæ given above, to either the difference of longitude or the difference of azimuth.

The spherical solution being made on a sphere whose radius is equal to the normal (N) at the place, which is the radius of the great circle perpendicular to the meridian, while the latitude is measured along the meridian, whose radius of curvature is R, the difference of latitude found as above must be multiplied by $\frac{N}{R^{\prime}}$ $=1+e^{2} \cos ^{2} \Phi$ nearly, or in other words $\Phi^{\prime}-\Phi$ must be numerically increased by $e^{2} \cos ^{2} \Phi\left(\Phi^{\prime}-\Phi\right)$.

The spheroidai formula then become

$$
\begin{aligned}
& \Phi^{\prime}=\Phi+u^{\prime \prime} \cdot \cos A-\left(u^{\prime \prime} \sin A\right)^{2} \sin 1^{\prime \prime} \tan \phi \\
& \quad+e^{2} \cos ^{2} \psi\left\{u^{\prime \prime} \cos A-\left(u^{\prime \prime} \sin A\right)^{2} \sin 1^{\prime \prime} \tan \Phi\right\} \\
& \lambda^{\prime}=\lambda-\left(u^{\prime \prime} \sin A\right) \sec \phi^{\prime} \\
& A^{\prime}=180^{\circ}+A+\left(u^{\prime \prime} \sin A\right) \sec \Phi^{\prime \prime} \sin \frac{1}{2}\left(\Phi+\Phi^{\prime}\right)
\end{aligned}
$$

The values of $e^{2} \cos ^{2} \Phi$ for different latitudes, are :-

Φ	$e^{2} \cos ^{2} \Phi$	\pm	$e^{2} \cos ^{2} \Phi$	Ф	$e^{2} \cos ^{2}$ \$	Ф	$e^{2} \cos ^{2} \Phi$	Φ	$e^{2} \cos ^{2} \Phi$
42	-000376	48	-000305	54	000235	60	-000170	66	-000113
43	365	49	293	55	224	61	160	67	104
44	353	50	282	56	213	62	150	68	096
45	341	51	270	57	202	63	140	69	088
46	329	52	258	58	191	64	131	70	080
47	317	53	247	59	181	65	122		

More Accurate Formula for Long Distances.
The above formulæ serve for distances not greater than say twenty miles. For longer distances, up to one hundred miles, the formulæ are (see "Lee's Table and Formulæ, Professional Papers of the United States' Engineers; and United States' Coast and Geodetic Survey, 1875," Appendix No. 19)-

$$
\begin{aligned}
& \Phi^{\prime} \phi=K B \cos A-K^{2} C \sin ^{2} A-(\delta \Phi)^{2} D+K^{2} h E \sin ^{2} A \\
& \lambda^{\prime}-\lambda=\frac{K \sin A}{N^{\prime} \sin 1^{\prime \prime} \cos \psi^{\prime}} \\
& A^{\prime}=180^{\circ}+A-\left(\lambda^{\prime}-\lambda\right) \frac{\sin \frac{1}{2}\left(\Phi+\Phi^{\prime}\right)}{\cos \frac{1}{2}\left(\phi^{\prime}-\Phi\right)}+\left(\lambda^{\prime}-\lambda\right)^{3} F
\end{aligned}
$$

Where $K=$ the distance
$B=\frac{1}{R \sin 1^{\prime \prime}}$ for the latitude of the initial point,
$C=\frac{\tan \varphi}{2 N R \sin 1^{\prime \prime}}$
$D=\frac{\frac{3}{2} e^{2} \sin \phi \cos \Phi \sin 1^{\prime \prime}}{\left(1-e^{2} \sin ^{2} \phi\right) \frac{3}{2}} \quad$ do
$E=\frac{1+3 \tan ^{2} \phi}{6 N^{2}} \quad$ do
$b=K B \cos A$, or the first term of the expression for difference of latitude.
$\delta \Phi$ is an approximate value of $\psi^{\prime}-\Phi$, computed from the first and second terms of the expression.
$N^{\prime} \sin 1^{\prime \prime}$ is taken for the latitude of the terminal point.
$\log F$, for latitude $45^{\circ}=7.840$; for latitude $50^{\circ}=7.792$; for latitude $55^{\circ}=7 \cdot 723$.
$\log e^{2}=7 \cdot 8305006$
$\log \sin 1^{\prime \prime}=4 \cdot 6855749$
The computation can be made by means of Table I, but more conveniently by means of the tables of the values of B, C, D and E, which are given in the United States Coast Survey Appendix above named.

It is to be noted that in the formulæ given in that appendix, the azimuth is counted from the south through west, while in those I have given for the shorteldistances it is counted from north through east, conformably to the general practice in Dominion Land surveys. Hence as A is increased by 180°, the sign of $\cos A$ and $\sin A$ is changed.

Formule in Terms of Rectangular Co-ordinates.

Suppose the latitude and longitude (Φ and λ) of one point to be known, and the second point to be referred to the first by rectangular co-ordinates, y in direction of the meridian and x perpendicular to it, y being positive when neasured north from the first point, and x positive when measured west.

$$
\text { Then } \begin{aligned}
\Phi^{\prime} & =\Phi+\frac{y}{R \sin 1^{\prime \prime}}-\frac{1}{2} \sin 1^{\prime \prime} \tan \Phi^{\prime}\left(\frac{x}{N \sin 1^{\prime \prime}}\right)^{2} \frac{N \sin 1^{\prime \prime}}{R \sin 1^{\prime \prime}} \\
\lambda^{\prime} & =\lambda+\left(\frac{x}{N \sin 1^{\prime \prime}}\right) \sec \Phi^{\prime} \\
A^{\prime} & =180^{\circ}+A-\left(\frac{x}{N \sin 1^{\prime \prime}}\right) \tan \Phi^{\prime}
\end{aligned}
$$

The expression for Φ^{\prime} contains Φ^{\prime}, the quantity sought, in the last term. The value of Φ^{\prime} to be used in computing this term is the approximate value of Φ^{\prime} obtained from the first two terms $\phi+\frac{y}{R \sin 1^{\prime \prime}}$.

These formulæ may be used for differences of latitude and longitude on a traverse survey consisting of a number of short lines.

The co-ordinates with reference to the meridian of one of the points may be computed by summing the "latitudes and departures" taken from an ordinary traverse table for the several courses.

Given the Latitudes and Longitudes of two points, to find the length and direction of their joining line.

Let Φ and ϕ^{\prime} be the latitudes.
λ and λ^{\prime} be the longitudes.
Then $\left(\Phi^{\prime}-\Phi\right)$ multiplied by the factor $e^{2} \cos ^{2} \Phi$ given in the table on page - , is the correction to the latitude to reduce it from the spheroid to the sphere. Half
of this correction is to be applied to each latitude, in such direction as to bring them nearer together.

We then have, calling these corrected latitudes l and l^{\prime}, and $\left(\Phi^{\prime}-\Phi\right) e^{2} \cos ^{2} \Phi=\beta$

$$
\begin{gathered}
l=\Phi+\frac{\beta}{2} \\
\tan A=\frac{-\left(\lambda^{\prime}-\bar{\lambda}\right) \cos e^{\prime}}{l^{\prime}-l-\frac{1}{2} \sin 1^{\prime \prime}\left(\lambda^{\prime}-\lambda\right)^{2} \cos ^{2} l^{\prime} \tan l} \\
\quad l^{\prime}=\Phi^{\prime}-\frac{B}{2} \\
K=-\frac{\left(\lambda^{\prime}-\lambda\right) \cos l^{\prime}}{\sin A} N \sin 1^{\prime \prime} \\
A^{\prime}=180^{\circ}+A-\left(\lambda^{\prime}-\lambda\right) \sin \frac{l+l^{\prime}}{2}
\end{gathered}
$$

$N \sin 1^{\prime \prime}$ should be taken for the mean latitude $\frac{p+\Phi^{\prime}}{2}$; so also $e^{2} \cos ^{2} \phi$, although the difference in this latter will be inappreciable unless the difference of latitude is great.

Knowing the Latitudes and the Azmuth of one point from the oiher, to find the distance.

Calculate β and l and l^{\prime} as in the last case.
Find the auxiliary angles θ and θ - u from the equations

$$
\begin{aligned}
& \tan \theta=-\frac{\tan l}{\cos A} \\
& \sin (\theta-u)=\frac{\sin l^{\prime}}{\sin l} \sin \theta
\end{aligned}
$$

Whence u is known
then $K=u N \sin 1^{\prime \prime}$.
That value of θ is to be taken which is less than 90°, i. e., if $\tan \theta$ be positive (when $\cos A$ is negative) θ will be a positive angle less than 90°. If $\tan \theta$ be negative, θ will be a negative angle. In the latter case the formula

$$
\begin{aligned}
\sin (\theta-u) & =\frac{\sin l^{\prime}}{\sin l} \sin \theta \\
\text { becomes } \sin (\theta+u) & =\frac{\sin l^{\prime}}{\sin l} \sin \theta . \theta \text { in this last being taken positively. }
\end{aligned}
$$

Given the Latitude of one point, the Azimuth from this to the other, and the difference of Longitude, to find the distance.

That is, given $\Phi, \lambda^{\prime}-\lambda$, and A to find $\Phi^{\prime}, A^{\prime}$ and K.
Let $d \lambda$ be the difference of longitude. The auxiliary angle θ is computed by the formula
$\tan \theta=-\sin l \tan A$.
and $\tan a^{\prime}=\frac{\tan \Phi \sin (\theta-d \lambda)}{\sin \theta}$
$\beta=\left(a^{\prime}-\Phi\right) e^{2} \cos ^{2} \frac{1}{2}\left(a^{\prime}+\Phi\right)$
$\psi^{\prime}=a^{\prime}+\kappa, l=\Phi+\frac{\hbar}{2}, l^{\prime}=\Phi^{\prime}-\frac{\beta}{2}$
$K=-d \lambda \frac{\cos l^{\prime}}{\sin A} N \sin 1^{\prime \prime}$.

Trigonometrical Levelling.

To find the elevation of one station above another by observation of the apparent altitude.

Let K represent the distance apart of the two stations, C the angle subtended by the arc joining the two stations at the earth's centre (i.e., more properly at the centre of the curvature of the arc):

Let $m==$ the coefficient of refraction.
$d h=$ difference of height of the two stations.
$S==$ radius of curvature of the arc joining the stations.
$E=$ measured angle of elevation.
Then $C=\frac{K}{S \sin 1^{\prime \prime}}$

$$
d h=\frac{K \sin \left\{E+\left(\frac{1}{2}-m\right) C\right\}}{\cos \{E+(1-m) C\}}
$$

S, the radius of curvature of the arc, is found from R and N, given the azimuth of the arc, in the manner explained under Table I, but for ordinary purposes
$N \sin 1^{\prime \prime}$ or $R \sin 1^{\prime \prime}$ may be used instead of $S \sin 1^{\prime \prime}$.
m varies in different places, being greater at the sea coast than in the interior. It runs from about 065 to about 080 . Where accuracy is required it must be found by observation in the locality, by the method of reciprocal zenith distances, or otherwise.
Ui. Taking its value at 070 , the above formula becomes:

$$
d h=\frac{K \sin (E+0.43 C)}{\cos (E+0.93 C)}
$$

If the angle observed be an angle of depression instead of elevation, we have calling the observed angle D :

$$
a h=\frac{-K \sin (D-0.43 C)}{\cos (D-0.93 C)}
$$

APPENDIX-TABLES.

Table I.-Radii of Curvature of Meridians and Parallels, \&c.

Latitude.	$\log N \sin 1^{\prime \prime}$.	$\log \mathbf{P} \sin 1^{\prime \prime}$	$\log R \sin 1^{\prime \prime}$	Chains in $\mathbf{1}^{\prime \prime}$.		Seconds in one Chain.		English Miles in a Degree.	
				Lat- itude.	Longitude.	Latitude.	Longitude.	Latitude.	Longitude.
-						"	"		
4200	0.1873775	$0 \cdot 0554.510$	$0 \cdot 1857461$	1.5337	$1 \cdot 1441$	$0 \cdot 6520$	0.8741	$69 \cdot 02$	51.48
4210	3818	-8144	7589	1.5338	$1 \cdot 1411$	$0 \cdot 6520$	$0 \cdot 8764$	69.02	$51 \cdot 35$
4220	3860	61711	7717	1.5338	11381	$0 \cdot 6520$	0.8787	$69 \cdot 02$	51.21
4230	3903	50212	7845	1.5339	1.1351	$0 \cdot 6520$	$0 \cdot 8810$	69.02	51.08
4240	3946	38645	7973	1.5339	$1 \cdot 1320$	0.6519	0.8834	69.03	50.94
4250	3988	27009	8101	1.5339	$1 \cdot 1290$	$0 \cdot 6519$	$0 \cdot 8857$	69.03	$50 \cdot 81$
4300	4031	15306	8230	1.5340	1.1260	$0 \cdot 6519$	0.8881	69.03	$50 \cdot 67$
4310	4074	0.0505334	8358	1.5340	1-1229	$0 \cdot 6519$	$0 \cdot 8905$	69.03	$50 \cdot 53$
4320	4117	$0 \cdot 04!11693$	845	1.5341	1.1199	0-6519	0.8930	69.03	$50 \cdot 39$
4330	4160	7978	8615	1.5341	11168	$0 \cdot 6518$	0.8954	$69 \cdot 04$	$50 \cdot 26$
4340	4203	191802	8744	1.5342	11137	06518	0.8979	$69 \cdot 04$	$50 \cdot 12$
4350	4245	55750	8872	$1 \cdot 5342$	$1 \cdot 1106$	0.6518	0.9004	$69 \cdot 04$	$49 \cdot 98$
4400	4288	43629	9001	1.5343	$1 \cdot 1075$	0.6518	$0 \cdot 9029$	$69 \cdot 04$	$49 \cdot 84$
4410	4331	31437	9129	1.5343	1.1044	0.6518	$0 \cdot 9054$	$69 \cdot 04$	$49 \cdot 70$
4 ± 20	4374	19173	9258	1.5344	$1 \cdot 1013$	$0 \cdot 6517$	$0 \cdot 9080$	69.05	$49 \cdot 56$
4430	4417	0.0406838	9387	$1 \cdot 5344$	10982	0'6517	0.9106	$69 \cdot 05$	$49 \cdot 42$
4440	4460	$0: 0394430$	9515	1.5344	1.0951	$0 \cdot 6517$	$0 \cdot 9132$	$69 \cdot 05$	$49 \cdot 28$
4450	4503	81949	9644	1.534%	1.0919	$0 \cdot 6517$	0.9158	$69 \cdot 05$	$49 \cdot 14$
4500	45415	69396	9773	1.53 .5	1.0888	0.6517	0.9185	$69 \cdot 05$	$49 \cdot 00$
4510	4585	56768	$0 \cdot 1859901$	1.5346	1.0856	$0 \cdot 6516$	0.9211	$69 \cdot 06$	$48 \cdot 85$
4520	4631	44067	$0 \cdot 1860030$	1.634t	1.0824	0.6516	0.9238	69.06	$48 \cdot 7$
4530	4674	31292	0159	1 \%34	1.0793	$0 \cdot 6516$	$0 \cdot 9266$	69.06	$48: \%$
4540	4717	18442	0288	1.5347	1.0761	0.6516	$0 \cdot 9293$	$69 \cdot 06$	48.42
4550	476	$0 \cdot 0305517$	0416	1-7348	1.0729	06516	0.9321	69.06	$48 \cdot 25$
4600	4803	$0 \cdot 0292516$	0545	1.5348	1.0697	0.6515	0.9349	$69 \cdot 07$	$48 \cdot 14$
4610	4846	79439	0673	1.5349	1.0665	0.6515	0.9377	$69 \cdot 07$	47.9
41520	4889	66285	0×12	1.5349	$1 \cdot 0632$	0. 6515	0.9405	$69 \cdot 07$	47.85
4630	4932	53054	0931	$1.534!$	1.0600	0.6515	$0 \cdot 9434$	$69 \cdot 07$	47.70
4640	4971	39645	1059	1.5350	1.0568	$0 \cdot 6515$	0.9463	69.07	47.0
41550	5017	24.358	1188	1.5350	$1 \cdot 0535$	$0 \cdot 6515$	$0 \cdot 9492$	$69 \cdot 08$	41
4700	5060	$0 \cdot 0212593$	1316	$1 \cdot 5351$	$1 \cdot 0502$	0.6514	$0 \cdot 9522$	69.08	47.96
4710	5103	$0 \cdot 019934!$	1445	1.5351	10470	$0 \cdot 6514$	$0 \cdot 9551$	69.08	$47 \cdot 11$
4720	5146	85726	1573	1585	$1 \cdot 0437$	0.6514	0.9581	69.08	$46 \cdot 9$
4730	51 NS	72021	1701	1.5359	1.0404	$0 \cdot 6514$	$0 \cdot 9612$	$69 \cdot 08$	$46 \cdot 82$
4740	5931	58.93	1829	15303	1.0371	$0 \cdot 6514$	$0 \cdot 9642$	69.09	$46 \cdot 6$
4750	5274	- 44372	1957	103503	1.0338	$0 \cdot 6513$	0.9673	$69 \cdot 0!$	46
4800	531 ;	30425	2085	1-5354	$1 \cdot 0305$	${ }^{0} \cdot 6513$	$0 \cdot 9704$	6909	$46 \cdot 37$
4810	5359	16396	2214	$1 \cdot 5354$	$1 \cdot 0272$	${ }^{0} \cdot 6513$	$0 \cdot 9736$	69.09	$46 \cdot 22$
4820	5402	0.0102285	2341	1.5354	$1 \cdot 0238$	0.6513	0.9767 0.9799	69.09	46.07
4830	544	0.0088090	2469	1.5355	1.0205	0.6513	0.9799	$69 \cdot 10$	4. 92
4840	5487	73812	2598	1.535%	1.0171	$0 \cdot 6512$	$0 \cdot 9831$	$69 \cdot 10$	4577
4850	5530	59449	2725	1 -535\%	1.0138	0.6512	0.9864	$69 \cdot 10$	4962
4900	5572	45001	2852	1-535\%	$1 \cdot 0104$	$0 \cdot 63^{12}$	$0 \cdot 9897$	$69 \cdot 10$	$45 \cdot 4$
4910	5615	3046!	2980	10335	$1 \cdot 0070$	0 (6) ${ }^{\text {a }}$	$0 \cdot 9930$	$69 \cdot 11$	45.32
$4!20$	5657	15849	3106	1.535	$1 \cdot 0037$	9) 6518	0.9964	69.11	$45 \cdot 16$
4930	5699	$0 \cdot 0001143$	3234	1.535 s	$1 \cdot 0003$	$0 \cdot 6511$	$0 \cdot 9998$	$69 \cdot 11$	$45 \cdot 01$
4940	5742	9 ! 9 R1335	3361	$1 \cdot 535$ N	0.9969	$0 \cdot 6511$	$1 \cdot 0031$	$69 \cdot 11$	$44 \cdot 86$
4950	5784	7140	3488	1.5358	$0 \cdot 9935$	$0 \cdot 6511$	1-0066	$69 \cdot 11$	44.71
5000	5826	56301	3615	$1 \cdot 5399$	0.9900 0.9866	0.6511	1.0101	69.12	44.95
5010	5869	+144.	3742	1.5359	0.9866 0.9832	$0 \cdot 6511$ $0 \cdot 6510$	1.0136	$69 \cdot 12$ $69 \cdot 12$	44.40
5020	5911	9. $\frac{2412985}{}$	3870	$1 \cdot 5360$ 1.5360	0.9832 0.9797	0.6510 0.6510	$1 \cdot 0171$ 1.0207	$69 \cdot 12$ $69 \cdot 12$	44.24 44.09
5030	5953	9. 96911058	3965 +109	1.5360 1.5361	0.9797 0.9763	$0 \cdot 6510$ 0.6510	1.0207 1.0243	$69 \cdot 12$ $69 \cdot 12$	$44 \cdot 09$ $43 \cdot 93$
5040 5050	6995	9.9895730 80309	4129 4248	1.5361 1.5361	0.9763 0.9788	$0 \cdot 6510$ 0.6510	1.0243 1.0279	$69 \cdot 12$ $69 \cdot 13$	$43 \cdot 93$ $43 \cdot 78$
5050 5100	603 6079	80309 64797	$\begin{array}{r}4248 \\ 437 \\ \hline\end{array}$	1.5361	0.9728 0.9693	- 0.6510	1.0316	$69 \cdot 13$	$43 \cdot 68$ $43 \cdot 62$
5110	6121	49192	4500	1.5362	0.9155	$0 \cdot 6510$	1.0353	$69 \cdot 13$	43.46
5120	6163	33493	4629	1.5363	$0 \cdot 964$	$0 \cdot 6509$	1.0391	$69 \cdot 13$	$43 \cdot 31$
5130	6295	17701	47\%1	$1 \cdot 5363$	0.958!	$0 \cdot 6509$	$1 \cdot 0429$	$60 \cdot 13$	$43 \cdot 15$
5140	6247	9.9801813	487	1.5363 1.5364	0.9554 0.9519		1.0415 1.0506	$69 \cdot 14$ $69 \cdot 14$	$42 \cdot 19$
5150	6289 6330	$9 \cdot 9785830$ 69750	5003	1.5364 1.5364	$0.931:$ $0.948 t$	$0 \cdot 6069$ $0 \cdot 6509$	1.0506 1.0544	$69 \cdot 14$ $69 \cdot 14$	42,43

APPENDIX-TABLES.

Table L.-Radii of Curvature of Meridians and Parallels, \&c.

Latitude.	$\log \mathrm{N} \sin \mathrm{I}^{\prime \prime}$.	$\log P \sin 1^{\prime \prime}$	$\log R \sin 1^{\prime \prime}$	Chains in $1^{\prime \prime}$.		Seconds in one Chain.		English Miles, in a Degree.	
				Latitude.	Longitude.	Latitude.	Longitude.	Latitude.	Long itude.
-						"	"		
5210	$0 \cdot 1876372$	9.9753574	0•1865252	1.5365	0.9448	0.6508	1.0584	$69 \cdot 1.4$	$42 \cdot 52$
5220	- 6413	37299	- 5376	1.5365	0.9413	0 6508	$1 \cdot 0624$	$69 \cdot 14$	42.36
5230	6455	20926	5501	1.5366	0.9378	0.6508	$1 \cdot 0664$	$69 \cdot 15$	$42 \cdot 20$
5240	6496	9.9704454	5625	1.5366	0.4342	$0 \cdot 6508$	$1 \cdot 0704$	$69 \cdot 15$	42.04
5250	6538	9-9687882	5749	1.5366	$0 \cdot 9307$	$0 \cdot 6508$	1.0745	$69 \cdot 15$	41.88
5300	6579	71208	5873	1.5367	$0 \cdot 9271$	$0 \cdot 6507$	1.0786	$69 \cdot 15$	41.72
5310	6620	54435	5997	1.5367	0.9235	$0 \cdot 6507$	$1 \cdot 0828$	$69 \cdot 15$	$41 \cdot 56$
5320	6661	37558	6120	1.5368	0.9199	$0 \cdot 6507$	$1 \cdot 0870$	$69 \cdot 16$	41.49
5330	6703	20579	6244	1.5368	0.9163	$0 \cdot 6507$	$1 \cdot 0913$	$69 \cdot 16$	41.21
5340	6744	$9 \cdot 9603495$	6367	1.5369	$0 \cdot 9127$	$0 \cdot 6507$	$1 \cdot 0956$	$66 \cdot 16$	$41 \cdot 07$
5350	6785	9-9586307	6490	1.5369	$0 \cdot 9091$	0.6507	$1 \cdot 0999$	$69 \cdot 16$	40.91
5400	6825	69012	6612	1.5370	$0 \cdot 0055$	0. 6506	1.1043	$69 \cdot 16$	$40 \cdot 75$
5410	6866	51612	6735	1.5370	$0 \cdot 9019$	0.6506	1-1088	$69 \cdot 16$	$40 \cdot 59$
5420	6907	34104	6857	1.5370	0.8983	0.6506	1.1132	$69 \cdot 17$	$40 \cdot 42$
5430	6948	$9 \cdot 9516488$	6979	1.5371	$0 \cdot 8946$	$0 \cdot 6506$	$1 \cdot 1178$	$69 \cdot 17$	$40 \cdot 26$
5440	6988	9-9498764	7101	1.5371	0.8910	9:6506	$1 \cdot 1223$	$69 \cdot 17$	$40 \cdot 09$
5450	7029	80928	7222	1.5372	$0 \cdot 8873$	0.6505	1.1270	$69 \cdot 17$	$39 \cdot 93$
5500	7069	62982	7343	1.5372	$0 \cdot 8837$	$0 \cdot 6505$	$1 \cdot 1316$	$69 \cdot 17$	$39 \cdot 77$
5510	7109	44924	7464	1.5373	$0 \cdot 8800$	0.6505	1.1363	$69 \cdot 18$	$39 \cdot 60$
$55 \quad 20$	7150	26754	7585	1.5373	0.8763	$0 \cdot 6505$	$1 \cdot 1411$	$69 \cdot 18$	$39 \cdot 44$
5530	7190	$9 \cdot 9408470$	7705	1.5373	$0 \cdot 8727$	0.6505	1.1459	$69 \cdot 18$	$39 \cdot 27$
5540	7230	9•9390072	7825	1.5374	$0 \cdot 8690$	$0 \cdot 6505$	$1 \cdot 1508$	$69 \cdot 18$	$39 \cdot 10$
5550	7270	71557	7945	1.5374	$0 \cdot 8653$	$0 \cdot 6504$	$1 \cdot 1557$	69.18	38. 94
5600	7310	52927	8065	1.5375	$0 \cdot 8616$	$0 \cdot 6504$	$1 \cdot 1607$	$69 \cdot 19$	$38 \cdot 77$
5610	7349	34177	8184	1.5375	$0 \cdot 8579$	$0 \cdot 6504$	$1 \cdot 1657$	$69 \cdot 19$	38.60
5620	7389	$9 \cdot 9315310$	8304	1.5376	$0 \cdot 8541$	0.6504	1.1708	$69 \cdot 19$	$38 \cdot 44$
5640	7429	$9 \cdot 9296324$	8422	1.5376	$0 \cdot 8504$	0.6504	1-1759	$69 \cdot 19$	$38 \cdot 27$
5640	7468	77218	8541	1.5376	$0 \cdot 8467$	0'6503	1.1811	$69 \cdot 19$	$38 \cdot 10$
5650	7508	57987	8659	1-5377	0.8429	$0 \cdot 6503$	1-1863	69-20	$37 \cdot 93$
5700	7547	38635	8777	1.5377	0.8392	0.6503	1-1916	$69 \cdot 20$	$37 \cdot 76$
5710	7586	$9 \cdot 9219158$	8894	1.5378	0.8354	0.6503	1-1970	$60 \cdot 20$	37.59
5720	7625	$9 \cdot 9199557$	9012	1. 5378	0.8317	$0 \cdot 6503$	1.2024	$69 \cdot 20$	37.43
5730	7664	79829	9128	1.5378	$0 \cdot 8279$	$0 \cdot 6503$	$1 \cdot 2079$	$69 \cdot 20$	$37 \cdot 26$
5740	7703	59974	9245	1.5379	$0 \cdot 8241$	$0 \cdot 6502$	1.2134	$69 \cdot 20$	$37 \cdot 09$
5750	7742	39991	9361	1.5372	$0 \cdot 8203$	0.6502	1.2190	$69 \cdot 21$	36.92
5800	7780	$9 \cdot 9119877$	947.	1. 53880	$0 \cdot 8166$	$0 \cdot 6502$	$1 \cdot 2247$	$69 \cdot 21$	36.75
5810	7819	9•9099633	9593	1-5380	$0 \cdot 8128$	$0 \cdot 6502$	1.2304	$69 \cdot 21$	$36 \cdot 57$
5820	7858	79257	9709	1.5381	0.8090	$0 \cdot(5502$	$1 \cdot 2362$	69-21	$36 \cdot 40$
5830	7896	58747	9824	1.5381	$0 \cdot 8051$	0.6502	$1 \cdot 2420$	$69 \cdot 21$	$36 \cdot 23$
5840	7984	38102	$0 \cdot 1869938$	1.5381	$6 \cdot 8013$	$0 \cdot 6501$	1.2479	$69 \cdot 22$	$36 \cdot 06$
5850	7972	17321	0'1870052	1.5382	$0 \cdot 7975$	0.6501	1.2539	$69 \cdot 22$	35.89
5900	8010	9-8996403	0167	1.5342	0.7937	0.6501	1.2600	$69 \cdot 22$	35.72
5910	8048	75347	0280	1.5383	$0 \cdot 7898$	$0 \cdot 6501$	1.2661	$69 \cdot 22$	$35 \cdot 54$
5920	8086	54150	0393	1.5383	0.7860	$0 \cdot 6501$	1.2723	$69 \cdot 22$	35.37
5930	8123	32812	0506	1.5383	$0 \cdot 7821$	$0 \cdot 6501$	1.2786	$69 \cdot 23$	$35 \cdot 20$
5940	8161	9.8911331	0619	1.5384	0.7783	0.6500	1.2849	$69 \cdot 23$	35.02
5950	8198	9•8889706	0731	15384	$0 \cdot 7744$	$0 \cdot 6500$	1.2913	$69 \cdot 23$	$34^{\prime} 85$
6000	8236	67936	0843	$1: 5385$	0.7705	$0 \cdot 6500$	1.2978	$69 \cdot 23$	$34 \cdot 67$
6010	8273	46018	0955	15385	0.7697	$0 \cdot 6500$	$1 \cdot 3044$	$69 \cdot 23$	$34 \cdot 50$
6020	8310	23952	1066	1.5385	0.7628	0.6500	$1 \cdot 3110$	$69 \cdot 23$	34.32
6030	8347	9-8801735	1176	1.5386	0.7589	0.6500	$1 \cdot 3177$	$69 \cdot 24$	$34 \cdot 15$
6040	8384	9.8779367	1287	1.5386	0.7550	$0 \cdot 6499$	$1 \cdot 3245$	$69 \cdot 24$	33.97
6050	8420	56845	1397	15386	0.7511	$0 \cdot 6499$	$1 \cdot 3314$	$69 \cdot 24$	33.80
6100	8457	34169 9.8711236	1506	$1 \cdot 5887$	0.7472	0.6499	1.3384	$69 \cdot 24$	33.62
6110	8493	$9 \cdot 8711336$	1615	1.5387	0.7432	$0 \cdot 6499$	$1 \cdot 3454$	$69 \cdot 24$	33.45
6120 6120	8529	$9 \cdot 8688345$	1724	1.5348	0.7393	0.6499	$1 \cdot 3526$	$69 \cdot 24$	-33.27
6130 6140	8565	65194	1832	1.5388	0.7354	0.6499	1-3598	$69 \cdot 25$	33.09
6140 6150	8601 8637	41882 9.8618406	1940	1.5388	$0 \cdot 7315$	0.6498	$1 \cdot 3671$	$69 \cdot 25$	$32 \cdot 92$
6150 6200	8637 8673	9.8618406 9.8594766	2048	1.5389	$0 \cdot 7275$	0.6498	$1 \cdot 3745$	$69 \cdot 25$	3274
620 6210	8673 8708	9.8594766 70958	2155	1.5389	0.7236 0.7196	0.6498	$1 \cdot 3820$	$69 \cdot 25$	32.50
510	8	- 0.58	2261	1.5390	0•7196	$0 \cdot 6498$	1.3896	$69 \cdot 25$	$32 \cdot 38$

APPENDIX—TABLES.

Table I.-Radii of Curvature of Meridians and Parallels, \&c.-Concluded.

Latitude.	$\log N \sin 1^{\prime \prime}$	$\log P \sin 1^{\prime \prime}$.	og R $\sin 1^{\prime \prime}$.	Chains in $1^{\prime \prime}$.		Seconds in one Chain.		$\begin{gathered} \text { English Miles } \\ \text { in a } \\ \text { Degree. } \end{gathered}$	
				Latitude.	Long. itude.	Latitude.	Longitude.	Latitude.	Longitude.
- 1							"		
6220	$0 \cdot 1878744$	9•8546982	$0 \cdot 1872368$	1.5390	0.7156	0.6498	$1 \cdot 3973$	$69 \cdot 25$	32.20
6230	8779	$9 \cdot 8522835$.	2474	1.5390	$0 \cdot 7117$	0.6498	$1 \cdot 4051$	$69 \cdot 26$	32.03
6240	8814	9•8498516	2579	1.5391	0.7077	0.6497	$1 \cdot 4130$	$69 \cdot 26$	31.85
6250	8849	74022	2684	1.5391	0.7037	$0 \cdot 6497$	$1 \cdot 4210$	69.26	31.67
6300	8884	49352	2789	1.5391	0.6997	0. 6497	$1 \cdot 4291$	$69 \cdot 26$	31.49
6310	8919	$9 \cdot 8424503$	2893	1.5392	0.6957	$0 \cdot 6497$	$1 \cdot 4373$	6926	31.31
6320	8954	9•8399475	2997	1.5392	0.6917	0.6497	1.4456	$69 \cdot 26$	31.13
6330	8988	74262	3099	1.5393	$0 \cdot 6877$	0.6497	$1 \cdot 4540$	$69 \cdot 27$	$30 \cdot 95$
6340	9022	$\begin{array}{r}48866 \\ \hline\end{array}$	3202	1.5393	0.6837	0.6497	1.4626	$69 \cdot 27$	$30 \cdot 77$
6350	9056	$9 \cdot 8323288$	3305	1.5393	0.6797	0.6496	$1 \cdot 4712$	$69 \cdot 27$	$30 \cdot 59$
6400	9090	$9 \cdot 3297512$	3407	1.5394	$0 \cdot 6757$	0. 6496	1.4800	$69 \cdot 27$	$30 \cdot 41$
6410	9124	71546	3508	1.5394	0.6717	$0 \cdot 6496$	1.4888	$69 \cdot 27$	$30 \cdot 23$
6420	9158	45389	3609	1.5394	0.6676	0.6496	1-4978	$69 \cdot 27$	30.04
6430	9191	9.8219035	3709	1.5395	0.6636	0.6496	$1 \cdot 5069$	$69 \cdot 28$	$29 \cdot 86$
6440	9224	9•8192482	2809	1.5395	0.6596	0.6496	$1 \cdot 510{ }^{2}$	$69 \cdot 28$	$29 \cdot 68$
6450	9258	65530	3909	1.5395	0.6555	0.6495	1.5256	$69 \cdot 28$	$29 \cdot 50$
6500	9291	38774	4008	1.5396	0.6514	0.6495	$1 \cdot 5351$	69.28	$29 \cdot 32$
6510	9323	$9 \cdot 8111610$	4106	1.5396	$0 \cdot 6474$	$0 \cdot 6495$	$1 \cdot 544$	$69 \cdot 28$	$29 \cdot 13$
6520	9356	$9 \cdot 8084240$	4205	1.5396	0.6433	$0 \cdot 6495$	$1 \cdot 534$	$69 \cdot 28$	$28 \cdot 95$
6530	9389	56659	4302	1.5397	0.6392	0.6495	1.5644	$69 \cdot 29$	$28 \cdot 77$
6540	9421	28862	4399	1.5397	0.6352	0.6495	1.5744	$69 \cdot 29$	28.58
6550	9453	9-8000850	4496	1.5397	0.6311	0.6494	1.5846	$69 \cdot 29$	28.40
6600	9485	97972618	4592	1.5398	0.6270	0.6494	1.5949	$69 \cdot 29$	28.21
$6{ }_{6} 10$	9517	44164	4688	1.5398	0.6229	$0 \cdot 6494$	1.6054	$69 \cdot 29$	28.03
6620	9549	9 7915485	4783	1.5398	0.6188	$0 \cdot 6494$	1.6160	$69 \cdot 29$	27.85
6630	9580	$9 \cdot 7886577$	4877	1.5399	0.6147	0. 6494	$1 \cdot 6268$	$69 \cdot 29$	$27 \cdot 66$
6640	9612	57439	4972	1.5399	$0 \cdot 6106$	0.6494	$1 \cdot 6378$	$69 \cdot 30$	27.48
6650	9643	97828065	5065	1.5399	$0 \cdot 6065$	0.6494	$1 \cdot 6489$	$69 \cdot 30$	27.29
6700	9674	$9 \cdot 7798454$	5158	1.5400	0.6023	0.6494	1.6602	$69 \cdot 30$	$27 \cdot 11$
6710	9705	68602	5250	1.5400	$9 \cdot 5982$	0.6493	$1 \cdot 6716$	$69 \cdot 30$	26.92
6720	9735	- 388506	5342	1.5400	0:5941	$0^{0} 6493$	$1 \cdot 6833$	69.30	26.73
6730	9766	9.7708163	5434	1.5401	0.5900	$0 \cdot 6493$	1.6951	$69 \cdot 30$	$26 \cdot 55$
6740	9796	9.7677568	5525	1.5401	0.5858	0.6493	1.7070	$69 \cdot 31$	$26 \cdot 36$
(i) 50	9826	- 76718	5615	1.5401	0.5817	0.6493	$1 \cdot 7192$	$69 \cdot 31$	$26 \cdot 17$
6800	9856	9.7615610	5705	1.5402	0.575	0.6493 0.6493	1.7316	69.31	25.99
6810	9886	97584241	5795	1.5402	0.573	0.6493	$1 \cdot 7441$	69.31	$25 \cdot 80$
6820	9916	52605	5883	$4 \cdot 5402$	0.5692	0.6492	1.7569	$69 \cdot 31$	25.61
6830	9945	9.7520699	5972	1.5403	0.5650	$0 \cdot 6492$	1.7698	69.31	25.43
6840	$0 \cdot 1879974$	9•7488520	6059	1.5403	0.5609	0.6492	17830	$69 \cdot 31$	$25 \cdot 24$
6850	$0 \cdot 1880004$	50064	6147	1.5403	0.5567	0.6492	1.7964	$69 \cdot 31$	25.05
6900	0032	9.7423324	6233	$1 \cdot 5404$	0.5525	0.6492	1.8100	$69 \cdot 32$	24.86
6910	0061	9•7390298	6319	$1 \cdot 5404$	0.5483	$0 \cdot 6402$	$1 \cdot 8238$	$69 \cdot 32$	$24 \cdot 67$
6920	0090	56983	6405	1.5404	0.5441	0.6442	1×378	69.32	24.49
6930	0118	${ }^{9} 7323371$	6490	$1 \cdot 5405$	0.5399	0.6492	$1 \cdot 858$	$69 \cdot 32$	$24 \cdot 30$
6940	0146	$9 \cdot 7289460$	6574	1.5405	$0 \cdot 5357$	0.6491	1.8666	$69 \cdot 32$	$24^{2} 11$
6950	0174	9.7200719	6658	${ }_{1}^{1 \cdot 5405}$	0.5315 0.5273	0.6491	1.8814 1.8964	$69 \cdot 32$ $69 \cdot 32$	${ }_{2}^{23 \cdot 92}$
7000	0202	9 7220719	6741	1.5405	0. 5273	0.6491	1.8964	$69 \cdot 32$	23•73

TABLE II.

Corrections to be applied to the logarithms of $R \sin 1^{\prime \prime}$ and $N \sin 1^{\prime \prime}$ in Table I, for Clarke's later values of the dimensions of the earth.

Latitude.	$d\left(\log \mathrm{R} \sin 1^{\prime \prime}\right)$.	$d\left(\log \mathrm{~N} \sin 1^{\prime \prime}\right)$.	Latitude.	$d\left(\log \mathrm{R} \sin 1^{\prime \prime}\right)$.	$d\left(\log \mathrm{~N} \sin 1^{\prime \prime}\right)$.
42.........	-0.0000021	+0.0000063	$56 \ldots$	+0.0000034	+0.0000081
43...... .	17	64	57	37	88
44.........	13	${ }_{67}^{66}$		41	84
45.	09 05	68		4	$8^{85}{ }^{\prime}$
47...........	-0.0000001	70	61.....	51	87
48.	$+0 \cdot 0000003$	T1	62	35	88
49........ .	07	72	63.	58	89
50.	11	74	64.	61	90
51...........	15	70	65.	64	91
52..........	19	76	66.	67	93
53..........	23	77		70	93
	26	79		73	94
55........:	30	80	69.	76	95
			70.	78	96

TABLE III.

Latitudes, \&c., of Base and Correction Lines. 1st and 2nd Systems of Surveys.

	Number of Line.	Latitude.	$\begin{aligned} & \text { Log. } \\ & \mathrm{N} \sin 1^{\prime \prime} . \end{aligned}$	$\underset{P \sin 1^{\prime \prime}}{ }$	$\stackrel{\log }{\mathrm{L}} \mathrm{\sin 1}$	Longitude covered by 489 Chain of westing.
						.
0	1st Base. .	$490000 \cdot 00$	$0 \cdot 187592$	$0 \cdot 0045001$	$0 \cdot 1868852$	803.959
2	Correction.	$1036 \cdot 86$	0618	$0 \cdot 0029573$	2989	05.681
4	2nd Base. .	$2113 \cdot 70$	5662	$0 \cdot 0014047$	3122	07. 421
6	Correction.	$3150 \cdot 52$	5707	$9 \cdot 9998425$	3256	$09 \cdot 177$
8	3rd Base.	$4227 \cdot 33$	5751	$9 \cdot 9982704$	3391	10951
10	3rd Correction.	49530412	$0 \cdot 1875797$	$9 \cdot 9466886$	$0 \cdot 1863527$	$812 \cdot 743$
12	4th Base.	$500340 \cdot 89$	2842	$9 \cdot 9950968$	3662	$14 \cdot 552$
14	Correction	1417.64	5887	$9 \cdot 4334951$	3:97	$16 \cdot 379$
16	[5th Base. .	$2454 \cdot 37$	5932	9•9918831	3931	$18.22 \overline{0}$
18	Correction.	3531.08	5976	$9 \cdot 9902611$	4064	20.089
20	6th Base...	50460777	0-1876021	9•0886289	$0 \cdot 1864198$	821.972
22	Correction.	- $5644 \cdot 4$	6065	$9 \cdot 9869863$	4331	$23 \cdot 875$
24	7th Base...	51072109	6110	$9 \cdot 9853334$	4466	95.796
26	Correction.	1757.72	6154	9 9836700	4599	$27 \cdot 737$
28	8th Base..	$2834 \cdot 33$	6199	9 9 3819961	473.3	29.698
30	8th Correction	513910.92	$0 \cdot 1876243$	$9 \cdot 9803116$	$0 \cdot 1864867$	$831 \cdot 678$
32	\|9th Base ...	49 47.49	6287	9.9786163	4998	-33.680
34	Correction	$520024 \cdot 04$	6332	$9 \cdot 9769104$	5131	35.701
36	10th Base.	${ }^{11} 00.57$	6376	$9 \cdot 9751934$	5264	$37 \cdot 744$
38	Correction.	$2137 \cdot 08$	6420	$9 \cdot 973+657$	5395	$39 \cdot 808$
40	11th Base.	$523213 \cdot 57$	0.1876464	$9 \cdot 91597$	$0 \cdot 188559$	841.894
42	Correction	4250.04	6508	$9 \cdot 96496$	5461	$44 \cdot 001$
44	12th Base.	$\begin{array}{r}53 \\ \hline 26.49 \\ \hline 104\end{array}$	6552	$9 \cdot 116 \pm 156$	59.91	$46 \cdot 130$
46	Correction	$530402 \cdot 92$	6595	$9 \cdot 9614429$	5920	$48 \cdot 282$
48	13th Base.	14.39'33	6640	$9 \cdot 154535$	6055	$50 \cdot 456$

TABLE IV.
Latitudes, \&c., of Base and Correction Lines.
(Third System of Survey.)

TABLE IV－Concluded．
Latitude，\＆c．，of Base and Correction Lines－Conctuded．
（Third System of Survey．）

	Name of Line．	Latitude．	$\mathrm{N}_{\mathrm{sin} 1^{\prime \prime \prime} .}^{\text {Log. }}$	$\underset{\mathbf{P} \sin 1^{\prime \prime} .}{\text { Log. }}$	$\log _{\mathbf{L}^{\prime \prime}}$	$\begin{gathered} \text { Lumeritud } \\ \text { covert ty } 486 \\ \text { Chain:. } \end{gathered}$
106	Correction	$581513 \cdot 66$	$0 \cdot 1877839$	9）90803914	$0 \cdot 1869153$	
108	$28 t h$ Base	2541 \％ 7	7879	$9 \cdot 9067591$	9773	$1002 \cdot 389$
	2sth Correction	$3609 \cdot 78$	7919	9．9046039	$0 \cdot 1869993$	05.386
	29th Base ．．．．．．．	$4637 \cdot 81$	7959	9．912433：	$0 \cdot 1870013$	08.418
	Corrertion．．	57	7999	（1）צ¢以迷	${ }^{0133}$	$11 \cdot 487$
	30th Base		8039 8078		${ }_{0}^{0233}$	14．593
118	Correction．．	$18.01 \cdot 81$	8078	418958337	0370	17.735
	31st Base．	2829		9．833609	0487	
	Correction ．．	38.57 .71	8157	9．8913．5is	${ }^{06607}$	24．136
${ }_{126}^{124}$	Correction．	593：	－ $\begin{array}{r}8196 \\ 0.1878235\end{array}$		0．1870840 ${ }^{\text {0724 }}$	10 ${ }^{24} 30 \cdot 39696$
			0187825	（1）	01878	10 \％

TABLE V．

Chord Azimuths，Deflections，Deffection Offiseta，dec，for Base Lines．
（First and Second Systems of Survey．）

戠	Chord Azimuth．	Chord Azimuth．	Deflection，	Deflection．	Deflection Offset for 1 Chain Distance．	Longitude covered by 1 Range．	
	c ．＂	－	，＂	\checkmark	Inches．	s.	
1	895657.4	$89 \cdot 9493$	605.2	$0 \cdot 1014$	1.402	323	0
2	$55 \cdot 1$	－ 9486	$09 \cdot 8$	－1027	1.420	325	4
3	$52 \cdot 8$	－9480	14.5	－ 1040	1.438	$32 \cdot 7$	8
4	$50 \cdot 4$	－9473	$19 \cdot 2$	1053	1.45	$33 \cdot 0$	12
5	$48 \cdot 0$	－ 9467	$24 \cdot 0$	－ 1066	1.474	$33 \cdot 2$	16
6	$895645 \cdot 6$	$89 \cdot 9460$	628.8	$0 \cdot 1080$	1－4013	$33 \cdot 5$	20
7	$43 \cdot 1$	－ 94.33	33．8	－ 1094	1．512	337	24
8	$40 \cdot 6$	－ 9446	38.8	－ 1108	1．531	34.0	28
9	$38 \cdot 1$	－ 9439	$43 \cdot 8$	－ 1122	$1 \cdot 551$	34.2	32
10	$25 \cdot 5$	－9432	$49 \cdot 0$	－ 1136	1570	$34 \cdot 5$	36
11	$895632 \cdot 9$	89.9425	654.3	$0 \cdot 1151$	1.591	$38 \cdot 8$	40
12	30．2	． 9417	$\begin{array}{r}59.6 \\ \hline\end{array}$	$\cdot 1165$	1．611	$35 \cdot 1$	44
13	$27 \cdot 5$	－9410	$705 \cdot 0$	－ 1180	1.632	$35 \cdot 4$	48

TABLE VI.

Chord Azimuths, Deflections, Deflection Offsets, \&c., for Base Lines.
(Third System of Survey.)

	Chorl Arimuth Sexagesimal.	Chord Azimuth Decimal.	Deflection Sexagesimal	Deflection Decimal.	Deflection Offset for 1 Chain Distance.	Longitude covered by 1 Range.	
	- , "	-	, "	-	Inches.	s.	
1	$895658 \cdot 5$	$89 \cdot 9496$	603.0	0. 1008	1.394	$32 \cdot 1$	0
2	$56 \cdot 3$	- 3400	07.5	1021	1.411	$32 \cdot 3$	4
3	54.0	-9483	12.0	1033	1.429	$32 \cdot 5$.
4	51.7	-947	$16 \cdot 6$	1046	$1 \cdot 447$	$32 \cdot 8$	12
5	49.4	9471	$21 \cdot 3$	- 1059	1.465	33.0	16
6	$47 \cdot 0$	9464	$26 \cdot 1$	1072	1.483	$33 \cdot 2$	20
7	$44 \cdot 6$	9454	$30 \cdot 9$	1086	1.31	$33 \cdot 5$	24
8	${ }^{42} \cdot 1$	-9450	$35 \cdot 8$	1099	1.520	$33 \cdot 7$	28
9	$39 \cdot 6$	$\cdot 943$	$40 \cdot 8$	1113	1.53%	$34 \cdot 0$	32
10	$37 \cdot 1$	-9436	$45 \cdot 9$	-1127	1.058	$34 \cdot 3$	36
11	$34 \cdot 5$	9429	$51 \cdot 0$	1142	1.59	$34 \cdot 5$	40
12	$31 \cdot 9$	9422	$56 \cdot 2$	$\cdot 1156$	1.598	$34 \cdot 8$	4
13	$29 \cdot 3$	9415	701.5	$\cdot 1171$	1.619	35.1	48
14	$26 \cdot 6$	9417	06.9	-1186	1.639	354	52
15	23.8	-9399	12.4	-1201	1.660	357	56
16	$21 \cdot 0$	-9392	18.0	- 1217	1.682	360	60
17	18.2	9384	23.7	-1232] 704	36.3	64
18	$15 \cdot 3$	9376	$29 \cdot 4$	-124	1.726	36.6	68
19	$12 \cdot 4$	9368	$35 \cdot 3$	126\%	1749	$36 \cdot 9$	72
20	09.4	-9359	$41 \cdot 3$	- 1281	1.772	37.3	76
21	$06 \cdot 3$. 9351	47.4	-1298	1.795	$37 \cdot 6$	80
22	03.2	-9342	53.6	-1316	1.819	$37 \cdot 9$	84
23	0001	. 9335	$59 \cdot 8$	-1333	1.843	38.3	88
24	$895556 \cdot 9$	9325	806.3	1351	1.867	$38 \cdot 6$	92
25	$53 \cdot 6$	9316	$12 \times$	-1369	1.892	$39 \cdot 0$	96
26	$50 \cdot 3$	9306	195	1387	1.418	$39 \cdot 4$	100
27	$46 \cdot 8$	9297	263	- 1406	1.344	$39 \cdot 8$	104
28	43.4	9287	$33 \cdot 3$	- 1426	1.971	$40 \cdot 2$	108
29	$39 \cdot 9$	9277	413	$\cdot 1445$	$2 \cdot 998$	$40 \cdot 6$	112
30	36.2 32.6	9267	47.6 54.9	1465	2.026	41.0 41.4	116 120
32	$28 \cdot 8$	9247	9024	1514	$2 \cdot 083$	$41 \cdot 8$	124

TABLE VII．
Chord Azimuths，Deflections，Deflection Offsets，Jogs，\＆c．，for Correction Lines．
（First and Second Systems of Survey．）

	Chord Azimuth．	Chorl Azimuth．				$\underbrace{$ North side of Road．}$_{$ LengTh Rangi on Tion $}$	of one Correc－ Line． South side of Road．	Jog．		$\frac{\text { 它 }}{\text { 会 }}$
	－＇＂		＂	－	in inches	chains．	chains．	chains．	links．	
1	895656.9	89.9491	600.2	0． 1017	$1 \cdot 406$	490.751	$487 \cdot 266$	$3 \cdot 485$	$14 \cdot 5$	2
2	$54 \cdot 6$	． 9485	$10 \cdot 8$	1030	1.424	773	244	529	14.7	6
3	52.3	9479	$15 \cdot 5$	1043	1.442	－796	－ 222	． 574	14.9	10
4	49.9	9472	20.2	1056	1.460	$\cdot 818$	$\cdot 200$	－618	$15 \cdot 1$	14
5	$47 \cdot 5$	9465	$25 \cdot 0$	1069	1.478	$\cdot 841$	177	－664	$15 \cdot 3$	18
6	8956451	89．9459	629.8	0•1083	$1 \cdot 497$	490.865	$487 \cdot 154$	3.711	15.5	22
7	42.7	． 9452	$34 \cdot 7$	－ 1096	1.516	． 888	131	758	15.7	26
8	$40 \cdot 2$	9445	39.7	－ 1110	1.535	913	－107	806	$15 \cdot 9$	30
9	37.6	9438	44.8	－ 1124	1． 554	937	－083	－854	$16 \cdot 1$	34
10	35.0	9430	$50 \cdot 0$	－1139	1.574	962	－058	－904	$16 \cdot 3$	38
11	$895632 \cdot 4$	89＇．9423	$6 \quad 55.2$	$0 \cdot 1153$	1.594	$490 \cdot 987$	$487 \cdot 034$	3.953	16.5	42
12	297	9416	700.6	$\cdot 1168$	1.615	$491 \cdot 012$	－008	$4 \cdot 004$	16.7	46

TABLE VIII．

Chord Azimutas，Deflections，Deflection Offsets，Jogs，\＆c．，for Correction Lines．
（Third System of Survey．）

	Chord Azimuth Sexagesimal．	Chord Azimuth Decimal．				Length Range on tion	OF ONE Correc－ ine． South side of Road．	Jogs．		
	－，＂	－	，＂	\checkmark	Inches．	chains．	chains．	chains．	chains．	
1	895657.4	89.9493	705.2	$0 \cdot 1014$	$1 \cdot 403$	$487 \cdot 719$	$484 \cdot 297$	$3 \cdot 421$	0．143	2
2	$55 \cdot 1$	＇9486	$09 \cdot 8$	1027	$1 \cdot 420$	． 740	$\cdot 276$	463	144	
3	52.9	9480	14.3	1040	$1 \cdot 438$	762	255	507	146	10
4	$50 \cdot 5$	9474	$19 \cdot 0$	1053	1．456	．84	233	551	148	14
5	48.2	$\cdot 9467$	23.7	1066	$1 \cdot 474$	806	212	． 594	－150	18
6	$45 \cdot 8$	9461	28.5	1079	1.492	－829	－188	－641	152	22
7	$43 \cdot 3$	9454	33.4	1093	$1 \cdot 510$	－852	－167	－685	154	26
8	40.9	9447	$38 \cdot 3$	1106	1.529	－875	－144	731	155	30
9	$38 \cdot 3$	$\cdot 9440$	$43 \cdot 4$	1120	$1 \cdot 548$	－899	120	779	157	34
10	$35 \cdot 8$	9433	$48 \cdot 4$	－1134	1.568	． 923	－097	－ 826	159	38
11	$33 \cdot 2$	9426	53.6	1149	1.588	$\cdot 947$	$\cdot 072$	$\cdot 875$	161	42
12	$30 \cdot 6$	9418	$58 \cdot 8$	1163	$1 \cdot 608$	－ 472	－047	－925	164	46
13	$27 \cdot 9$	9411	704.2	－1178	$1 \cdot 629$	$487 \cdot 997$	$484 \cdot 024$	3.973	166	50
14	$25 \cdot 2$	9403	09.6	－1193	$1 \cdot 650$	$488 \cdot 023$	$483 \cdot 998$	4.025	168	54
15	22.4	9396	15.2	1209	1.671	$\cdot 049$	－972	－077	170	58
1.6	$19 \cdot 6$	－9388	$20 \cdot 8$	1224	$1 \cdot 693$	$\cdot 075$	$\cdot 946$	－ 129	172	62
17	16.7	$\cdot 9380$	$26 \cdot 6$	1241	1.715	102	$\cdot 919$	183	174	66
18	$13 \cdot 8$	－9372	$32 \cdot 4$	1257	1.737	－130	892	238	177	70
19	$10 \cdot 9$	－9364	$38 \cdot 3$	1273	1.760	－158	865	293	179	74
20	07.8	． 93555	44.4 50.5	${ }^{1290}$	1.783 1807	$\cdot 187$	837 809	－ 3500	181	
21	048	9337	50.5	1307	1807	215	809 79	$\cdot 406$ -466	－184	88
22	$\begin{array}{llll}89 & 56 & 01 \\ 89 & 7\end{array}$	． 9338	56.7 803.0	${ }^{1324}$	1.831	245	769	－ 425	189	90
23 24	$895558 \cdot 5$.9329 .9320	803.0 09.6	－1342	1.855 1.879	－275	759 780	525 586	189 191	90 94
25	51.9	－9311	16.2	1378	1．905	－338	690	648	－194	98
26	$48 \cdot 6$	． 9302	$22 \cdot 9$	1397	1.931	369	658	711	－196	102
27	451	－9292	29.8	1416	$1 \cdot 957$	402	627	775	199	106
28	$41 \cdot 6$	$\cdot 9282$	$36 \cdot 8$	－1436	1．984	434	594	840	202	110
29	$38 \cdot 0$	－9272	$44 \cdot 0$	1456	2.012	－469	561	908	204	114
30	$34 \cdot 4$	9262	$51 \cdot 2$	1476	$2 \cdot 040$	303	528	4.975	204	118
31	$30 \cdot 7$	925	$58 \cdot 6$	$\cdot 1496$	2.068	538	443	5.045	$\cdots 10$	122
32	895526.9	89：9241	906.2	－1517	$2 \cdot 09{ }^{\text {F }}$	458854	483.458	5－116	213	126

TABLE IX.

Latitude, with Logarithms of Secant and Tangent for the North Boundary of each Section, and the widths of Quarter Sections on such Boundaries.
(First and Second Systems of Survey.)

TABLE IX—Continued.
Latitude, with Logarithms of Secant and Tangent, \&e.-Continued.

TABLE IX—Continued.
Latitude, with Logarithms of Secant and Tangent, \&c.-Continued.

TABLE IX—Continued.
Latitude, with Logarithms of Secant and Tangent, \&c.-Continued.

	Section.	Latitude ${ }^{\text {¢ }}$	Sec Φ.	Difference for 10 Cbains.	Tan ${ }^{\text {¢ }}$.	$\begin{aligned} & \text { Difference } \\ & \text { for } \\ & 10 \text { Chains. } \end{aligned}$	Quarter Section.
27	1	$51^{\circ} \cdot 3141$	$0 \cdot 20409$		0.09651		40.144
	12	3288	23		73		131
	13	3436	36		19		118
	24	3583	50		0.09719		105
	25	3730	64		42		092
	36	3878	78		65		078
28	1	4025	92		88		065
	12	4172	$0 \cdot 20506$	9	0.09811	\%	052
	13	4320	- 20	-	- 34		039
	24	4467	34	§	57	\%	026
	25	4614			- 79		. 013
	36	4762	62		0.09902		$40 \cdot 000$
29	1	4909	76		25		$39 \cdot 987$
	12	5056	90		48		974
	13	5204	020604		71		961
	24	5351			${ }^{94}$		947
	25		33		0.100 17		934
	36	5646	47		40		921
30	1	5793	61		63		908
	12	5940	75		86		894
	13	6088	89		$0 \cdot 10109$		881
	24	6235	0.207 03		32		888
	25				- 514		80.85
	36	$51 \cdot 6530$	$0 \cdot 20731$		$0 \cdot 10178$		39•842
41	36	$52 \cdot 6255$	02163		$0 \cdot 11699$		39.918
42					$0 \cdot 11722$		904
	12	6549	$0 \cdot 21709$		45		891
	13	6697	24		69		877
	24	6844	38		$\cdot 192$		883
	25	6991	53		0.11815		- 8580
	36	7139	68		38		$39 \cdot 836$ $40 \cdot 166$
43		7286	82		61		152
	12	7433	96		84		138
	13	7281	0.21811		$\begin{array}{r}0.11908 \\ \hline 0\end{array}$		111
	24	7728	26		30 54		${ }_{0}^{111}$
	25	7875	40 55		54 77		0808
	36	8023	55		77		083
44		8170	70		$0 \cdot 12000$		069
	12	8317	85		24		056
	13	8465	$0 \cdot 21900$		46		${ }^{042}$
	24	8612	14		70		028
	25	8759	29		$0.121 ~$		$40 \cdot 000$
	36	8907	44		$0 \cdot 12116$		
45		9054	58		40		39.986
	12	9201	73 88		62		972 958
	13	9849	$\begin{array}{r}88 \\ 0.220 \\ \hline 03\end{array}$	$\stackrel{8}{8}$	86 0.12209	줄	$\begin{array}{r}958 \\ \hline 945\end{array}$
	24	9496	0.22003 18 18	$\stackrel{0}{8}$	0.12209 32	$\stackrel{\square}{-}$	94.
	25	9643 9791	18 33		${ }^{32}$		917
	36	9791	33		5		
46					79		903
	12	53.6085	63		$0 \cdot 12302$		890
	13	0233	77		4		88
	24	0380	92		49		

TABLE IX-Concluded.

Latitude, with Logarithms of Secant and Tangent, de.-Concluded.

\dot{A}	Section.	Latitude Φ.	See ${ }^{\text {a }}$.	Difference for 10 Chains.	Tan ${ }^{\text {¢ }}$.	Difference for 10 Chains.	Quarter Section.
47	25 36	$53^{\circ} \cdot 0527$ 0665	$\begin{array}{r}0.22107 \\ 21 \\ \\ \\ \hline\end{array}$		$0 \cdot 12371$ 95		848 39.834 40.168
	12	0802	36 51		0.124.19		
	13	1117	66		-1-4 41		4) 140
	24 25	1264 1411	81		4.5 88		126
		1559	0.292 ${ }^{96}$		- $0.125 \begin{array}{r}88 \\ 12 \\ 34\end{array}$		$\begin{aligned} & 112 \\ & 098 \end{aligned}$
48		1706	26		58		070
	12		41		81		056
	13	${ }_{2} 2011$	56		0.126 04		042
	24 25 25	2148	71 86		- 28		028
	25 36	2295 2443	$\begin{array}{r}\text { r } \\ \hline 86 \\ 0.223 \\ \hline 00\end{array}$		51		014 40.000
	36	2443	$0 \cdot 22300$		74		$40 \cdot 000$

TABLE X.

Latitude, with Lugarithms of Secant and Tangent for the north boundary of each Section, and width of Quarter Sections on such boundaries.
(Third Systens of Survey.)

	Section.	Latitude ${ }^{\text {¢ }}$.	Sec ${ }^{\text {. }}$.	$\begin{aligned} & \text { Difference } \\ & \text { for } \\ & 10 \text { Chains. } \end{aligned}$	Tan ©	Difference for 10 Chains.	Quarter Section.
1	36	49×0000	$0 \cdot 18306$		0.06084		$40 \cdot 000$
	1 12 12	${ }_{0}^{0147}$	19		0.06106		$39 \cdot 988$
	13	1438	44		5		976 964
	24	$00^{0.0}$	57		73		964 98
	25 36		${ }_{82} 6$		0.00		941
		08.4	82		$0 \cdot 06217$		99
2	1	1020					
	12	1165 1311	$0 \cdot 184$	E	621	-	
	13 24	$1 \begin{aligned} & 1311 \\ & 1456\end{aligned}$	$\begin{array}{r}20 \\ 33 \\ \hline\end{array}$	है	0.063	E	8893
	25	1456 1603		$=$	0.0630^{-9}	5	882
	36	1747	59				$39 \cdot 58$
					51		$40 \cdot 143$
3		1894	71				
	12	2034	81 84 97		96		119
	13	$\stackrel{2156}{2330}$	0.185 ${ }^{97}$		$0 \cdot 06418$		107
	25	2476	0.185 10		41		095
	36	2621	3		63 85		084 112
4	1						
4	12	${ }_{2012}$	48 61		$0.065 \quad 08$ 30		060

TABLE X-Continued.

Latitude, with Logarithms of Secant and Tangent for each Section, and width of - Quarter Sections-Continued.

$\begin{aligned} & \dot{H} \\ & \text { 炭 } \\ & \text { B } \\ & 0 \end{aligned}$	Section.	Latitude ${ }^{\text {. }}$	See ${ }^{\text {¢ }}$.	Difference for 10 Chains.	Tan ${ }_{\text {¢ }}$	Difference for 10 Chains.	Quarter Section.
5	13	$49^{\circ} 3059$	$0 \cdot 18574$				
	24	3203	-185 87		${ }^{0.0659} 52$		40.036 024
	25	3350	$0 \cdot 18600$		97		012
	36	3495	12		$0 \cdot 06619$		000
	1	3641	25		42		39.988
	12	3786	38		64		976
	13	3932	¢1		86		964
	24	4077	6.4		0.06708		959
	25	42.24	77		31		940
		4368			53		928
6	1	4515	$0 \cdot 18703$		76		916
	12	4659	15		98		904
	13	4806	$\underline{2}$		$0 \cdot 06820$		892
	24	4951	41		43		880
	25				65		868
	36	5242	67		$n \mathrm{~s}$		$39 \cdot 858$ $40 \cdot 145$
7	1	5388	80		$0 \cdot 06910$		133
	12	5153	93		-32		121
	13	9680	$0 \cdot 18806$		54		109
	24	5×24	- 19		7		018
	25	5971	32		699!		1185
	36	6115	45		0.07021		073
8	1	6262	5 S	앙	44	\%	060
	12	6407	71	8	66	8	048
		693		$\overline{8}$	89	\%	036
	24	bigs	${ }^{-97}$		0.07111		024
	25 36	6is4t	0.18910 23		33 56		112 0100
		6969			56		010
9	1	7136	36		\%		39-988
	12	7280	49		0.07200		976
	13	749	62		$\stackrel{23}{4}$		964
	24	7571	75				951
	25	7718	88		68		939
	36	T663	0.190 01		90		927
10	1	8009	14		0.07312		915
	12	81.4	27		35		903
	13		419		57		891
	24	8445	53		79		87
	25	859	636		0064		${ }^{\text {siti }}$
	36	8736	79		24		$33 \cdot 895$ $40 \cdot 147$
11	1	5883					135
	12	902	$0 \cdot 191$		69		122
	13	9174	$\begin{array}{r}19 \\ \hline\end{array}$				110
	24	31319			0.07514		1998
	25 36	9465	$\begin{aligned} & 45 \\ & 58 \end{aligned}$		36 59		1086 073
	36	9\%10			59		043
12	- 1	9756	71		81		91
	12	9901	84		0.07603		080
	$\stackrel{13}{13}$	$50^{\circ} .0047$	0.19211		26 48		927

TABLE X-Continued.
Latitude, with Logarithms of Secant and Tangent for each Section, and width of Quarter Sections-Continued.

| |
| ---: | ---: | ---: | ---: | ---: | ---: |

TABLE X—Continued.
Latitdde, with Logarithme of Secant and Tangent for each Section and width of
Quarter Sections-Continued.

	Section.	Latitude ¢.	Sec ${ }^{\text {¢ }}$.	$\begin{aligned} & \text { Difference } \\ & \text { for } \\ & 10 \text { Chains. } \end{aligned}$	Tan ${ }^{\text {¢ }}$.	Difference for 10 Chains.	Quarter-
	13 24 25 36	$50^{\circ} 7909$ 8909 8054 8200 8345	0.19918 31 45 48 58		$\begin{array}{r} 0.088 \quad 39 \\ 62 \\ 84 \\ 0.08907 \end{array}$		$39 \cdot 962$ 950 937 925 985
22	$\begin{aligned} & 1 \\ & 12 \\ & 13 \\ & 24 \\ & 25 \end{aligned}$		$\begin{array}{r} 72 \\ 85 \\ 99 \\ 0.20013 \\ 26 \end{array}$	$\begin{aligned} & \text { 엉 } \\ & 880 \end{aligned}$		$\begin{aligned} & \text { 응 } \\ & \text { O} \end{aligned}$	912 999 898 887 874 862
	36	9218	40	$\stackrel{\circ}{\circ}$	42	-	
23	$\begin{aligned} & 1 \\ & 12 \\ & 13 \\ & 24 \\ & 25 \\ & 36 \end{aligned}$	$\begin{array}{r} 9365 \\ 9509 \\ 9956 \\ 9800 \\ 9977 \\ 51 \cdot 0091 \end{array}$	$\begin{array}{r} 53 \\ 67 \\ 81 \\ 94 \\ 0.20108 \\ 21 \end{array}$		r $\begin{array}{r}65 \\ 87 \\ \hline\end{array}$ 0.09110 32 55 78 77		140 127 114 102 089 076
24	1 12 12 13 24 25 36	0238 0383 0389 0529 0674 0820 0965	$\begin{array}{r} 35 \\ 49 \\ 63 \\ 76 \\ 90 \\ 020203 \end{array}$		0.09260 22 45 68 90 0.09313${ }^{90}$		064 064 051 038 035 005 013 000
25	1 12 13 13 24 25 36	1111 1256 1402 1047 1647 1834 1838	17 31 44 48 58 78 58		$\begin{array}{r}\text { r } \\ \\ 35 \\ 58 \\ 81 \\ 0.094 \\ 03 \\ 26 \\ 48 \\ \hline 8\end{array}$		$39 \cdot 987$ 975 968 999 999 996 994
26	1 12 13 13 24 25 36	1985 2129 2297 2276 2420 2567 2712	[$\begin{array}{r}\text { a } \\ 0.203 \\ 13 \\ 27 \\ 40 \\ 40 \\ 54 \\ 68\end{array}$		($\begin{array}{r}71 \\ 93 \\ 0.095 \\ 16 \\ 39 \\ 61 \\ 64 \\ 84\end{array}$		911 898 885 883 883 860 $\{39847$ 40.154
27	1 12 13 13 24 25 36	2858 3003 3003 3199 3294 3440 3585	82 92 95 0.20409 23 37 31 51	$\begin{aligned} & \text { No } \\ & \text { ¢్ర } \\ & \text { O} \end{aligned}$	$\begin{array}{r} 0.096 \\ 07 \\ 29 \\ 52 \\ 54 \\ 79 \\ 0.097 \\ 97 \end{array}$	\%	141 129 116 1163 090 077
28	$\begin{aligned} & 1 \\ & 12 \\ & 13 \\ & 24 \\ & 25 \\ & 36 \end{aligned}$	3731 3816 4866 41023 4367 4314 4458	$\begin{array}{r} 64 \\ 78 \\ 92 \\ 0.20506 \\ 20 \\ 33 \end{array}$		$\begin{array}{r} 42 \\ 65 \\ 87 \\ 0.09810 \\ 33 \\ 55 \end{array}$		164 051 039 036 006 000
29	$\begin{array}{r} 1 \\ 12 \\ 13 \\ 24 \\ 25 \\ \mathbf{3 6} \end{array}$	4605 4749 4896 5040 5187 5332	$\begin{array}{r} 47 \\ 61 \\ 75 \\ 89 \\ 0.20603 \\ 17 \end{array}$		r 0.099 78 00 29 46 46 69 91		$\begin{array}{r}39.987 \\ \hline 974 \\ 969 \\ 999 \\ 996 \\ 993 \\ \hline 923\end{array}$

TABLE X-Continued.
Latifude, with Logarithms of Secant and Tangent for each Section, and width of Quarter Sections-Continued.

	Section.	Latitude ${ }^{\text {d }}$.	Sec Φ	Difference for 10 Chains.	Tan ${ }^{\text { }}$.	Difference for 10 Chains.	Quarter Section.
30	1	$51 \cdot 5478$	$0 \cdot 20631$		$0 \cdot 10014$		910
	12	515063	44		36		897
	13	5769	S*		59		884
	24	5914	72		82		$39 \cdot 871$
	25	(injo	86		$0 \cdot 1010.5$		858
	36	6205	$0 \cdot 20-00$		27		$\left\{\begin{array}{l}39 \cdot 846 \\ 40 \cdot 156\end{array}\right.$
31	1	(\%351	14		50		143
	12	(6496)	28		72		130
	13	66142	42		- $102{ }^{95}$		117
	24		\%f		$0 \cdot 10218$		104
	25	6934	70		41		091
	36	7078	S		63		078
32	1	Tosi	99		86		065
	12		$0.20{ }^{2}$		$0 \cdot 10308$		053
	13		24		31		039
	24	7665	40		54		026
	25	7×07	54		77		013
	36	7451	68		99		000
33			82		$0 \cdot 10423$		$39 \cdot 987$
	12	$8: 43$			- 45		974
	13	\$385)	0.209119		68		961
	24	8534	$\stackrel{2}{4}$		-90		944
	25	Stisio	3.		$0 \cdot 10513$		93%
		88.5	52		$\bigcirc 35$		922
34		8971		$\begin{aligned} & \hat{\Xi} \\ & \underline{\Xi} \end{aligned}$	58		909
	12	9116	80	S	81	-	
	13	9262 9407 985	0.94 0.2108		0.106 04	\%	883
	$\stackrel{24}{25}$	9407 9553	0.21008 22		26 49 49		869 856
	3 f				72		\{ $39 \cdot 843$
	3	9698	36		72		$\left\{\begin{array}{l}\text { 40.158 }\end{array}\right.$
35	1	9844	51		05		
	12	-9989	65		$0 \cdot 10717$		132
	13	$52^{\circ} \cdot 0135$	79		40		119
	24	0280	$0.911{ }^{93}$		63		106
	25 36	0427	$0 \cdot 21107$		0.108^{86}		092
		0571	21		$0 \cdot 10808$		079
36	1	0718	36				
	12	0862	50		54		056
	13	1009	64		77		040
	24	1153	78		0.10999		026
		1300 144	0.212 ${ }^{92}$		$0 \cdot 10922$		013
	36	1444	$0 \cdot 21206$		45		000
37	1	1591	21		68		$39 \cdot 987$
	12	1735	35		0.110		-974
	${ }_{24}^{13}$	1832 2027	$\stackrel{49}{69}$		$0 \cdot 11013$		960
	24 25	2027 2173	63 77 7		36 59 59		947
	36	2318	92		59 81		934 921
38	1	2464	0.21306		$0 \cdot 11104$		
	12	2609	20		- 27		894
	13	2755	34		50		881
		2901	49		73		868

TABLE X-Continued.
Latitude, with Logarithms of Secant and Tangent for each Section, and width of Quarter Sections-Continued.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 产 \& Section. \& Latitude \({ }^{\text {. }}\) \& See \({ }^{\text {P }}\) \& \[
\begin{aligned}
\& \text { Difference } \\
\& \text { for } \\
\& 10 \text { Chains. }
\end{aligned}
\] \& Tan \({ }^{\text {a }}\). \& \[
\begin{aligned}
\& \text { Difference } \\
\& \text { for } \\
\& 10 \text { Chains. }
\end{aligned}
\] \& Quarter
Section. \\
\hline \& 25
36 \& \(52 \times 3048\)
3191 \& 1921363 \& \& 0.21196
0.11218 \& \& \\
\hline 39 \& \[
\begin{aligned}
\& 1 \\
\& 12 \\
\& 13 \\
\& 24 \\
\& 25 \\
\& 36
\end{aligned}
\] \& \begin{tabular}{l}
3337 \\
3482 \\
3828 \\
3673 \\
373 \\
3919 \\
4064 \\
\hline
\end{tabular} \& r
0.21492
96
20
\(3+\)
49
49
63 \& \& \& \% \& 147
1134
130
107
093
080 \\
\hline 40 \& 1
12
12
13
24
23
23
36 \& \& \& \& r

$0.11 \pm$
01
24
46
46
69
92
90 \& \& 067
0.7
0.3
$0+0$
027
013
000

\hline 41 \& 1
12
12
13
24
25
25
36 \& \& 64
$\begin{gathered}64 \\ 7 \times \\ 92 \\ 0.216 \\ 07 \\ 21 \\ 21\end{gathered}$
35 \& \& \& \& $39 \cdot 987$
977
960
9960
936
938
920

\hline 42 \& 1
12
12
13
24
2.5

36 \& \& $$
\begin{array}{r}
50 \\
64 \\
79 \\
79 \\
0 \cdot 217 \\
93 \\
08 \\
20
\end{array}
$$ \& \& \& \&

\hline 43 \& 1
1
13
13
13
24
2.
24

36 \& \& $$
\begin{array}{r}
37 \\
51 \\
615 \\
80 \\
95 \\
0.21809
\end{array}
$$ \& \& \& \& 149

135
182
102
098
095
081

\hline 44 \& $$
\begin{array}{r}
1 \\
12 \\
13 \\
24 \\
25 \\
36
\end{array}
$$ \& \& 24

33
33
53
67
82
96
96 \& \& \& \& 068
054
041
0.97
017
000

\hline 45 \& 1
1
12
13
24
25
25

36 \& \& $$
\begin{array}{r}
0.21911 \\
25 \\
40 \\
55 \\
69 \\
84
\end{array}
$$ \& \% \& \& \% \& $39 \cdot 98 \%$

973
975
950
996
936
919

\hline 46 \& $$
\begin{array}{r}
1 \\
12 \\
13 \\
24 \\
25 \\
36
\end{array}
$$ \& \& r

0.288
020
13
24
48
57

71 \& \& $$
\begin{array}{r}
0.12202 \\
05 \\
48 \\
49 \\
79 \\
0.12316
\end{array}
$$ \& \&

\hline
\end{tabular}

TABLE X—Continued.
Latitude, with Logarithms of Secant and Tangent for each Section, and width of Quarter Sections-Continued.

$\begin{aligned} & \dot{\tilde{E}} \\ & \stackrel{y}{x} \\ & \stackrel{y}{E} \end{aligned}$	Section.	Latitude ${ }^{\text {¢ }}$.	Sec ${ }^{\text {¢ }}$.	Difference for 10 Chains.	Tan ${ }^{\text {. }}$	Difference for 10 Chains.	Quarter Section.
47	1	, $53^{\circ} 0321$	$0 \cdot 22086$		$0 \cdot 12339$		$40 \cdot 151$
	12	- 0467	$0 \cdot 22101$		62		137
	13	0612			85		123
	24	0758	30		$0 \cdot 12408$		110
	25	0903	45		- 31		096
	36	1049	59		54		082
48	1	1195	74 89		0.125 ${ }_{00}^{77}$		068 055
	12	1340 1486	89 $0.222 \quad 04$		$0 \cdot 12500$ 23		055
	13	1631	0222		${ }_{46}^{23}$		027
	25	1777	33		69		014
	36	1922	48		92		000
49		2068	63		$0 \cdot 12615$		$39 \cdot 986$
	12	2213	77		38		972
	13	2359	92		61		958
	24	2504	0.22307		${ }^{84}$		945
	25	2650			$0 \cdot 12707$		931
	36	2795	36		30		917
50	1	2941	51		53		903
	12	3086	66		76		889
	13	3233	81		${ }_{9}^{99}$		875
	24	3377	96		$0 \cdot 12822$		861
	25	3524	$0 \cdot 22410$		45		848
	36	3668	25		68	\%	$\left\{\begin{array}{l}39 \cdot 834 \\ 40 \cdot 166\end{array}\right.$
51		3815		8		앙	153
	12	3959	55	$\stackrel{8}{6}$	0.12914	$\stackrel{0}{0}$	139
	13	4106	70		37		125
	24	4250	- 85		60		111
	25	4397	$0^{0} 222500$		$0 \cdot 130{ }^{83}$		097
	36	4541	14		0.130 06		083
52	1	4688	29		30		069
	12	4832	44		53		055
	13	4979	59		76		042
	24	5123	74		99 0.1819		028
	25 36	${ }_{5414}$	89 0.22604		0.13123 45		014
	36	5414	$0 \cdot 22604$		45		000
53	1	5561	19		68		39-986
	12	5705	34		91		- 972
	13	5852	49		$0 \cdot 13214$		958
	24	5996	63		37		944
	25	6143	79		60		930
	36	6287	93		83		917
54	1	6434	$0 \cdot 22708$		$0 \cdot 13307$		
	12	6578			30		890
	13	6725	38		53		875
	24	6869	5		76		861
	25	7016	68		99		847
	36	7160	83		$0 \cdot 13422$		$\left\{\begin{array}{l}39 \cdot 833 \\ 40.169\end{array}\right.$
55	1	7307	99				
	12	7451	0.22813		68		140
	${ }_{24}^{13}$	7598 7742	29 44		-91		126
		7742	4		$0 \cdot 18,14$		112

TABLE X-Continued.
Latitode, with Logarithms of Secant and T'angent for each Section, and width of Quarter Sections-Continued.

TABLE X-Continued.
Latitdde, with Logarithms of Secant and Tangent for each Section, and width of Quarter Sections-Continued.

TABLE X—Continued.

Latitude, with Logarithms of Secant and Tangent for each Section, and width of Quarter Sections-Continued.

	Section.	Latitude Φ.	Sec Φ.	Difference for 10 Chains.	$\operatorname{Tan} \Phi$	Difference for 10 Chains.	Quarter Section.
							-
73		$55^{\circ} \cdot 3018$	$0 \cdot 24469$		$0 \cdot 15965$		$39 \cdot 985$
	12	3163	85		89		970
	13	3309	$0 \cdot 24501$		$0 \cdot 16012$		956
	24	3454	17		36		941
	25	3600	33		59		926
	36	3744	49		83		911
74	1	3891	65		0.161 07		896
	12	4035	81		30		881
	13	4182	97		54		867
	24	4326	$0 \cdot 24613$		77		852
	25	4473	29		$0 \cdot 16201$		837
	36	461.	45		24		$\left\{\begin{array}{l}39 \cdot 822 \\ 40 \cdot 180\end{array}\right.$
75	1	4764	(1)		48		165
	12	4908	77		72		150
	13	5054	$!3$		95		135
	24	5199	0.24709		$0 \cdot 16319$		120
	25	5345	25		43		105
	36	5490	41		66		090
76	1	5636	57		90		075
	12	5781	73		$0 \cdot 16413$		060
	13	5927	90		- 37		045
	24	6072	0.24806		61		030
	- 25	6218	0.22		85		015
	36	6363	38		$0 \cdot 16508$		000
77	1	6509	54	잉	32	$\stackrel{6}{8}$	$39 \cdot 185$
	12	6654	70	-	50	\%	90
	13	6800	86	$\stackrel{\square}{\circ}$	79	8	955
	24	6944	0.24902	5	$0 \cdot 16603$	$\dot{-}$	940
	25	7091	19		27		925
	36	7235	35		50		910
78	1	79×2	- 51		71		895
	12	759	67		\%		880
	13	7672	83		$0 \cdot 16721$		865
	24	7817	0.250 00		4		850
	25	7963	16		69		835 39.820
	36	8108	32		92		$\left\{\begin{array}{l}39 \cdot 820 \\ 40 \cdot 182\end{array}\right.$
79	1	80.4	48		$0 \cdot 16816$		167
	12	8399	64		40		152
	13	8545	81		64		137
	24	8690	97		- 87		122
	25	8836	0.25113		$0 \cdot 16911$		106
	36	8981	30		35		091
80	1	!127	46		59		076
	12	929	62		82		061
	13	! 118	79		0.170 06		046
	24	959	95		30		030
	$2:$	9709	0) 25211		54		015 000
	36	9853	27		77		000
81	1	$20^{\circ} \cdot 0000$	44		$0 \cdot 17101$		$30 \cdot 985$
	12	5 0144	60		25		90
	13	0291	73		49		94
	24	0435	93		72		93.1

TABLE X—Concluded.

Latitude, with Logarithms of Secant and Tangent for each Section, and width of Quarter Sections-Concluded.

TABLE XI.
To Convert Chains into Decimals of a Township Side.

	Equivalent Decimal of a Township Side.			跒	Equivalent Decimal of a Township Side.		
	Side $=489{ }^{\circ}$.	Side $=486 \mathrm{c}$.	Side $=483$.		Side $=489{ }^{\text {c }}$.	Side $=486^{\circ}$.	Side $=483 \mathrm{c}$.
1	0.00204	$0 \cdot 00206$	$0 \cdot 00207$	30	0.06135	0.06173	$0 \cdot 06211$
2	00409	. 00412	$\cdot 00414$	40	. 08180	-08230	-08282
3	00613	00617	00621	50	10225	10288	- 10352
4	00818	00823	00828	60	12270	12346	12422
5	-01022	-01029	-01035	70	14315	14403	- 14493
6	01227	-01235	-01242	80	16360	16461	-16563
7.	01431	$\cdot 01440$	-0144!	90	18405	18519	-18634
8	. 01636	-01646	-01656	100	20450	20576	-20704
9	01840	-01852	-01863	200	40900	41152	41408
10	02045	02058	$\cdot 02070$	300	- 61350	61728	62112
20	04090	04115	04141	400	-81800	82305	82816

TABLE XII.

Corrections to be applied to the tabular quantities in Table No. VII when the north side of the road allowance on Correction Lines is run instead of the south; also correction to road allowance on account of curvature.

			Correction to width of road allowance on account of curvature.									
			$\begin{aligned} & \text { jog } \\ & =30 \\ & \text { chs. } \end{aligned}$	$\begin{aligned} & \text { jog } \\ & =40 \\ & \text { chs. } \end{aligned}$	$\begin{aligned} & \text { jog } \\ & \overline{\text { chs. }} \end{aligned}$	$\begin{gathered} \substack{\text { jog } \\ =\\ \text { chs }} \end{gathered}$	$\begin{aligned} & \text { jog } \\ & \begin{array}{l} \text { cho } \\ \text { chs. } \end{array} \end{aligned}$	$\begin{gathered} \text { jog } \\ =80 \\ \text { chs. } \end{gathered}$	$\begin{aligned} & \overline{\text { jog }} \\ & =90 \\ & \text { chs. } \end{aligned}$	$\begin{aligned} & \text { jog } \\ & =100 \\ & \text { chs. } \end{aligned}$	$\begin{gathered} \quad \text { jog } \\ =\stackrel{110}{\text { chs. }} \\ \end{gathered}$	$\begin{gathered} \text { jog } \\ =120 \\ \text { chs. } \end{gathered}$
	"	inches.	lks.	1ks.								
1st	$-1 \cdot 3$	+0.010	2.5	3.2	3.9	$4 \cdot 6$	$5 \cdot 2$	5.8	6.4	$7 \cdot 0$	$7 \cdot 5$	$7 \cdot 9$
11th	-17	$+0.013$	$2 \cdot 8$	$3 \cdot 7$	$4 \cdot 5$	52	60	6.7	$7 \cdot 3$	$7 \cdot 9$	8.5	$8 \cdot 9$
21st	-2.2	$+0.017$	$3 \cdot 2$	$4 \cdot 2$	$5 \cdot 2$	$6 \cdot 0$	6.9	77	8.4	$9 \cdot 1$	$9 \cdot 8$	$10 \cdot 4$
31st.	$-2 \cdot 9$	+0.022	$3 \cdot 7$	$4 \cdot 8$	$5 \cdot 9$	6.9	$7 \cdot 9$	8.8	$9 \cdot 6$	$10 \cdot 4$	$11 \cdot 2$	$11 \cdot 9$

TABLE XIII.

Showing the difference of Latitude between Township Corners and Section and Quarter Section Posts on a Township Chord.

Number of Line.	For $\frac{1}{2} \mathrm{sec}$. from Corner.	d^{Φ} For 1 sec. from Corner.	$\begin{aligned} & \mathrm{d}^{\Phi} \\ & \text { For } 1 \frac{1}{2} \text { see. } \\ & \text { from } \\ & \text { Corner. } \end{aligned}$	d^{ϕ} For 2 secs. from Corner.	d^{Φ} For $2 \frac{1}{2}$ secs. from Corner.	d \downarrow For 3 secs. from Corner.
	"	"	"	"	"	"
1st Base do	lks. $3 \cdot 2$	0.04 lks. $5 \cdot 9$	0.05 lks. 8.0	$\begin{gathered} 0.06 \\ \mathrm{lks} . \\ 9 \cdot 5 \end{gathered}$	$\begin{gathered} 0.07 \\ \text { lks. } \\ 10 \cdot 3 \end{gathered}$	$\begin{gathered} 0.07 \\ \text { lks. } \\ 10.8 \end{gathered}$
11th Base do	0.02 lks. 3.6	0.04 lks. $6 \cdot 7$	$\begin{gathered} 0 \cdot 06 \\ \mathrm{lks} . \\ 9 \cdot 1 \end{gathered}$	$\begin{gathered} 0.07 \\ \text { lks. } \\ 10 \cdot 8 \end{gathered}$	$\begin{gathered} 0.08 \\ \text { lks. } \\ 11.8 \end{gathered}$	$\begin{aligned} & 0.08 \\ & \text { lks. } \\ & 12 \cdot 1 \end{aligned}$
21st Base. do	0.03 lks. 4.2	0.05 lks. 7%	$\begin{gathered} 0.07 \\ \text { lks. } \\ 10: 3 \end{gathered}$	$\begin{aligned} & 0 \cdot 08 \\ & \text { lks. } \\ & 12 \cdot 3 \end{aligned}$	$\begin{gathered} 0.09 \\ \text { lks. } \\ 13 \cdot 3 \end{gathered}$	$\begin{aligned} & 0 \cdot 09 \\ & \text { lks. } \\ & 13 \cdot 8 \end{aligned}$
31st Base. do	$\begin{gathered} 0.03 \\ \mathrm{lks} . \\ 4 \cdot 8 \end{gathered}$	0.06 lks. $8 \cdot 8$	0.08 lks. $12 \cdot 0$	$\begin{gathered} 0 \cdot 09 \\ \mathrm{lks.} \\ 14 \cdot 4 \end{gathered}$	$\begin{aligned} & 0 \cdot 10 \\ & \text { lks. } \\ & 15 \cdot 6 \end{aligned}$	$\begin{aligned} & 0 \cdot 11 \\ & \mathrm{lks} . \\ & 16 \cdot 2 \end{aligned}$

[^0]: " proposed methon for the survey of the public lands in the north-west territories.
 " 1 . The system to be rectangular; all townships to lee east and west or north and south.
 " 2 . The townships to number northerly from the 49 th parallel of latitude and the ranges of townships to number east and west from a given meridian, this meridian to be drawn from the 49th parallel at a point say ten miles west of Pembina, and to be called the Vinnipeg Meridian.
 " 3. The townships to consist of 64 squares of 800 acres each, and to contain, in addition, 40 acres, or five per cent in area in each section, as an allowance for public highways.
 i4. The townships on the Red and Assiniboine Rivers where the same had ranges of farm lots laid out by the Hudson Bay Company, to be surveyed, the broken sections abutting against the rear limits of such ranges, so as to leave the same intact as independent grants."

[^1]: " The contract system suited well the conditions of character of country and facilities for transport that existed at the outset of most of the block surveys, and in anticipation of which conditions the prices allowed were fixed; but the country to be surveyed proved not to be nearly as uniforn in character as was expected, much less of it than had been estimated was found to be open prairie.

[^2]: "Mr. Russell's apparatus consists of well seasoned deal rods successively connected with each other by metal fittings working on the contact principle, the particular application of which principle is as follows :-Each joint consists of an accurately turned hard metal cylinder with its axis horizontal and transverse to the line of measurement; on this cylinder, which is at the end of one ron, rests the rectangular inverted V, or claw of metal fitting, at the end of the next rod. The line bisecting the rectangular claw will always pass through the centre of the supporting cylinder at any relative

[^3]: "In the Province of Manitoba and the territory adjoining, the large area that had been, in previous years, laid out in townships and subdivided, has, so far, met the principal needs of progressive occupation.
 "But various settlements springing up in remoter parts of the North-West Territory, it has become necessary to provide for these by making detached surveys of townships and river frontage farm lots.
 " The special survey of standard meridians and parallels has been prosecuted for some seasons past, with a view of affording that connection with existing surveys by which this could be effected, and of insuring that townships so laid out, in advance of the extension of the general system, in localities widely apart, and remote from the main body of surveyed Dominion Lands, should be found to have been correctly placed in the position they should occupy in that system when it is extended from Manitoba to British Columbia.
 "The survey in question also embraces the determination of the latitudes and longitudes of points throughout the territory, for the purposes of contributing to its correct cartography and as a check on the measured surveys.
 " The operations of the survey extend from the international boundary at West Lynne, on the Red River, following its valley and those of the Assiniboine and Saskatchewan Rivers, to a point about 15 miles west of Fort Edmonton, or nearly at the 115 th meridian of west longitude from Greenwich, and approaching the base of the Rocky Mountains.
 "Besides its purely surveying results, much information respecting the character of the country traversed has necessarily been obtained."

[^4]: * No plan.

